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Abstract The series solutions of unsteady flows
of a viscous incompressible electrically conduct-
ing fluid caused by an impulsively rotating infinite
disk are given by means of an analytic technique,
namely the homotopy analysis method. Using a
set of new similarity transformations, we transfer
the Navier–Stokes equations into a pair of nonlin-
ear partial differential equations. The convergent
series solutions are obtained, which are uniformly
valid for all dimensionless time 0 ≤ τ < ∞ in the
whole spatial region 0 ≤ η < ∞. To the best of
our knowledge, such kind of series solutions have
never been reported. The effect of magnetic num-
ber on the velocity is investigated.

Keywords MHD flows · Unsteady ·
Von Kármán’s flow · Homotopy analysis method ·
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1 Introduction

The swirling flow due to an infinite rotating disk is
a classic problem in fluid mechanics with numer-
ous applications in science and engineering. Von
Kármán [1] initiated the study of this problem.
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Using a set of similarity transformations, he re-
duced the full of Navier–Stokes equations to a pair
of nonlinear ordinary differential equations in the
axial coordinate. Cochran [2] corrected a few of
errors in Von Kármán’s approximations and ob-
tained an accurate solution. Thiriot [3] made a
start on the impulsively started initial-value rotat-
ing disk problem. However, his formulations con-
tain numerical errors. Benton [4] extended the prob-
lem to the case of the flow started impulsively from
rest and obtained a highly accurate solution by
a simple analytical-numerical method. Then, the
problem is generalized to include the case where
the fluid itself is rotating as a solid body far from the
disk with suction or injection at the disk surface.
This introduces a parameter, i.e. the ratio of the
angular velocity of the fluid at infinity to the angu-
lar velocity of the disk. Another generalization is
to consider the viscous flow between two infinite
coaxial rotating disks with suction or injection at
both disks and this introduces another parame-
ter, i.e. the Reynolds number determined by the
distance of the two disks. All these problems are
studied, theoretically, numerically and experimen-
tally, by many researchers such as [5–18] and so
on. For details, please refer to Zandbergen and
Dijkstra [19].

The classical problem of the Von Kármán
swirling viscous flow has been generalized in the
manner to include diverse physical effects.
Millsaps and Pohlhausen [20] first considered the
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steady-state heat transfer from a rotating disk main-
tained at a constant temperature for a variety of
Prandtl numbers. Sparrow and Cess [21] and Loff-
redo [22] investigated the effect of the electrically
conducting fluid characteristics on the flows caused
by a rotating disk. Andersson and de Korte [23]
studied the Magnetohydrodynamic flow of an elec-
trically conducting power-law fluid due to an infi-
nite rotating disk in the presence of an uniform
magnetic field. Takhar et al. [24] investigated the
unsteady MHD flows above an infinite rotating
disk by assuming that the unsteadiness in the flow
field is caused by the angular velocity of the disk
which varies with time. Hayat et al. [25] studied
the flows of a second order fluid due to noncoax-
ial rotations of a porous disk and a fluid at infin-
ity in presence of a uniform transverse magnetic
field.

In general, it is hard to analytically solve non-
linear problems. The widely applied perturbation
techniques depend strongly upon small parameters
and therefore are valid in general only for weakly
nonlinear problems. In 1992, using the concept of
homotopy [26], which is a basic concept of topol-
ogy [27], Liao [28] proposed an analytic method for
nonlinear problems, namely the homotopy analy-
sis method (HAM), and modified it step by step
[29–33]. Different from perturbation techniques,
the HAM is independent upon small parameters
at all, so that it is valid for highly nonlinear prob-
lems, especially those without small/large physical
parameters. Besides, it logical contains the nonper-
turbation techniques such as Lyapunov’s artificial
small parameter method [34], Adomian decompo-
sition method [35] and δ-expansion method [36], as
proved by Liao [37]. The so-called “homotopy per-
turbation method” [38] proposed in 1999 is only a
special case of the HAM, as pointed out by Liao
[39]. Thus, the HAM is more general and is a unifi-
cation of previous nonperturbation techniques. Be-
sides, different from all previous analytic methods,
the HAM always gives us a family of series solu-
tions whose convergence region can be adjusted
and controlled by an auxiliary parameter. For de-
tials, please refer to Liao [37]. The HAM has been
successfully applied to many types of nonlinear
problems ([37, 40–47]), including some unsteady
nonlinear problems [45–47]. Especially, new solu-
tions of a few nonlinear problems are even found

