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The steady-state nearly resonant water waves with time-independent spectrum in deep
water are obtained from the full wave equations for inviscid, incompressible gravity
waves in the absence of surface tension by means of a analytic approximation
approach based on the homotopy analysis method (HAM). Our strategy is to
mathematically transfer the steady-state nearly resonant wave problem into the
steady-state exactly resonant ones. By means of choosing a generalized auxiliary
linear operator that is a little different from the linear part of the original wave
equations, the small divisor, which is unavoidable for nearly resonant waves in
the frame of perturbation methods, is avoided, or moved far away from low wave
frequency to rather high wave frequency with physically negligible wave energy. It is
found that the steady-state nearly resonant waves have nothing fundamentally different
from the steady-state exactly resonant ones, from physical and numerical viewpoints.
In addition, the validity of this HAM-based analytic approximation approach for the
full wave equations in deep water is numerically verified by means of the Zakharov’s
equation. A thought experiment is discussed, which suggests that the essence of the
so-called ‘wave resonance’ should be reconsidered carefully from both of physical
and mathematical viewpoints.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
About a half century ago, using a perturbation method (at the third order) that

has been widely applied in fluid mechanics for a long time, Phillips (1960) gave the
criterion of wave resonance

k1 + k2 = k3 + k4, ω1 +ω2 =ω3 +ω4, (1.1a,b)
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where ki is wavenumber and ωi = √gki (with the gravity acceleration g and the
definition ki = |ki|) is the linear frequency. In addition, Phillips (1960) revealed that
amplitude of resonant wave component grows linearly with time, if it is zero initially.
Thereafter, the exactly and nearly resonant waves have been widely studied and
applied (Benney 1962; Longuet-Higgins 1962; Bretherton 1964; Longuet-Higgins &
Smith 1966; Stiassnie & Shemer 1984; Hammack & Henderson 1993; Mei, Stiassnie
& Yue 2005; Onorato et al. 2009). In particular, Benney (1962) established the
evolution equations of wave-mode amplitudes, and demonstrated the time-dependent
periodic exchange of wave energy for exactly resonant waves. Benney (1962)
mentioned that ‘if all three modes are initially present then the energy distribution
will vary with time’ and thus ‘no stable equilibrium amplitudes can be expected as
the system is conservative.’ To the best of our knowledge, the so-called steady-state
resonant waves (with time-independent spectrum) have not been found analytically at
a order higher than three from the full water wave equations, because perturbation
results contain secular terms when Phillips’ criterion is satisfied so that ‘the
perturbation theory breaks down due to singularities in the transfer functions’, as
pointed out by Madsen & Fuhrman (2012).

The nonlinear interactions of steady-state periodic travelling water waves were
investigated by many researchers, but mostly without considering wave resonance.
Concus (1962) analytically investigated the standing capillary-gravity waves of finite
amplitude by means of perturbation methods, but without considering the exact
or near resonance of the wave. Hammack, Scheffner & Segur (1989), Hammack,
Henderson & Segur (2005) experimentally studied in a wave tank the interaction of
two families of periodic travelling waves in shallow water, and observed pictures
where symmetric and asymmetric hexagons were formed by wave crests. They
also analytically reproduced such solutions using the Kadomtsev–Petviashvili (KP)
equation which models this behaviour well. Note that Hammack et al. (1989, 2005)
did not consider exact/near resonance of the wave either. In addition, Dubrovin,
Flickinger & Segur (1997) gave closed-form analytic solutions of the KP equation
with three phases for travelling waves in shallow water, and found that ‘almost every
three-phase solution is time dependent, in every coordinate system’. In addition,
Iooss & Plotnikov (2009, 2011) seriously proved the existence of the symmetrical
and non-symmetrical three-dimensional travelling gravity waves without exact/near
resonance.

Meiron, Saffman & Yuen (1982) numerically solved the full wave equations for
steady three-dimensional symmetric gravity waves with finite amplitude on deep
water, and obtained results in good agreement with the experimental observations
of Su (1982) and Su et al. (1982). Note that the exact/near resonance was not
considered by Su (1982), Su et al. (1982) and Meiron et al. (1982). For free surface
waves with arbitrary uniform depth, Milewski & Keller (1996) derived an isotropic
pseudo-differential equation at the second order of small perturbation quantities,
i.e. the ratio of wave amplitude to the wavelength and the ratio of depth to wavelength,
from which one can reduce to the Benney–Luke equation, the Korteweg–de Vries
(KdV) equation, the KP equation, and to the nonlinear shallow-water equations in
the appropriate limits. Using their second-order perturbation equations together with
the resonance criterion given by Phillips (1960) at the third order, Milewski &
Keller (1996) numerically obtained steady-state resonant and non-resonant waves in
finite water depth, although no multiple solutions were reported. Using a spectral
collocation discretization together with the continuous method, Nicholls (1998)
investigated travelling wave solutions to the Zakharov–Craig–Sulem (ZCS) formulation



On the steady-state nearly resonant waves 177

of the water wave problem, which is equivalent to the full water wave equations,
but without considering exactly or nearly resonant waves. Based on a kind of
integro-differential equations, Craig & Nicholls (2002) numerically investigated the
bifurcation of travelling surface water waves, using the fast Fourier transform and
surface spectral methods proposed by Nicholls (1998). However, as pointed out by
Craig & Nicholls (2002), the three-dimensional waves (cross-waves) without surface
tension exhibits the phenomenon of small divisors, which could make the behaviour of
their numerical scheme very difficult to control. Nicholls & Reitich (2006) proposed
a stable high-order boundary perturbation algorithm for the numerical simulation of
travelling water waves, but pointed out that the resonance ‘lies outside the scope’ of
their method. Meiron et al. (1982) also mentioned that, ‘the small-divisor problem
appears if an attempt is made to calculate solutions by developing expansions in wave
height’, and that ‘we are faced with a situation where increasing the accuracy of a
calculation may lead to an increase in the number of close solutions and a decrease
in the physical precision.’ To the best of our knowledge, numerical methods were
not successful to the full water wave equations for either exactly or nearly resonant
waves, as pointed out by Meiron et al. (1982), Craig & Nicholls (2002) and Nicholls
& Reitich (2006). Neither do perturbation methods for the full wave equations at an
order higher than three, as mentioned by Madsen & Fuhrman (2012).

By means of the homotopy analysis method (HAM) (Liao 1992, 1997, 2003, 2004,
2012, 2014; Vajravelu & Van Gorder 2013), an analytic approximation method for
highly nonlinear problems, the multiple solutions of steady-state resonant waves were
obtained in the form of analytic approximations from the full water wave equations,
not only in deep water (Liao 2011; Liu & Liao 2014) but also in uniform water
depth (Xu et al. 2012) and over a bottom with an infinite number of periodic ripples
(Xu, Lin & Liao 2015). In particular, the multiple steady-state resonant waves were
even observed experimentally (Liu et al. 2015) in a basin at State Key Laboratory
of Ocean Engineering (in Shanghai, China), with excellent agreement with their
theoretical predictions given by means of the HAM.

When Phillips’ resonance criterion (1.1) is exactly satisfied, it is traditionally
called the exact resonance. When it is not exactly but nearly satisfied, it is called
the nearly resonant wave. However, it is well known that near-resonance leads
to the famous ‘small divisor problem’ (Poincaré 1892; Yoccoz 1992), which is
difficult to handle in mathematics (even numerically), as pointed out by Meiron
et al. (1982), Craig & Nicholls (2002) and Nicholls & Reitich (2006). To the best
the authors’ knowledge, the multiple steady-state nearly resonant surface waves with
time-independent spectrum have not been gained from the full water equations by
means of perturbation methods either (Madsen & Fuhrman 2012).