by means of it [48, 49]. All of these verify the valid-
ity of the HAM for highly nonlinear problems. The
aim of the present paper is to investigate the un-
steady flow of a viscous incompressible electrically
conducting fluid (which is sometimes also called
resistive fluid) caused by an impulsively rotating
infinite disk by means of the HAM, and to obtain
the convergent series solutions valid for all dimen-
sionless time 0 ≤ τ < ∞ in the whole spatial region
0 ≤ η < ∞. To the best of our knowledge, such
kind of series solutions have never been reported.

2 Mathematical description

Let (r, φ, z) denote the coordinates in the radial,
tangential and axial directions, (u, v, w) the veloc-
ity components in these directions, and t the time,
respectively. Consider the unsteady, laminar flows
of a viscous, incompressible electrically conduct-
ing fluid introduced by an infinite disk (at z = 0)
which is started impulsively (at t = 0) into steady
rotation with constant angular velocity Ω (Ω �= 0).
The flow is governed by the continuity equation,
the Navier–Stokes equations, and the generalized
Ohm’s law (without Hall effect), i.e.

∇ · V = 0, (1)
∂V
∂t

+ (V · ∇)V = − 1
ρ

∇p + ν∇2V

+ 1
ρ

(J × B), (2)

J = σ [E + V × B], (3)

where p is the pressure, V the fluid velocity, J the
electric current density, E the electric field, B the
total magnetic field, B0 the magnetic field in the z-
direction, b = B − B0 the induced magnetic field,
respectively. Assume that the flow is axisymmet-
ric, and the magnetic Reynolds number is small,
i.e. Rem = µ0σVL � 1, where µ0 is the magnetic
permeability, σ the electrical conductivity, V and
L the characteristic velocity and length, respec-
tively. With these assumptions, it is reasonable to
neglect the induced magnetic field b in comparison
to the applied magnetic field B0. The electric field
is defined by

E = −∇φE(r, z), (4)

where φE(r, z) = Cr2 + ΦE(z) is a general form of
electric potential function of the similarity solutions,
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C is a constant, and ΦE(z) is the electric potential
function in the axial direction, respectively. In this
article, C is enforced to be zero. Otherwise, there
would be a radial electric field far from the disk
that the electric field must be externally imposed
and does not arise from the rotating of the disk.
Then there would be radial electric current, that
would drive an azimuthal velocity. As a result, the
problem becomes a completely different ones, i.e.
the electromagnetically driven flow. Thus, we had
to enforce C = 0 here. Note that the axial elec-
tric field caused by ΦE(z) does not appear in the
equations governing the flows. The reason is that
the tangential velocity v drives a radial electric cur-
rent which varies linearly with r. Continuity of the
current implied that there must be an axial electric
current which is independent of r, but it does not
produce any body force. Considering all of these,
we have the governing equations of the unsteady
boundary layer flows (refer to [21, 24, 50])
∂u
∂r

+ u
r

+ ∂w
∂z

= 0, (5)

∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z

− v2

r

= − 1
ρ

∂p
∂r

− σB2u
ρ

+ ν
(
∇2u − u

r2

)
, (6)

∂v
∂t

+ u
∂v
∂r

+ w
∂v
∂z

+ uv
r

= −σB2v
ρ

+ ν
(
∇2v − v

r2

)
, (7)

∂w
∂t

+ u
∂w
∂r

+ w
∂w
∂z

= − 1
ρ

∂p
∂z

+ ν∇2w, (8)

subject to the initial and boundary conditions

u = v = w = 0, at t = 0,

u = w = 0, v = rΩ, at z = 0, t > 0, (9)

u = v = 0, as z → ∞, t ≥ 0,

where p is the pressure, ρ the density of the fluid, ν
the kinematic viscosity of the fluid, B the strength
of applied magnetic field, respectively.

Following Williams and Rhyne [51], we use the
following new similarity transformations

η = z

√
Ω

νξ
, ξ = 1 − exp(−τ), τ = Ωt,

u = rΩF, v = rΩG, w = (Ωνξ)1/2H, (10)

p = −ρνΩP,

where F, G, H and P are real functions of η and ξ .
Then, Eqs. 5–8 become

Hη + 2F = 0, (11)

(1 − ξ)
(
ξFξ − η

2
Fη

)
− Fηη

+ ξ
(

HFη + F2 − G2 + MF
)

= 0, (12)

(1 − ξ)
(
ξGξ − η

2
Gη

)
− Gηη

+ξ
(
HGη + 2FG + MG

) = 0, (13)

(1 − ξ)

(
1
2

H + ξHξ − η

2
Hη

)

+ξHHη − Pη − Hηη = 0, (14)

subject to the boundary conditions

F(0, ξ) = 0, G(0, ξ) = 1, H(0, ξ) = 0,

F(∞, ξ) = 0, G(∞, ξ) = 0, (15)

where M = σB2/(ρΩ) is the magnetic number.
According to (14), it is easy to get P for given

H. From (11), it holds

F = −1
2

Hη. (16)

Substituting (16) into Eqs. 12 and 13, we obtain

(1 − ξ)
(η

2
Hηη − ξHηξ

)
+ Hηηη

+ξ

(
1
2

H2
η − HHηη − 2G2 − MHη

)
= 0, (17)

(1 − ξ)
(
ξGξ − η

2
Gη

)
− Gηη

+ξ
(
HGη − GHη + MG

) = 0, (18)

subject to the boundary conditions

G(0, ξ) = 1, H(0, ξ) = Hη(0, ξ) = 0,

G(∞, ξ) = Hη(∞, ξ) = 0. (19)

When ξ = 0, corresponding to τ = 0, we have
from (17) and (18) that

Hηηη + η

2
Hηη = 0, (20)

Gηη + η

2
Gη = 0, (21)

subject to the boundary conditions

G(0, 0) = 1, H(0, 0) = Hη(0, 0) = 0,

G(∞, 0) = Hη(∞, 0) = 0. (22)

The above equations have the exact solutions

H(η, 0) = 0, G(η, 0) = erfc
(η

2

)
, (23)
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where erfc (η) is the error function defined by

erfc(η) = 2√
π

∫ +∞

η

exp(−z2)dz. (24)

When ξ = 1, corresponding to τ → +∞, we have

Hηηη + 1
2

H2
η − HHηη − 2G2 − MHη = 0, (25)

Gηη − HGη + GHη − MG = 0, (26)

subject to the boundary conditions

G(0, 1) = 1, H(0, 1) = Hη(0, 1) = 0,

G(∞, 1) = Hη(∞, 1) = 0. (27)

The skin friction coefficients in radial and tan-
gential directions are given by

Cr
f = τr

ρ(rΩ)2 = − 1√
ξRer

Fη(0, ξ)

= 1
2
√

ξRer
Hηη(0, ξ), (28)

Cφ

f = τφ

ρ(rΩ)2 = − 1√
ξRer

Gη(0, ξ), (29)

where Rer = r
√

Ω/ν is the local Reynolds number,
τr and τφ are the radial and tangential shear stress,
respectively.