In this paper, we further applied the HAM to the full water wave equations in deep
water and successfully gained such kind of steady-state nearly resonant waves with
time-independent spectrum in a way rather similar to that for the exactly resonant
waves (Liao 2011; Xu et al. 2012; Liu & Liao 2014). In the frame of the HAM,
by means of choosing a new linear operator that is a little different from the linear
part of the original equations (here, it should be emphasized that it is impossible
to do the same thing in the frame of perturbation methods), we can easily avoid
the small divisor at the low wave frequency, or at least move it far away to a
quite high frequency with physically negligible wave energy. From the physical and
numerical viewpoints, it is found that the steady-state nearly resonant waves have
nothing fundamentally different from the steady-state exactly resonant ones. These
conclusions are confirmed and verified numerically by means of the Zakharov’s
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equation in a similar way to the steady-state exactly resonant case (Xu et al. 2012).
Therefore, the steady-state nearly resonant waves have nothing fundamentally different
from the steady-state exactly resonant ones, from the viewpoints of the HAM.

In this paper, the mathematical formulae are described in § 2, and results of a
case study are given in § 3. The concluding remarks and discussions are given in § 4.
The detailed analytic approximation approach based on the HAM for the full wave
equation is given in appendix A and the numerical algorithm based on Zakharov’s
equation is briefly described in appendix B.

2. Mathematical formulae
Consider the nonlinear interactions of two trains of progressive gravity waves with

small amplitudes in deep water. Assume that the fluid is inviscid and incompressible,
the flow is irrotational and the surface tension is neglected. The coordinate system
(x, y, z) is set on the free surface, with z-axis positive vertically upwards. The velocity
potential ϕ(x, y, z, t) is governed by the Laplace equation

∇2ϕ = 0, −∞< z<η(x, y, t), (2.1)

subject to the kinematic and dynamic conditions on the unknown free surface
z= η(x, y, t):

∂2ϕ

∂t2
+ g

∂ϕ

∂z
+ ∂|∇ϕ|

2

∂t
+∇ϕ · ∇

(
1
2
|∇ϕ|2

)
= 0, (2.2)

gη+ ∂ϕ
∂t
+ 1

2
|∇ϕ|2 = 0, (2.3)

respectively, and the impermeable condition at the bottom:

lim
z→−∞

∂ϕ

∂z
= 0, (2.4)

where η(x, y, t) denotes the wave elevation, t denotes the time and

∇= i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (2.5)

is a differential operator with i, j, k denoting the unit vector in the x, y, z direction,
respectively.

Consider the nonlinear interaction of a steady-state wave system of two periodic
travelling waves. Write

ξi = ki · r− σi t, i= 1, 2, (2.6)

where ki is the wavenumber, σi denotes actual wave frequency and r = x i + y j,
respectively. In this paper, we focus on the steady-state cases, say, all wavenumbers
ki and actual wave frequency σi, where i = 1, 2, are time-independent. Due to
the nonlinearity, the actual wave frequency σi is larger than the linear frequency
ωi =√g|ki|. Thus, the wave elevation can be expressed in the form

η(ξ1, ξ2)=
+∞∑
m=0

+∞∑
n=−∞

Am,n cos(mξ1 + nξ2), (2.7)
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where Am,n is a real number. Thus, A2
m,n versus |mk1 + nk2| gives a wave spectrum.

Here,
A2

m,n
+∞∑
m=0

+∞∑
n=−∞

A2
m,n

(2.8)

gives the percentage of wave energy of the wave component cos(mξ1 + nξ2). As
pointed out by Benney (1962), in a special case of exact resonance

k3 = 2k1 − k2, ω3 = 2ω1 −ω2, (2.9a,b)

there exist periodic exchanges of wave energy between different wave components,
i.e. Am,n is time-dependent in general. In this case, the corresponding wave spectrum
is time-dependent. Note that the wave spectrum is time-independent when Am,n, ki and
σi are constants, corresponding to the so-called ‘steady-state waves’. In this paper, the
wavenumber ki and actual wave frequency σi >ωi =√g|ki|, where i= 1, 2, are given
as constants, and the unknown, time-independent coefficient Am,n is determined in the
way mentioned below. In addition, without loss of generality, we consider here only
the so-called ‘nearly resonant’ case when (2.9) is nearly satisfied.

Since all of the wave amplitudes, the wavenumbers ki and the actual wave
frequencies σi of the steady-state travelling waves are constant, i.e. independent
of time, the original initial/boundary-value problem governed by (2.1)–(2.4) can be
transformed into a boundary-value one by means of the new variables ξ1 and ξ2. In
the new coordinate system (ξ1, ξ2, z), the Laplace equation (2.1) reads

2∑
i=1

2∑
j=1

ki · kj
∂2ϕ

∂ξi∂ξj
+ ∂

2ϕ

∂z2
= 0, −∞< z<η(ξ1, ξ2) (2.10)

subject to the two boundary conditions on the unknown wave elevation z= η(ξ1, ξ2):

N1[ϕ] =
2∑

i=1

2∑
j=1

σiσj
∂2ϕ

∂ξi∂ξj
+ g

∂ϕ

∂z
− 2

2∑
i=1

σi
∂f
∂ξi

+
2∑

i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂f
∂ξj
+ ∂ϕ
∂z
∂f
∂z
= 0, on z= η(ξ1, ξ2), (2.11)

N2[ϕ, η] = η− 1
g

(
2∑

i=1

σi
∂ϕ

∂ξi
− f

)
= 0, on z= η(ξ1, ξ2), (2.12)

and also the impermeable condition at the bottom

lim
z→−∞

∂ϕ

∂z
= 0, (2.13)

where N1 and N2 are two nonlinear operators defined above, and

f = 1
2

[
2∑

i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂ϕ

∂ξj
+
(
∂ϕ

∂z

)2
]
. (2.14)
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For a steady-state wave system with time-independent spectrum, there is no
exchange of wave energy between different wave components, i.e. all physical
quantities (such as wave amplitude and frequency) are constant. Thus, the steady-state
wave elevation η reads

η(ξ1, ξ2)=
+∞∑
m=0

+∞∑
n=−∞

Am,n cos(mξ1 + nξ2), (2.15)

where Am,n is a constant to be determined. Similarly, the velocity potential ϕ(ξ1, ξ2, z)
should be in the form

ϕ(ξ1, ξ2, z)=
+∞∑
m=0

+∞∑
n=−∞

Bm,nΨm,n(ξ1, ξ2, z), (2.16)

with the definition

Ψm,n(ξ1, ξ2, z)= sin(mξ1 + nξ2) exp(|mk1 + nk2|z), (2.17)

where Bm,n is a constant to be determined. Note that the linear governing equation
(2.10) and the bottom condition (2.13) are automatically satisfied by (2.16). So, the
unknown coefficients Am,n and Bm,n are determined by the two nonlinear boundary
conditions (2.11) and (2.12).

In the special case (2.9) of the exact resonance, Liao (2011) successfully applied
the HAM to gain the (numerically) convergent analytic approximation solutions of the
full wave equations for the steady-state exactly resonant waves in deep water with
time-independent spectrum. The same approach was further used by Xu et al. (2012)
to the full wave equations for the steady-state exactly resonant waves in finite water
depth, and by Liu & Liao (2014) to the full wave equation for steady-state exactly
resonant waves in deep water in more general cases. The steady-state nearly resonant
waves can be obtained in a rather similar way, as shown below. Since almost all
mathematical formulae are the same as those given by Liao (2011), we only describe
here this approach briefly. For details, please refer to appendix A.