3 Homotopy analysis solution

Liao [37] studied the steady-state Von kármán
swirling viscous flow by means of the HAM. Fol-
lowing Liao [37], we introduce the transformation

η = λζ , (30)

where λ > 0 is the so-called spatial-scale parame-
ter. Using (30), Eqs. 17 and 18 become

(1 − ξ)

(
ζ

2λ
Hζ ζ − ξ

λ
Hζ ξ

)
+ 1

λ3 Hζ ζ ζ

+ ξ

[
1

2λ2 H2
ζ − 1

λ2 HHζ ζ − 2G2 − M
λ

Hζ

]
= 0,

(31)

(1 − ξ)

(
ξGξ − ζ

2
Gζ

)
− 1

λ2 Gζ ζ

+ ξ

(
1
λ

HGζ − 1
λ

GHζ + MG
)

= 0, (32)

subject to the boundary conditions

G(0, ξ) = 1, H(0, ξ) = Hζ (0, ξ) = 0,

G(∞, ξ) = Hζ (∞, ξ) = 0. (33)

From the boundary conditions (33), it is obvious
that G(ζ , ξ) and H(ζ , ξ) can be expressed by a set
of base functions{

ξk ζm exp(−nζ )| k ≥ 0, n ≥ 0, m ≥ 0
}

(34)

in the form

H(ζ , ξ) =
+∞∑
k=0

+∞∑
m=0

+∞∑
n=0

ak
m,nξkζm exp(−nζ ), (35)

G(ζ , ξ) =
+∞∑
k=0

+∞∑
m=0

+∞∑
n=0

bk
m,nξkζm exp(−nζ ), (36)

where ak
m,n and bk

m,n are coefficients. These pro-
vide us with the solution expressions of H(ζ , ξ) and
G(ζ , ξ), respectively. From (33), (35) and (36), it is
straightforward to choose

H0(ζ , ξ) = 0, G0(ζ , ξ) = exp(−ζ ), (37)

as the initial approximations of H(ζ , ξ) and G(ζ , ξ).
Similarly, it is natural to choose

LH[Φ(ξ , ζ ; q)] = ∂3Φ

∂ζ 3 − ∂Φ

∂ζ
,

LG[Ψ(ξ , ζ ; q)] = ∂2Ψ

∂ζ 2 − Ψ, (38)

as the auxiliary linear operators. They have the fol-
lowing properties

LH[C1 exp(−ζ ) + C2 exp(ζ ) + C3] = 0, (39)

LG[C4 exp(−ζ ) + C5 exp(ζ )] = 0, (40)

where C1, C2, C3, C4, and C5 are constants. Based
on Eqs. 31 and 32, we define the nonlinear opera-
tors

NH[Φ(ζ , ξ ; q), Ψ(ζ , ξ ; q)]
= (1 − ξ)

(
ζ

2λ

∂2Φ

∂ζ 2 − ξ

λ

∂2Φ

∂ξ∂ζ

)
+ 1

λ3

∂3Φ

∂ζ 3

+ξ

[
1

2λ2

(
∂Φ

∂ζ

)2

− 1
λ2 Φ

∂2Φ

∂ζ 2

−2Ψ2 − M
λ

∂Φ

∂ζ

]
, (41)

NG[Φ(ζ , ξ ; q), Ψ(ζ , ξ ; q)]
= (1 − ξ)

(
ξ
∂Ψ

∂ξ
− ζ

2
∂Ψ

∂ζ

)
− 1

λ2

∂2Ψ

∂ζ 2

+ξ

(
1
λ

Φ
∂Ψ

∂ζ
− 1

λ
Ψ

∂Φ

∂ζ
+ MΨ

)
. (42)
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Then, let –hH and –hG denote the nonzero auxiliary
parameters. We construct the zeroth-order defor-
mation equations

(1 − q)LH[Φ(ζ , ξ ; q) − H0(ζ , ξ)]
= q –hH NH[Φ(ζ , ξ ; q), Ψ(ζ , ξ ; q)], (43a)

(1 − q)LG[Ψ(ζ , ξ ; q) − G0(ζ , ξ)]
= q –hG NG[Φ(ζ , ξ ; q), Ψ(ζ , ξ ; q)], (43b)

subject to the boundary conditions

Ψ(0, ξ ; q) = 1,

Φ(0, ξ ; q) = ∂Φ(ζ , ξ ; q)