In the HAM-based approach (Liao 2011), the velocity potential ϕ(ξ1, ξ2, z) and the
free surface elevation η(ξ1, ξ2) are expressed by two infinite series

ϕ(ξ1, ξ2, z)= ϕ0(ξ1, ξ2, z)+
+∞∑
m=1

ϕm(ξ1, ξ2, z), η(ξ1, ξ2)=
+∞∑
m=1

ηm(ξ1, ξ2), (2.18a,b)

where
ηm = c0∆

η

m−1 + χm ηm−1, on z= 0, (2.19)

with the definition χ1 = 0 and χm = 1 for m > 1, ϕ0(ξ1, ξ2, z) is an initial guess of
the velocity potential, and ϕm(ξ1, ξ2, z) (m> 1) is governed by the so-called mth-order
deformation equation

2∑
i=1

2∑
j=1

ki · kj
∂2ϕm

∂ξi∂ξj
+ ∂

2ϕm

∂z2
= 0, −∞< z< 0, (2.20)

subject to the linear boundary condition

L [ϕm] = c0∆
φ

m−1 + χm Sm−1 − S̄m, on z= 0, (2.21)
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and the bed condition
∂ϕm

∂z
= 0, as z→−∞. (2.22)

Here, L is an auxiliary linear operator and c0 is an auxiliary parameter, called ‘the
convergence-control parameter’. In addition, all of the terms ∆η

m−1, ∆
φ

m−1, Sm−1, S̄m on
the right-hand side are determined by the known previous approximations ηj and ϕj,
where j= 0, 1, 2, . . . ,m− 1. For details, please refer to appendix A. Thus, as long as
the initial guess ϕ0 of the velocity potential, the auxiliary linear operator L and the
convergence-control parameter c0 are properly chosen, one can gain ηj and ϕj one by
one.

It should be emphasized that, in the above-mentioned HAM-based approach (Liao
2011), we have great freedom to choose the auxiliary linear operator L , the initial
guesses ϕ0 of the velocity potential and the convergence-control parameter c0. As
mentioned by Liao (2011), Xu et al. (2012) and Liu & Liao (2014), it is the freedom
of the HAM on the choice of the initial guess that provides us a way to handle
the singularity of the steady-state exactly resonant waves. In addition, although the
so-called ‘convergence-control parameter’ c0 in (2.19) and (2.21) has no physical
meanings, it provides us a simple way to guarantee the convergence of the solution
series (2.18), as illustrated by Liao (2011), Xu et al. (2012) and Liu & Liao (2014)
for the steady-state exactly resonant waves.

For the steady-state exactly resonant water waves satisfying the criterion (2.9), Liao
(2011) chose the following auxiliary linear operator

L [ϕ] =ω2
1
∂2ϕ

∂ξ 2
1
+ 2ω1 ω2

∂2ϕ

∂ξ1∂ξ2
+ω2

2
∂2ϕ

∂ξ 2
2
+ g

∂ϕ

∂z
, −∞< z<η(ξ1, ξ2), (2.23)

which has the property

L [Ψm,n(ξ1, ξ2, z)] = λm,n Ψm,n(ξ1, ξ2, z), −∞< z<η(ξ1, ξ2), (2.24)

and
L −1[Ψm,n(ξ1, ξ2, z)] = Ψm,n(ξ1, ξ2, z)

λm,n
, −∞< z<η(ξ1, ξ2), (2.25)

where L −1 is the inverse operator of L , Ψm,n defined by (2.17) is the eigenfunction,
and

λm,n = g|mk1 + nk2| − (mω1 + nω2)
2 (2.26)

is an eigenvalue of L for arbitrary wavenumber ki and the linear frequency
ωi =√g|ki| of the primary waves, where i= 1, 2, with the property

λ1,0 = λ0,1 = 0. (2.27)

In addition, in the case (2.9) for the exactly resonant waves, it holds

λ2,−1 = 0. (2.28)

So, from a mathematical viewpoint, the exactly resonant wave system (2.9) has three
eigenvalues to be zero, i.e.

λ1,0 = λ0,1 = λ2,−1 = 0. (2.29)
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Owing to (2.25), it is the additional zero eigenvalue (such as λ2,−1 in the above-
mentioned case) that brings singularity to the exactly resonant wave problems. Such
kind of singularity is mathematically difficult to handle in the frame of perturbation
methods, as mentioned by Madsen & Fuhrman (2012). However, it is easy to
overcome in the frame of the HAM, as illustrated by Liao (2011), Xu et al. (2012)
and Liu & Liao (2014).

Write
δm,n = |λm,n| = |g|mk1 + nk2| − (mω1 + nω2)

2|. (2.30)

Thus,
λm,n = 0, m2 + n2 > 1 (2.31)

corresponds to the exact resonance. So, it is reasonable to define

0< |λm,n|6 10−3, m2 + n2 > 1 (2.32)

for the nearly resonant waves. Here 10−3 is a small number, which can be replaced
by others such as 10−4, but the conclusions given in this paper are qualitatively the
same.

From a mathematical viewpoint, when the resonance criterion (2.9) is nearly
satisfied, we have two zero eigenvalues λ1.0 and λ0,1, and one eigenvalue λ2,−1 very
close to zero. In this case, the famous ‘small divisor problem’ (Poincaré 1892;
Yoccoz 1992) arises, and the above-mentioned HAM-based approach for steady-state
exactly resonant waves (Liao 2011; Xu et al. 2012; Liu & Liao 2014) does not work,
due to the same mathematical difficulties mentioned by Meiron et al. (1982), Craig
& Nicholls (2002) and Nicholls & Reitich (2006) for three-dimensional periodic
travelling waves.

How to overcome this ‘small divisor problem’ in the frame of the HAM?
Note that the HAM-based approach (Liao 2011; Xu et al. 2012; Liu & Liao 2014)

works well for the steady-state exactly resonant waves that have more than two zero
eigenvalues. Can we transfer the nearly resonant wave problems into exactly resonant
ones? If yes, the nearly resonant wave problems can be solved almost in the same
way as the exactly resonant ones.

It should be emphasized that the HAM-based approach (Liao 2011; Xu et al. 2012;
Liu & Liao 2014) provides us great freedom to choose the auxiliary linear operator
L . For the steady-state exactly resonant waves in case of (2.9), Liao (2011) simply
chose the auxiliary linear operator (2.23), which is exactly the linear part of (2.11).
However, if we choose the same auxiliary linear operator (2.23) for the nearly resonant
waves, the small divisor λm,n appears due to (2.25). Fortunately, in the frame of the
HAM, it is not absolutely necessary to do so: the freedom provided by the HAM is
so large that, for the steady-state nearly resonant waves, we can choose here such a
new, generalized auxiliary linear operator

L [ϕ] =ω2
1
∂2ϕ

∂ξ 2
1
+µω1 ω2

∂2ϕ

∂ξ1∂ξ2
+ω2

2
∂2ϕ

∂ξ 2
2
+ g

∂ϕ

∂z
, −∞< z<η(ξ1, ξ2), (2.33)

where

µ= 4ω2
1 +ω2

2 − g|2k1 − k2|
2ω1ω2

(2.34)

is a constant in the case that (2.9) is nearly satisfied, with the property

L [Ψm,n(ξ1, ξ2, z)] = λ̄m,n Ψm,n(ξ1, ξ2, z), −∞< z<η(ξ1, ξ2), (2.35)
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and

L −1[Ψm,n(ξ1, ξ2, 0)] = Ψm,n(ξ1, ξ2, z)
λ̄m,n

, −∞< z<η(ξ1, ξ2), (2.36)

in which Ψm,n defined by (2.17) is the eigenfunction,

λ̄m,n = g|mk1 + nk2| − (m2ω2
1 +µmnω1ω2 + n2ω2

2) (2.37)

is an eigenvalue of the generalized auxiliary linear operator (2.33), respectively.
This is mainly because we have great freedom to choose the auxiliary linear

operator in the frame of the HAM-based approach (Liao 2011). Note that, for the
nearly resonant waves with the small eigenvalue 0 < |λ2,−1| 6 10−3, there are only
two zero eigenvalues λ1,0 = λ0,1 = 0, where λm,n defined by (2.26) is the eigenvalue
of the auxiliary linear operator (2.23) that comes from the linear part of the original
wave equations. However, using the generalized auxiliary linear operator (2.33), we
have now three zero eigenvalues

λ̄1,0 = λ̄0,1 = λ̄2,−1 = 0, (2.38)

where λ̄m,n is the eigenvalue of (2.33), with the same eigenfunction Ψm,n defined
by (2.17). In this way, the small divisor (due to small eigenvalue such as λ2,−1) at
low frequency is avoided, or at least moved far away to rather high frequency with
physically negligible wave energy, as illustrated below.

In the case (2.9) of the exactly resonant waves with λ2,−1 = 0, corresponding to

4ω1ω2 = 4ω2
1 +ω2

2 − g|2k1 − k2| (2.39)

due to the definition (2.26), we have µ=2 according to the definition (2.34). However,
when (2.9) is nearly satisfied, µ deviates from 2 a little, so that the generalized
auxiliary linear operator (2.33) is a little different from (2.23) used by Liao (2011)
for the exactly resonant waves. Therefore, the auxiliary linear operator (2.33) works
not only for the nearly resonant cases (such as 0< |λ2,−1|6 10−3) but also for exactly
resonant ones (such as λ2,−1= 0), since all other mathematical formulae are the same
(Liao 2011), as described in appendix A. In other words, the auxiliary linear operator
(2.23) used by Liao (2011) for the exactly resonant waves is only a special case of
the new auxiliary linear operator (2.33) for the nearly resonant ones. Thus, as long
as the generalized auxiliary linear operator (2.33) is used, there always exist three
zero eigenvalues

λ̄1,0 = λ̄0,1 = λ̄2,−1 = 0, (2.40)

no matter whether the criterion (2.9) is either exactly or nearly satisfied. In other
words, we can solve the steady-state nearly resonant waves almost in the same
way as the exactly resonant ones. Therefore, from the viewpoints of the HAM, the
steady-state nearly resonant water waves have nothing fundamentally different from
the exactly resonant waves, except the more general definition (2.33) of the auxiliary
linear operator L . We will illustrate this point in § 3 by means of a case study.

In summary, our strategy is to transfer the nearly resonant wave problem (with two
zero eigenvalues λ̄1,0 = λ̄0,1 = 0 and one small eigenvalue λ̄2,−1 that leads to small
divisor problem) into the corresponding exactly resonant wave problem with three zero
eigenvalues

λ̄1,0 = λ̄0,1 = λ̄2,−1 = 0 (2.41)
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by means of choosing a generalized auxiliary linear operator (2.33) in the frame of
the HAM. Note that the steady-state exactly resonant travelling waves in deep water
and in finite depth governed by the full wave equations were successfully solved by
means of the HAM (Liao 2011; Xu et al. 2012; Liu & Liao 2014), and also observed
experimentally in a laboratory with good agreement between analytic approximation
and experimental results (Liu et al. 2015). Here, it should be emphasized that,
it is the HAM that provides us such kind of freedom to choose the generalized
auxiliary linear operator (2.33), which is different from the linear part (2.23) of the
original wave equations. This is quite different from perturbation methods (Madsen &
Fuhrman 2012) and the numerical approaches (Meiron et al. 1982; Craig & Nicholls
2002; Nicholls & Reitich 2006), which always regard the linear part (2.23) of the
original wave equations as a linear operator. As a result, perturbation methods and
these numerical approaches had to directly handle the small divisor problem, which
is mathematically very difficult to overcome, as pointed out by Meiron et al. (1982),
Craig & Nicholls (2002), Nicholls & Reitich (2006) and Madsen & Fuhrman (2012).
This is the novelty value of our HAM-based approach for the steady-state nearly
resonant travelling waves.

3. A case study
Without loss of generality, we consider here such a case that the resonance criterion

(2.9) is satisfied either exactly or nearly, which can be solved by means of the
HAM-based approach (Liao 2011) using the generalized auxiliary linear operator
(2.33). Moreover, without loss of generality, we consider a special case

α = π

36
,

σ1

ω1
= σ2

ω2
= ε, k2 = π

5
, 0.89 6

k2

k1
6 0.895, (3.1a−c)

where α denotes the angle between the wavenumbers k1 and k2, σi is the actual
frequency, ωi = √gki with ki = |ki| is the linear frequency and ε is a constant,
respectively. Note that the resonance criterion (2.9) is exactly satisfied when
k2/k1 = 0.8925, a case studied by Liao (2011) in detail. Except the generalized
auxiliary linear operator (2.33), all other formulae are exactly the same as those for
the steady-state exactly resonant waves (Liao 2011), as mentioned in appendix A. The
(numerically) convergent analytic approximations of the steady-state wave systems
for 0.89 6 k2/k1 6 0.895 in the case of (3.1) with ε = 1.0003 are obtained almost in
the same way to that described by Liao (2011) for the steady-state exactly resonant
waves. For details, please refer to appendix A.

We emphasize here that, unlike perturbation techniques and other analytic
approximation methods, our HAM-based approach contains the so-called ‘convergence-
control parameter’ c0, which has no physical meanings but can provide us a
convenient way to guarantee the convergence of solution series. For example, in case
of k2/k1 = 0.8915 (corresponding to a case of nearly resonant waves), the solution
series converges (strictly speaking, here it is a kind of ‘numerical’ convergence,
since we just numerically show the decrease of residual errors versus the order of
approximation, which however is not a mathematical proof), rather quickly by means
of −1.256 c0 6−0.75, with the optimal value of c0 near −0.95, as shown in table 1.
In fact, the numerical convergence of solution series given by the HAM for exactly
resonant waves was generally guaranteed in the same way, as shown by Liao (2011),
Xu et al. (2012), Liu & Liao (2014) and Liu et al. (2015). Note that the numerically
convergent analytic approximations for the steady-state exactly resonant waves in
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Order of c0 =−1.25 c0 =−0.95 c0 =−0.75
approximation Eφ Eη Eφ Eη Eφ Eη

1 9.5× 10−8 7.8× 10−4 9.5× 10−8 7.8× 10−4 9.5× 10−8 7.8× 10−4

3 3.8× 10−9 3.2× 10−6 1.0× 10−9 1.5× 10−7 2.8× 10−9 2.9× 10−6

5 2.3× 10−10 7.0× 10−8 2.8× 10−11 3.4× 10−9 2.3× 10−10 2.7× 10−8

10 8.2× 10−13 4.2× 10−10 6.9× 10−15 4.3× 10−13 5.2× 10−13 4.7× 10−11

15 3.7× 10−15 3.1× 10−13 3.1× 10−18 1.4× 10−16 1.5× 10−15 9.7× 10−14

20 3.5× 10−18 1.0× 10−14 1.9× 10−21 8.6× 10−20 5.6× 10−18 2.7× 10−16

TABLE 1. Averaged residual errors versus order of approximation for nearly resonant
waves in case of σ1/

√
gk1 = σ2/

√
gk2 = 1.0003 and k2/k1 = 0.8915 by means of different

values of the convergence-control parameter c0, with the corresponding distribution of wave
energy 81.9 % (the first primary wave component), 9.7 % (the second primary one) and
8.2 % (the nearly resonant one). The angle between two wavenumbers k1 and k2 of the
two primary waves is π/36. Eφ and Eη denote the averaged residual errors of the two
boundary conditions on the free surface.

deep water given by the HAM-based approach agreed well with the experimental
observation in a laboratory, as mentioned by Liu et al. (2015).