∂ζ

∣∣∣∣
ζ=0

= ∂Φ(ζ , ξ ; q)

∂ζ

∣∣∣∣
ζ=+∞

= Ψ(∞, ξ ; q) = 0,

(44)

where q ∈ [0, 1] is an embedding parameter. Obvi-
ously, when q = 0 and q = 1, the zeroth-order
deformation equations (43a) to (43b) have the solu-
tions

Φ(ζ , ξ ; 0) = H0(ζ , ξ), Ψ(ζ , ξ ; 0) = G0(ζ , ξ), (45)

and

Φ(ζ , ξ ; 1) = H(ζ , ξ), Ψ(ζ , ξ ; 1) = G(ζ , ξ), (46)

respectively. Expending Φ(ζ , ξ ; q) and Ψ(ζ , ξ ; q) in
Taylor’s series with respect to q, we have

Φ(ζ , ξ ; q) = H0(ζ , ξ) +
+∞∑
m=1

Hm(ζ , ξ) qm, (47)

Ψ(ζ , ξ ; q) = G0(ζ , ξ) +
+∞∑
m=1

Gm(ζ , ξ) qm, (48)

where

Hm(ζ , ξ) = 1
m!

∂mΦ(ζ , ξ ; q)

∂qm

∣∣∣∣
q=0

,

Gm(ζ , ξ) = 1
m!

∂mΨ(ζ , ξ ; q)

∂qm

∣∣∣∣
q=0

. (49)

Note that Eqs. (43a) and (43b) contain two auxil-
iary parameters –hH and –hG. Assuming that all of
them are properly chosen so that the above series
are convergent at q = 1, we have, using (45), the
solution series

H(ζ , ξ) = H0(ζ , ξ) +
+∞∑
m=1

Hm(ζ , ξ), (50)

G(ζ , ξ) = G0(ζ , ξ) +
+∞∑
m=1

Gm(ζ , ξ). (51)

For the sake of simplicity, define vectors


Hm = {H0, H1, H2, . . . , Hm},

Gm = {G0, G1, G2, . . . , Gm}. (52)

Differentiating the zeroth-order deformation
equations (43a) and (43b) m times with respect to q,
then setting q = 0, and finally dividing them by m!,
we obtain the mth-order deformation equations

LH[Hm(ζ , ξ) − χmHm−1(ζ , ξ)]
= –hHRH

m( 
Hm−1, 
Gm−1), (53a)

LG[Gm(ζ , ξ) − χmGm−1(ζ , ξ)]
= –hGRG

m( 
Hm−1, 
Gm−1), (53b)

subject to the boundary conditions

Hm(0, ξ) = Gm(0, ξ) = ∂Hm(ζ , ξ)

∂ζ

∣∣∣∣
ζ=0

= 0,

Gm(∞, ξ) = ∂Hm(ζ , ξ)

∂ζ

∣∣∣∣
ζ=∞

= 0, (54)

where

RH
m( 
Hm−1, 
Gm−1) = (1 − ξ)

×
(

ζ

2λ

∂2Hm−1

∂ζ 2 − ξ

λ

∂2Hm−1

∂ξ∂ζ

)

+ 1
λ3

∂3Hm−1

∂ζ 3 + ξ




m−1∑
n=0

(
1

2λ2

∂Hn

∂ζ

∂Hm−1−n

∂ζ

− 1
λ2 Hn

∂2Hm−1−n

∂ζ 2

− 2GnGm−1−n
) − M

λ

∂Hm−1

∂ζ

]
, (55)

RG
m( 
Hm−1, 
Gm−1) = (1 − ξ)

×
(

ξ
∂Gm−1

∂ξ
− ζ

2
∂Gm−1

∂ζ

)
− 1

λ2

∂2Gm−1

∂ζ 2

+ ξ




m−1∑
n=0

(
1
λ

Hn
∂Gm−1−n

∂ζ
− 1

λ
Gn

∂Hm−1−n

∂ζ

)

+ MGm−1


 , (56)

and

χm =
{

0, m = 1,
1, m > 1.