In addition, unlike perturbation techniques, the HAM provides us great freedom
to choose auxiliary linear operator L . The original linear operator (2.23) is widely
used in perturbation approaches, which unfortunately leads to the so-called ‘small
divisor problem’ at a low frequency (say, m= 2, n=−1, corresponding to the wave
component cos(2ξ1 − ξ2)) for the nearly resonant case considered in this paper. Such
kind of ‘small divisor problem’ is very difficult to overcome in mathematics, as
pointed out by Meiron et al. (1982), Craig & Nicholls (2002), Nicholls & Reitich
(2006) and Madsen & Fuhrman (2012). However, by means of simply choosing a
new auxiliary linear operator (2.33) in the frame of the HAM, such kind of ‘small
divisor problem’ can be easily avoided: it is found that, in the case considered in
table 1, the so-called ‘small divisor problem’, corresponding to δm,n < 10−3 with the
definition (2.30), does not occur at least for

0<m 6 105, |n|6 105 (3.2)

by means of using the generalized auxiliary linear operator (2.33). From physical
viewpoints, the kinetic energy of wave components with very high frequency, such
as

Am,n cos(mξ1 + nξ2), |m|> 105 and/or |n|> 105, (3.3)

is rather small and thus can be ignored. Therefore, in the frame of the HAM, the
small divisor problem does not appear even at the 1000th-order of approximations.
Note that such high-order analytic approximations are unnecessary from numerical
viewpoint, since the averaged residual errors of the two boundary conditions are at
the level of 10−20 by means of the optimal convergence-control parameter c0=−0.95,
as shown in table 1. In this way, the ‘small divisor’ at the low frequency of the
steady-state nearly resonant waves is successfully moved far away to much higher
frequencies, or even to infinity (although we cannot strictly prove this point right now
for the considered case). This is mainly because the HAM is fundamentally different
from other perturbation approaches, since it has nothing to do with any small physical
parameters at all. Note that all other perturbation approaches cannot avoid such kind



186 S. Liao, D. Xu and M. Stiassnie

k2/k1 First primary wave Second primary wave Exactly or nearly resonant wave
(%) (%) (%)

0.89 6.3 67.4 26.0
0.89 54.0 28.2 17.0

0.8905 17.2 62.0 20.2
0.8905 52.1 26.7 20.3

0.891 25.6 58.0 15.7
0.891 69.2 14.8 15.8
0.891 49.8 25.0 24.1
0.891 32.0 18.2 49.6

0.8915 81.9 9.7 8.2
0.8915 31.8 55.1 12.3
0.8915 47.1 23.0 28.6
0.8915 22.3 16.3 61.3

0.892 91.2 5.1 3.7
0.892 36.5 52.9 9.6
0.892 43.8 20.8 33.9
0.892 15.7 14.2 69.9

0.8925∗ 40.2 51.1 7.5
0.8925∗ 39.9 18.3 40.1
0.8925∗ 10.5 12.1 77.1

0.893 43.1 49.6 5.9
0.893 35.3 15.6 47.1
0.893 6.3 10.0 83.4

0.8935 45.4 48.3 4.5
0.8935 30.0 12.5 55.3
0.8935 2.8 7.9 89.0

0.894 47.4 46.9 3.3
0.894 23.8 9.1 64.7

0.8945 49.0 45.1 2.1
0.8945 16.6 5.5 75.6

0.895 50.2 42.4 1.1

TABLE 2. Energy distribution of the steady-state exactly or nearly resonant waves in the
case of σ1/

√
gk1 = σ2/

√
gk2 = ε = 1.0003 with various k2/k1. The angle between two

wavenumbers k1 and k2 of the two primary waves is π/36, and ∗ denotes the exactly
resonant wave.

of ‘small divisor problems’. In other words, our HAM-based approach for the nearly
resonant waves is novel, even only from the viewpoint that it can easily move the
‘small divisors’ at low frequency far away to rather high frequency by means of simply
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FIGURE 1. (Colour online) Wave energy distribution (%) of the first primary wave of the
steady-state exactly and nearly resonant wave system in the case of σ1/

√
gk1= σ2/

√
gk2=

ε= 1.0003 with various k2/k1, when the angle between wavenumbers k1 and k2 of the two
primary waves is π/36. The filled squares correspond to the exactly resonant wave.

choosing the generalized auxiliary linear operator (2.33) that is different from the
linear part (2.23) of the original wave equations.

Here, we use another extraordinary advantage of the HAM, i.e. its freedom on
choice of equation type for high-order approximations. In fact, such kind of advantage
of the HAM has been successfully applied to many nonlinear problems, as illustrated
by Liao & Tan (2007) who applied the HAM to successfully solve a second-order
two-dimensional Gelfand equation even by means of a fourth-order auxiliary linear
operator, and a second-order three-dimensional Gelfand equation even by means of a
sixth-order auxiliary linear operator, respectively. In this paper, we further illustrate
that, by means of simply choosing the generalized auxiliary linear operator (2.33) in
the frame of the HAM, the so-called ‘small divisor’ can be easily moved far away
from the low frequency to a very high one, where kinetic energy of wave components
can be ignored from a physical viewpoint.

Given a value of k2/k1, we search for the corresponding steady-state nearly
(or exactly) resonant waves by means of the HAM-based approach mentioned above,
and then gain the distribution of wave energy by means of (2.8). It is found that there
exist multiple solutions in most cases, as shown in figures 1–3. The energy distribution
(%) of the two primary waves (with the wavenumbers k1 and k2) and the nearly
(or exactly) resonant wave component (with the wavenumber k3 = 2k1 − k2) is given
in table 2.

Note that the resonance criterion (2.9) is exactly satisfied when k2/k1 = 0.8925
in the case of (3.1). The results of the exact resonance are marked by the filled
squares in figures 1–3. It is very interesting that the exactly resonant results are not
fundamentally different from other nearly resonant ones: from figures 1–3, one cannot
distinguish the exactly resonant results from the nearly resonant ones. It suggests that,
from physical viewpoints, nothing is fundamentally different between the steady-state
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FIGURE 2. (Colour online) Wave energy distribution (%) of the second primary wave
of the steady-state exactly and nearly resonant wave system in the case of σ1/

√
gk1 =

σ2/
√

gk2 = ε = 1.0003 with various k2/k1, when the angle between wavenumbers k1 and
k2 of the two primary waves is π/36. The filled squares correspond to the exactly resonant
wave.
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FIGURE 3. (Colour online) Wave energy distribution (%) of the wave component k3 =
2k1 − k2 of the steady-state exactly and nearly resonant wave system in the case
of σ1/

√
gk1 = σ2/

√
gk2 = ε = 1.0003 with various k2/k1, when the angle between

wavenumbers k1 and k2 of the two primary waves is π/36. The filled squares correspond
to the exactly resonant wave.
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FIGURE 4. (Colour online) Wave energy distribution (%) obtained by Zakharov equation
of the first primary wave of the steady-state exactly and nearly resonant wave system in
the case of σ1/

√
gk1= σ2/

√
gk2= ε = 1.0003 with various k2/k1, when the angle between

wavenumbers k1 and k2 of the two primary waves is π/36. The filled squares correspond
to the exactly resonant wave.

exactly resonant waves and the steady-state nearly resonant ones. Note also that,
mathematically speaking, both of the exactly and nearly resonant results are obtained
in the same way by means of the same auxiliary linear operator (2.33) in the frame of
the HAM. Therefore, from numerical viewpoints, nothing is fundamentally different
between the exactly resonant waves and the nearly resonant ones either.

We studied many cases different from (3.1) in a similar way, and always obtained
the corresponding steady-state nearly resonant waves. In all of our considered cases,
the results of steady-state exactly resonant waves have nothing fundamentally different
from those of nearly resonant ones. Thus, from physical viewpoints and in the frame
of the HAM, nothing is fundamentally different between the steady-state exactly and
nearly resonant waves.

All of our above-mentioned conclusions are based on the HAM-based approach for
the full wave equations in deep water. Like Xu et al. (2012), we further numerically
solve the Zakharov’s equation so as to verify the correctness of our above-mentioned
conclusions. The numerical approach based on the Zakharov’s equation is described
briefly in appendix B. For the same cases, numerical results given by the Zakharov’s
equation are fundamentally the same as the analytical ones given by our HAM-based
approach for the full wave equations, as shown in figures 4–6. In particular, from
a physical viewpoint, the results of the steady-state exactly resonant waves (marked
by the filled squares) have nothing fundamentally different from those of the nearly
resonant ones either. This verifies the validity of the above-mentioned HAM-based
approach and our analytic approximations gained from the full wave equations.
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FIGURE 5. (Colour online) Wave energy distribution (%) obtained by Zakharov equation
of the second primary wave of the steady-state exactly and nearly resonant wave system
in case of σ1/

√
gk1 = σ2/

√
gk2 = ε = 1.0003 with various k2/k1, when the angle between

wavenumbers k1 and k2 of the two primary waves is π/36. The filled squares correspond
to the exactly resonant wave.

0.889 0.890 0.891 0.892 0.893 0.894 0.895

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f 
w

av
e 

en
er

gy

FIGURE 6. (Colour online) Wave energy distribution (%) obtained by Zakharov equation
of the wave component k3= 2k1− k2 of the steady-state exactly and nearly resonant wave
system in the case of σ1/

√
gk1=σ2/

√
gk2= ε= 1.0003 with various k2/k1, when the angle

between wavenumbers k1 and k2 of the two primary waves is π/36. The filled squares
correspond to the exactly resonant wave.
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4. Concluding remarks and discussions
In this paper, the HAM-based approach given by Liao (2011) for the steady-state

exactly resonant waves is generalized for the steady-state nearly resonant waves by
simply choosing the generalized auxiliary linear operator (2.33) but keeping all other
formulae the same. In this way, we successfully gained, for the first time, the steady-
state nearly resonant waves with time-independent spectrum in deep water. To the
best of the authors’ knowledge, this kind of steady-state nearly resonant wave has
not been obtained analytically from the full wave equations. Therefore, considering
the published results about the steady-state exactly resonant waves (Liao 2011; Xu
et al. 2012, 2015; Liu & Liao 2014; Liu et al. 2015), steady-state gravity waves with
time-independent amplitudes widely exist, no matter whether the resonance criterion
is exactly or nearly satisfied.

Note that the HAM-based approach for the exactly resonant waves does not work
for the nearly resonant ones, since the famous ‘small divisor problem’ appears. Even
for numerical approaches, the small divisor problem is rather difficult to overcome
in mathematics, as pointed out by Meiron et al. (1982), Craig & Nicholls (2002)
and Nicholls & Reitich (2006). Our strategy is to mathematically transfer the steady-
state nearly resonant wave problem into the corresponding exactly resonant ones by
means of choosing a more general auxiliary linear operator (2.33) than the linear part
(2.23) of the original wave equations. In this way, the ‘small divisor problem’ at low
frequency is moved far away to rather high frequency with physically negligible wave
energy, such as the wave component

Am,n cos(mξ1 + nξ2), |m|> 105 and/or |n|> 105, (4.1)

with a tiny wave amplitude Am,n much smaller than the small divisor, illustrated in
a case study in § 3. Note that it is the HAM that provides us such kind of freedom
to choose the generalized auxiliary linear operator (2.33): perturbation and numerical
approaches often directly use the linear part (2.23) of the original wave equations, and
thus had to directly handle the small divisor problems. So, our HAM-based analytic
approximation approach is fundamentally different from other perturbation methods
(Madsen & Fuhrman 2012) and numerical approaches (Meiron et al. 1982; Craig &
Nicholls 2002; Nicholls & Reitich 2006). This also shows the novelty and originality
of our approach for the steady-state nearly resonant travelling waves.

When the resonance criterion (2.9) is exactly satisfied, the general auxiliary linear
operator (2.33) is the same (with µ= 2) as (2.23) for the exact resonance (Liao 2011),
with three eigenvalues being zero. However, using the more general auxiliary linear
operator (2.33), we always have three eigenvalues being zero, even in the case of the
nearly resonant waves. So, from the viewpoint of the HAM, nothing is fundamentally
different between the steady-state exactly and nearly resonant waves. Moreover, from
figures 1–3, one cannot distinguish the results of the exact resonance from all other
near-resonances. So, from the physical viewpoint, the results of the steady-state exactly
resonant waves also have nothing fundamentally different from the nearly resonant
ones, either.

Therefore, from the physical viewpoints and in the frame of the HAM, nothing is
fundamentally different between the steady-state exactly/nearly resonant waves with
time-independent spectrum. Then, a question arises: why should we define the so-
called ‘exactly resonant waves’? Let us consider such a thought experiment. Suppose
that a person, who does not know Phillips’ criterion of wave resonance at all, applies
the above-mentioned HAM-based approach to solve the steady-state travelling waves

sjliao
高亮
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with time-independent spectrum. For them, the results in the case (2.9) at k2/k1 =
0.8925 have nothing special at all from physical viewpoints. In addition, in the frame
of the HAM, all results are gained by using the same mathematical formulae with the
same auxiliary linear operator (2.33). Thus, it seems unnecessary for them to define
the special case k2/k1 = 0.8925, which is traditionally called the ‘exactly resonant
waves’ in the frame of perturbation methods. Note that the physics behind the same
experimental observations should be independent of the used mathematical methods.
So, this thought experiment suggests that the essence of the so-called ‘wave resonance’
should be reconsidered carefully from both physical and mathematical viewpoints.

The KP equation is a simplified model for water waves in shallow water. As pointed
out by Hammack et al. (1989, 2005) and Dubrovin et al. (1997), the KP equation has
a closed-form solution with arbitrary two phase variables. Thus, there exist the steady-
state exactly and nearly resonant waves of the KP equation in shallow water, although
Hammack et al. (1989, 2005) and Dubrovin et al. (1997) did not mention the wave
resonance at all. However, the KP equation is only valid for waves in shallow water,
and thus cannot describe waves in deep water. For example, Dubrovin et al. (1997)
gave closed-form analytic solutions of the KP equation with three phases for travelling
waves in shallow water, and found that ‘almost every three-phase solution is time-
dependent, in every coordinate system’. This conclusion is not correct for waves in
deep water, since rather complicated steady-state exactly resonant waves in deep water
are indeed found by Liu & Liao (2014) for the full wave equations. To the best of the
authors’ knowledge, the steady-state nearly resonant waves in deep water with time-
independent spectrum have never been obtained from the full wave equations in the
form of analytic approximations. Neither have they been gained by other perturbation
techniques (Madsen & Fuhrman 2012) and numerical approaches due to the small
divisor problem, as mentioned by Meiron et al. (1982), Craig & Nicholls (2002) and
Nicholls & Reitich (2006).

Certainly, a lot of work should be done in future. Similarly, it is straightforward
to gain the steady-state nearly resonant waves in a constant water depth and over
a bottom with an infinite number of periodic ripples, in a similar manner to Xu
et al. (2012) and Xu et al. (2015) for the exactly resonant ones. In addition, it
is quite possible to observe the steady-state nearly resonant waves in deep water
experimentally (For this purpose, the steady-state nearly resonant water waves with
large enough nonlinearity should be used.) in a basin, just like Liu et al. (2015) did
for the steady-state exactly resonant waves.