(57)
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Note that, substituting (47) and (48) into zeroth-
order deformation equations (43a)–(44), and equat-
ing the same power of q, one can obtain exactly
the same high-order deformation equations as Eqs.
(53a)–(57).

Let H∗
m(ζ , ξ) and G∗

m(ζ , ξ) denote the particular
solutions of Eqs. 53a and 53b. According to (39)
and (40), the general solutions read

Hm(ζ , ξ) = H∗
m(ζ , ξ) + C1 exp(−ζ )

+ C2 exp(ζ ) + C3, (58)

Gm(ζ , ξ) = G∗
m(ζ , ξ) + C4 exp(−ζ ) + C5 exp(ζ ),

(59)

where the integral coefficients C1, C2, C3, C4, and
C5 are determined by the boundary condition (54),
i.e.

C1(ξ) = ∂H∗
m

∂η

∣∣∣∣
η=0

, C3(ξ) = −C1 − H∗
m(0, ξ),

C4(ξ) = −G∗
m(0, ξ), C2(ξ) = C5(ξ) = 0. (60)

In this way, it is easy to solve the set of the linear
equations (53a), (53b) and (54) one after the other
in the order m = 1, 2, 3, . . .

4 Result analysis

Liao [37] proved that, as long as a solution series
given by the HAM converges, it must be one of
solutions. Note that the solution series (50) and
(51) contain three auxiliary parameters: the spa-
tial-scale parameter λ and two auxiliary parame-
ters –hH and –hG. These auxiliary parameters can
be determined in the following way. Note that the
residual error of the initial guess H0(ξ , ζ ), i.e.

E0(λ) =
∫ 1

0

∫ ∞

0
(RH

1 [ 
H0, 
G0])2dξ dζ , (61)

is dependent only on λ. Enforcing

dE0

dλ
= 0, (62)

we obtain the best value of λ by solving the above
equation. Thereafter, we can properly choose the
values of –hH and –hG to ensure that the solution
series (50) and (51) converge. This can be done by
plotting the related –h-curves, as suggested by Liao
[37].

When ξ = 0, corresponding to the initial state,
our analytic approximations agree well with the

exact solutions by means of –hH=−1/8, –hG= − 1/5
and λ = 1/2, as shown in Fig. 1. When ξ = 1, corre-
sponding to the steady state, our analytic approxi-
mations (given also by means of –hH= − 1/8,
–hG = −1/5 and λ = 1/2) agree well with numer-
ical ones, as shown in Figs. 2–4. Furthermore, it is
found that, in the whole region ξ ∈ [0, 1], the solu-
tion series (50) and (51) are convergent by means
of –hH = −1/8, –hG = −1/5 and λ = 1/2, as shown
in Figs. 5 and 6. Note that, the numerical results
are given by the standard Keller–Box method [52].
Thus, by means of HAM, we obtain the convergent
series solutions uniformly valid for all dimension-
less time 0 ≤ τ < +∞ in the whole spatial region
0 ≤ η < +∞.

As shown in Figs. 2–4, as τ → ∞ (correspond-
ing to the steady-state flows), the velocity profiles
of F(η, ξ), G(η, ξ) and H(η, ξ) given by a lager M
are closer to their initial ones. The velocity profiles
of F(η, ξ), G(η, ξ) and H(η, ξ) for a given value
of M at different dimensionless time τ are plot-
ted in Figs. 7–9, respectively. From these figures,
it is clear how the velocities in three directions
vary smoothly from the initial profile to the steady
ones. Obviously, the effect of M increases as ξ

increases.