The HAM-based analytic approximation approach can successfully avoid the
small-divisor problem (related to the nearly resonant wave propagation) by means
of moving small divisor at low frequency far away to rather high frequencies with
physically negligible wave energy. This is reasonable from physical and numerical
viewpoints. However, from strictly mathematical viewpoints, the small divisor might
be still an obstacle, since it is even unknown whether or not a solution exists
mathematically (Craig & Nicholls (2000) gave a rigorous proof of an existence
theorem for two- and three-dimensional travelling water waves in the presence of
capillarity. No existence theorems have been strictly proved for water waves in general,
to the best of the authors’ knowledge). This is similar to the famous Navier–Stokes
equations, whose numerical solutions are widely used, but solution existence of the
Navier–Stokes equations is not strictly proved mathematically in general.
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Appendix A. Detailed mathematical formulae
The full water wave equations (2.10)–(2.13) for the steady-state nearly resonant

waves in deep water can be solved by means of the HAM nearly in the same way
as that mentioned by Liao (2011). Shortly speaking, our strategy is to transfer the
steady-state nearly resonant waves into a steady-state exactly resonant ones, by means
of choosing a generalized auxiliary linear operator that is a little different from the
linear part of the original wave equations.

Let ϕ0(ξ1, ξ2, z) denote a initial guess solution of velocity potential ϕ satisfying the
Laplace equation (2.10) and the bottom boundary condition (2.13), L an auxiliary
linear operator with the property L [0] = 0, and q ∈ [0, 1] an embedding parameter
without physical meaning, respectively. In the frame of the HAM, we first construct a
family of solution Φ(ξ1, ξ2, z; q) and ζ (ξ1, ξ2; q) in q∈ [0, 1] by means of the so-called
zeroth-order deformation equation

2∑
i=1

2∑
j=1

ki · kj
∂2Φ

∂ξi∂ξj
+ ∂

2Φ

∂z2
= 0, −∞< z< ζ(ξ1, ξ2; q), (A 1)

subject to the two boundary conditions on the unknown wave elevation z =
ζ (ξ1, ξ2; q):

(1− q)L [Φ(ξ1, ξ2, z; q)− ϕ0(ξ1, ξ2, z)] = c0 q N1[Φ(ξ1, ξ2, z; q)], (A 2)

(1− q)ζ (ξ1, ξ2; q)= c0 q N2[Φ(ξ1, ξ2, z; q), ζ (ξ1, ξ2; q)], (A 3)

and also the impermeable condition at the bottom

lim
z→−∞

∂Φ

∂z
= 0, (A 4)

where N1 and N2 are two nonlinear operators defined by (2.11) and (2.12), c0 6= 0 is
the so-called ‘convergence-control parameter’ without physical meanings, respectively.

When q= 0, the two boundary conditions (A 2) and (A 3) are automatically satisfied,
thus we have the solution

Φ(ξ1, ξ2, z; 0)= ϕ0(ξ1, ξ2, z), ζ (ξ1, ξ2; 0)= 0, (A 5a,b)

since L [0] = 0 and the initial guess ϕ0(ξ1, ξ2, z) satisfies the Laplace equation (2.10)
and the bottom boundary condition (2.13). When q = 1, since c0 6= 0, the zeroth-
order deformation equations (A 1)–(A 4) are equivalent to the original equations (2.10)–
(2.13), so that we have

Φ(ξ1, ξ2, z; 1)= ϕ(ξ1, ξ2, z), ζ (ξ1, ξ2; 1)= η(ξ1, ξ2). (A 6a,b)

Therefore, as q increases from 0 to 1, Φ(ξ1, ξ2, z; q) varies from the initial guess ϕ0
to the unknown velocity potential ϕ(ξ1, ξ2, z), so does ζ (ξ1, ξ2; q) from z= 0 to the
unknown wave elevation η(ξ1, ξ2), respectively. Note that, in the frame of the HAM,
we have great freedom to choose the auxiliary linear operator L , the initial guess
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ϕ0(ξ1, ξ2, z) and the convergence-control parameter c0. Assume that all of them are
so properly chosen that both of Φ(ξ1, ξ2, z; q) and ζ (ξ1, ξ2; q) vary continuously and
in addition that they are analytic with respect to the embedding parameter q ∈ [0, 1].
Then, we have the Maclaurin series with respect to q:

Φ(ξ1, ξ2, z; q)= ϕ0(ξ1, ξ2, z)+
+∞∑
m=1

ϕm(ξ1, ξ2, z) qm, (A 7)

ζ (ξ1, ξ2; q)=
+∞∑
m=1

ηm(ξ1, ξ2) qm, (A 8)

where

ϕm(ξ1, ξ2, z)= 1
m!
∂mΦ(ξ1, ξ2, z; q)

∂qm

∣∣∣∣
q=0

, ηm(ξ1, ξ2)= 1
m!
∂mζ (ξ1, ξ2; q)

∂qm

∣∣∣∣
q=0

. (A 9a,b)

Furthermore, assuming that the auxiliary linear operator L and especially the
convergence-control parameter c0 are so properly chosen that the above two Maclaurin
series (A 7) and (A 8) are convergent at q = 1, we have according to (A 6) the
homotopy-series solution

ϕ(ξ1, ξ2, z)= ϕ0(ξ1, ξ2, z)+
+∞∑
m=1

ϕm(ξ1, ξ2, z), (A 10)

η(ξ1, ξ2)=
+∞∑
m=1

ηm(ξ1, ξ2), (A 11)

respectively.
Substituting the Maclaurin series (A 7) and (A 8) into the zeroth-order deformation

equations (A 1)–(A 4) and then equating the like-power of q, we have the so-called
high-order deformation equation

2∑
i=1

2∑
j=1

ki · kj
∂2ϕm

∂ξi∂ξj
+ ∂

2ϕm

∂z2
= 0, −∞< z< 0, (A 12)

subject to the linear boundary condition

L [ϕm] = c0∆
φ

m−1 + χm Sm−1 − S̄m, on z= 0, (A 13)

and the bed condition
∂ϕm

∂z
= 0, as z→−∞, (A 14)

together with
ηm = c0∆

η

m−1 + χm ηm−1, on z= 0, (A 15)

where χ1 = 0 and χm = 1 for m > 1, and all of the terms ∆η

m−1, ∆
φ

m−1, Sm−1, S̄m on
the right-hand side of (A 13) are determined by the known previous approximations
ηj and ϕj ( j = 0, 1, 2, . . . , m − 1), whose definitions are exactly the same as those
given by Liao (2011). For the sake of simplicity, we neglect their detailed definitions
here.
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Note that ϕm(ξ1, ξ2, z) is in the form

ϕm(ξ1, ξ2, z)=
+∞∑
i=0

+∞∑
j=−∞

bi,j
mΨi,j(ξ1, ξ2, z), (A 16)

where

Ψm,n(ξ1, ξ2, z)= sin(mξ1 + nξ2) exp(|mk1 + nk2|z) (A 17)

automatically satisfies the Laplace equation (A 12) and the bed condition (A 14). Note
that it is straightforward to gain ηm by means of (A 15). So, only the linear boundary
condition (A 13) need be satisfied. Thus, we have a special solution

ϕ∗m =L −1[c0 ∆
φ

m−1 + χm Sm−1 − S̄m], on z= 0, (A 18)

where L −1 is the inverse operator of the auxiliary linear operator L .
Note that the high-order deformation equations (A 12)–(A 14) are linear. Thus, in the

frame of the HAM, we transfer the original nonlinear problem into an infinite number
of linear sub-problems. However, unlike perturbation methods, such kind of transform
does not need the existence of any small/large physical parameters. More importantly,
different from other approximation techniques, we now have great freedom to choose
the convergence-control parameter c0, which has no physical meanings but provides us
a simple way to guarantee the convergence of solution series. In particular, the HAM
also provides us great freedom to choose the auxiliary linear operator L : in fact, it
is this kind of freedom that provides us a straightforward way to handle the nearly
resonant waves, as described below.

When the resonance criterion (2.9) is nearly satisfied, we choose a generalized
auxiliary linear operator L defined by (2.33) with the definition (2.34), which has
the property

L [Ψm,n(ξ1, ξ2, z)] = λ̄m,n Ψm,n(ξ1, ξ2, z), (A 19)

where λ̄m,n defined by (2.26) is the eigenvalue of the generalized auxiliary linear
operator (2.33). Therefore, its inverse operator has the property

L −1[Ψm,n(ξ1, ξ2, z)] = Ψm,n(ξ1, ξ2, z)
λ̄m,n

, when λ̄m,n 6= 0. (A 20)

Using this property, it is easy to gain the special solution ϕ∗m by means of (A 18).
Note that the generalized auxiliary linear operator (2.33) always have three

eigenvalues being zero:
λ̄1,0 = λ̄0,1 = λ̄2,−1 = 0. (A 21)

Therefore, Ψ1,0, Ψ0,1 and Ψ2,−1 are three primary solutions. So, the common solution
reads

ϕm = ϕ∗m + a1,0
m Ψ1,0 + a0,1

m Ψ0,1 + a2,−1
m Ψ2,−1, (A 22)

where ϕ∗m is a special solution, and a0,1
m , a1,0

m and a2,−1
m are three constants to be

determined.
In the frame of the HAM, we have freedom to choose such an initial guess

ϕ0 = a1,0
0 Ψ1,0 + a0,1

0 Ψ0,1 + a2,−1
0 Ψ2,−1, (A 23)
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where a0,1
0 , a1,0

0 and a2,−1
0 are three constants, which are determined by enforcing the

disappearance of the terms

sin ξ1, sin ξ2, sin(2ξ1 − ξ2) (A 24a−c)

on the right-hand side of (A 13), since the corresponding eigenvalues λ̄1,0, λ̄0,1 and
λ̄2,−1 are zero so that (A 20) is invalid. This provides us three coupled, nonlinear
algebraic equations about the unknown constants a0,1

0 , a0,1
0 and a2,−1

0 , which often have
multiple solutions with real values, indicating multiple steady-state resonant waves, as
pointed out by Liao (2011). In this way, we gain the initial guess ϕ0, which further
gives η1 by means of (A 15). Then, it is straightforward to gain the special solution
ϕ∗1 by means of (A 18), and furthermore to have the common solution

ϕ1 = ϕ∗1 + a1,0
1 Ψ1,0 + a0,1

1 Ψ0,1 + a2,−1
1 Ψ2,−1, (A 25)

where a1,0
1 , a

0,1
1 and a2,−1

1 are unknown constants, which can be determined in a similar
way. In this way, we can gain ϕm and ηm at high enough order of approximation,
especially by means of computer algebra software such as Mathematica, Maple and
so on.

Note that the right-hand side of (A 13) contains the convergence-control parameter
c0, which provides us a simple way to guarantee the convergence of the solution
series. The optimal value of the convergence-control parameter c0 is determined by
the minimum of the sum of residual error square of the two free surface boundary
conditions. For example, please refer to table 1.

Note that we have µ = 2 when the resonance criterion (2.9) is exactly satisfied.
Therefore, the auxiliary linear operator (2.23) used by Liao (2011) for the exactly
resonant waves is only a special case of the generalized auxiliary linear operator (2.33)
for the nearly resonant waves. In addition, all mathematical formulae for the steady-
state nearly resonant waves are the same as those given by Liao (2011) for the exactly
resonant ones, only except the generalized auxiliary linear operator (2.33). So, the
above-mentioned HAM-based approach is valid for both of the exactly resonant waves
and nearly resonant waves. This indicates from the viewpoint of the HAM that exactly
resonant waves have no fundamental difference from nearly resonant ones. The results
given in § 3 also confirm this viewpoint.

In general, no matter either the resonance criterion

k3 =m′k1 − n′k2, ω3 =m′ω1 − n′ω2 (A 26a,b)

is satisfied exactly or nearly, the above-mentioned HAM-based approach is valid, as
long as we choose

µ= g|m′k1 + n′k2| − (m′2ω2
1 + n′2ω2

2)

m′n′ω1ω2
(A 27)

in the generalized auxiliary linear operator (2.23), where m′ and n′ are integers.

Appendix B. Approach based on the Zakharov’s equation
Xu et al. (2012) first gained the steady-state exactly resonant waves by means of

the exact wave equations, and then confirmed their results by means of the Zakharov’s
equation, which is a simplified wave model for exactly resonant and nearly resonant
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waves with weak nonlinearity. Here, to verify the HAM-based approach described in
§ 2 and the results of the case study reported in § 3, we solve here the same case by
means of the Zakharov’s equation.

Let us consider a degenerate quartet in a linear near-resonance:

2k1 − k2 − k3 = 0, (B 1)
2ω1 −ω2 −ω3 =1ω, (B 2)

2σ1 − σ2 − σ3 = 0, (B 3)

which give

ε3 = 2ε1ω1 − ε2ω2

2ω1 −ω2 −1ω, (B 4)

where
εi = σi

ωi
, i= 1, 2, 3. (B 5)

For the same case (3.1), we take

ε1 = ε2 = ε. (B 6)

Substituting

B(k, t)= B1(t)δ(k− k1)+ B2(t)δ(k− k2)+ B3(t)δ(k− k3) (B 7)

into Zakharov’s equation

i
dB
dt
=
∫∫∫ +∞

−∞
T1123B∗1B2B3δ1+1−2−3ei(2ω1−ω2−ω3)t dk1 dk2 dk3 (B 8)

and using (B 1), we have

i
dB1

dt
= (T1111|B1|2 + 2T1212|B2|2 + 2T1313|B3|2)B1 + 2T1123ei1ωtB∗1B2B3, (B 9a)

i
dB2

dt
= (2T2121|B1|2 + T2222|B2|2 + 2T2323|B3|2)B2 + T2311e−i1ωtB∗3B2

1, (B 9b)

i
dB3

dt
= (2T3131|B1|2 + 2T3232|B2|2 + T3333|B3|2)B3 + T3211e−i1ωtB∗2B2

1, (B 9c)

where Tijkl is a kernel that can be found in the textbook of Mei et al. (2005). For
steady-state solutions, it holds

Bj(t)= βje−iΩjt, j= 1, 2, 3, (B 10)

where βj = |βj|eiargβj with |βj|, arg βj being unknown real constants, and

Ωj = (εj − 1)ωj. (B 11)

Substituting (B 10) into (B 9a–c) and using (B 3), we have the nonlinear algebraic
equations

Ω1 = T1111|β1|2 + 2T1212|β2|2 + 2T1313|β3|2 + 2T1123β
−1
1 β∗1β2β3, (B 12)



198 S. Liao, D. Xu and M. Stiassnie

Ω2 = 2T2121|β1|2 + T2222|β2|2 + 2T2323|β3|2 + T2311β
2
1β
−1
2 β∗3 , (B 13)

Ω3 = 2T3131|β1|2 + 2T3232|β2|2 + T3333|β3|2 + T2311β
2
1β
∗
2β
−1
3 . (B 14)

And for steady-state quartets with time-independent spectrum, one must set

2 arg β1 − arg β2 − arg β3 = nπ, (n= 0, 1). (B 15)

Note that the steady-state free-surface elevation for the quartet is

η=
∑

j=1,2,3

aj cos [kj · x− (ωj +Ωj)t+ arg βj], (B 16)

where the wave amplitudes aj are related to βj by

aj =
(
ωj

2g

)1/2 |βj|
π
, j= 1, 2, 3. (B 17)

Thus, as soon as we get the solution |β1|, |β2|, |β3| from the algebraic equations
(B 12)–(B 14) with (B 15) for given ωj and εj, j = 1, 2, 3, the corresponding wave
amplitudes are determined by (B 17).
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