η

G
(η

,0
)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 The comparison of G(η, 0) of the exact solution with
the series solution given by HAM. Symbol: exact solution;
Solid line: 20th order HAM approximations
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η

F
(η

,1
)

0 1 2 3 4 5 6 7
0

0.08
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0.04
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0.02

0.01

M = 1, 2, 3, 4, 5 

Fig. 2 The comparison of F(η, 1) of the numerical results
with the series solutions given by HAM. Symbol: numerical
results; Solid line: 20th order HAM approximations

M = 1, 2, 3, 4, 5

η

G
(η

,1
)

0 1 2 3 4 5
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0.6

0.7

0.8

0.9

1

Fig. 3 The comparison of G(η, 1) of the numerical results
with the series solutions given by HAM. Symbol: numerical
results; Solid line: 20th order HAM approximations

At the 10th-order approximation, we have

Gη(0, ξ) = −0.601101 + 0.132151ξ

− 0.528604Mξ − 0.0331501ξ2 − 0.11527Mξ2

+ 0.0768466M2ξ2 − 0.0235569ξ3

− 0.0127696Mξ3 + 0.0497901M2ξ3
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Fig. 4 The comparison of H(η, 1) of the numerical results
with the series solutions given by HAM. Symbol: numerical
results; Solid line: 20th order HAM approximations
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Fig. 5 The approximations of Gη(0, ξ) for 0 ≤ ξ ≤ 1 given
by HAM. Symbol: numerical results; Solid line: 20th order
HAM approximations

− 0.0132774M3ξ3 − 0.0127191ξ4

+8.02033 × 10−3Mξ4 + 0.0188366M2ξ4

− 0.0200754M3ξ4 + 3.09269 × 10−3M4ξ4

− 0.0127425ξ5+0.0332359Mξ5−0.0144771M2ξ5

− 7.60698 × 10−3M3ξ5 + 4.62141 × 10−3M4ξ5

− 4.3974 × 10−4M5ξ5 − 6.36733 × 10−3ξ6

+ 0.0217058Mξ6 − 0.0190299M2ξ6

+ 2.7585 × 10−3M3ξ6 + 2.52421 × 10−3M4ξ6
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Fig. 6 The approximations of Hηη(0, ξ) for 0 ≤ ξ ≤ 1 given
by HAM. Symbol: numerical results; Solid line: 20th order
HAM approximations
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Fig. 7 The velocity profile of F(η, ξ) at different dimen-
sionless time τ = Ωt when M = 1

− 8.27673 × 10−4M5ξ6 + 5.33717 × 10−5M6ξ6

− 3.24591 × 10−3ξ7 + 0.0129431Mξ7

− 0.0152168M2ξ7 + 6.4807 × 10−3M3ξ7

− 1.33489 × 10−4M4ξ7 − 5.75257M5 × 10−4ξ7

+ 1.19854 × 10−4M6ξ7 − 5.57692 × 10−6M7ξ7

− 1.77707 × 10−3ξ8 + 7.61521 × 10−3Mξ8

− 0.0102117M2ξ8 + 5.89746 × 10−3M3ξ8

− 1.27811 × 10−3M4ξ8 − 1.42947 × 10−4M5ξ8
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Fig. 8 The velocity profile of G(η, ξ) at different dimen-
sionless time τ = Ωt when M = 1
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+ 1.09198 × 10−4M6ξ8 − 1.51388 × 10−5M7ξ8

+ 5.32289 × 10−7M8ξ8 − 5.6943 × 10−4ξ9

+ 3.36237 × 10−3Mξ9 − 5.85884 × 10−3M2ξ9

+ 4.74345 × 10−3M3ξ9 − 1.99918 × 10−3M4ξ9

+ 4.11681 × 10−4M5ξ9 − 1.990213 × 10−5M6ξ9

− 6.28583 × 10−6M7ξ9 + 8.82624 × 10−7M8ξ9

− 2.40856 × 10−8M9ξ9 − 1.24696 × 10−3ξ10

+ 4.59667 × 10−3Mξ10 − 5.42665 × 10−3M2ξ10
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+ 2.54392 × 10−3M3ξ10 − 1.06227 × 10−4M4ξ10

− 3.94209 × 10−4M5ξ10 + 1.84336 × 10−4M6ξ10

− 4.06054 × 10−5M7ξ10 + 4.84525 × 10−6M8ξ10

− 2.91135 × 10−7M9ξ10 + 6.43814 × 10−9M10ξ10

(63)

and

Hηη(0, ξ) = −0.753217ξ − 0.157676ξ2

+ 0.250509Mξ2 − 0.0464415ξ3 + 0.154215Mξ3

− 0.0742715M2ξ3 − 0.0172299ξ4

+ 0.0805866Mξ4 − 0.0744303M2ξ4

+ 0.0172259M3ξ4 − 0.00835926ξ5

+ 0.0436562Mξ5 − 0.053977M2ξ5

+ 0.0235009M3ξ5 − 0.00319522M4ξ5

− 0.00508063ξ6+0.02603Mξ6−0.0334615M2ξ6

+ 0.0330929M3ξ6 − 0.0111802M4ξ6

+ 0.00116494M5ξ6 + 0.00507428ξ7

− 0.00447143Mξ7 − 0.0117372M2ξ7

+ 0.0189165M3ξ7 − 0.0100844M4ξ7

+ 0.0022273M5ξ7 − 1.65816 × 10−4M6ξ7

+ 0.00311045ξ8 − 0.00488687Mξ8

− 0.00253812M2ξ8 + 0.00885629M3ξ8

− 0.00657614M4ξ8 + 0.00220921M5ξ8

− 0.000343223M6ξ8 + 1.91458 × 10−5M7ξ8

+ 0.0017117ξ9 − 0.00348411Mξ9

+ 0.0004694M2ξ9

+ 0.00344048M3ξ9 − 3.42764 × 10−3M4ξ9

+ 1.50879 × 10−3M5ξ9 − 3.47059 × 10−4M6ξ9

+ 3.96989 × 10−5M7ξ9 − 1.71444 × 10−6M8ξ9

+ 1.11614 × 10−3ξ10 − 2.68223 × 10−3Mξ10

+ 0.00118369M2ξ10 + 1.54803 × 10−3M3ξ10

− 2.03301 × 10−3M4ξ10+1.03751 × 10−3M5ξ10

− 2.88218 × 10−4M6ξ10+4.55016 × 10−5M7ξ10

− 3.78643 × 10−6M8ξ10+1.25618 × 10−7M9ξ10.

(64)

Substituting them into (28) and (29), we obtain the
analytic expressions of Cφ

f and Cr
f . They agree well

with the numerical results, as shown in Figs. 10 and
11. So, the 10th-order approximations of Cφ

f and Cr
f

are accurate enough, and are useful in applications.
Note that, the skin friction stresses decreases as the
value of M increases. Physically speaking, the skin
friction forces decreases when the magnetic field
becomes stronger.

5 Conclusions

In this paper, we apply the HAM to obtain the
series solutions of the unsteady flows of a viscous



608 Meccanica (2006) 41:599–609

incompressible electrically conducting fluid caused
by an impulsively rotating infinite disk. Different
from previous analytic solutions, our solutions are
accurate and valid for all time 0 ≤ τ < ∞ in
the whole spatial space 0 ≤ η < ∞. The explicit
analytic expressions of the surface skin friction
coefficients at the 10th-order of approximation are
given, which are accurate and valid for all time.
To the best of our knowledge, such kind of solu-
tions have never been reported. The effect of the
electrically conducting fluid characteristics is also
investigated. The proposed analytic approach has
general meaning and thus can be applied in the
similar way to other complicated unsteady bound-
ary-layer flows so as to obtain accurate series solu-
tions valid for all time.

The HAM has been successfully applied to find
multiple solutions of some relatively simple equa-
tions, as shown in [37, 43, 48, 49]. When multiple
steady-state solutions exist, it is very valuable to
study the corresponding unsteady solutions and
their stability. Notice that the equations of the
viscous flows due to a rotating disk have multi-
ple solutions, as pointed out by many researchers.
However, it is still a challenge for us to find the mul-
tiple solution of the problem in this article, which
is more complicated than those studied in [37, 38,
48, 49]. Further investigation will be done in this
direction.
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