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A family of new solutions on the wall jet
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Abstract

The fluid flow problem within the wall jet created by fluid hitting on a solid surface at the right angle is solved based on the
homotopy analysis method (HAM). A new family of solutions for jet with injection/suction which has been overlooked so far are
obtained. Numerical evidence seems to suggest that these solutions decay algebraically far away from the wall.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Based on the definition of Glauert [1], a wall jet is a thin layer of fluid spreading over a surface as a result of
the fluid hitting the surface at the right angle. The flow within the jet can be described through the boundary layer
theory. Within the framework of this theory, Glauert [1] found that similarity solutions would be possible under certain
conditions. In particular, he was able to obtain close-form similarity solutions for a rigid and fixed wall. Merkin and
Needham [2], and Needham and Merkin [3] subsequently extended the work of Glauert by including the wall motion
and the effects of injection and suction of fluid through the wall. They drew two conclusions. The first one was that
the Glauert type of solutions would not be possible when only one of the following two modifications was introduced:
(i) the wall was moving and (ii) injection and suction through the wall were applied. The second conclusion was that
when the motion of the wall and the injection or suction were combined properly, the Glauert type of solutions would
still be possible. More recently, Magyari and Keller [5] showed that the first conclusion of Merkin and Needham [2]
and Needham and Merkin [3] was valid only when the wall jet was an ‘e-jet’, i.e., the jet flow far away from the wall
would decay exponentially, as in the solution of Glauert. They then showed that when suction alone was introduced
similarity solutions would still be possible, but only in the form of ‘a-jet’, i.e., the flow would decay algebraically.

Another interesting result in the work of Glauert [1] was that under assumption of no reverse flow he found that for
the rigid and fixed wall, the two dimensional similarity solution would be possible in the form of u ∝ xa , δ ∝ xb , only
if a = −1/2 and b = 3/4, where u is the velocity and x is the axis along the wall surface, and δ is the jet thickness.
This led to the coefficient in his ordinary differential equation γ = (2b − 1)/(1 − b) = 2. This was the number used
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in the above papers of Merkin and Needham [2], Needham and Merkin [3] and Magyari and Keller [5]. Thus all their
conclusions corresponded to γ = 2. Cohen, Amity and Bayly [4] then showed when there was injection or suction
through the wall, γ did not have to be equal to 2 to allow solutions to exist. Unlike the first conclusion of Merkin and
Needham [2] and Needham and Merkin [3] corresponding to γ = 2, Cohen, Amity and Bayly [4] demonstrated that
the solutions could exist with either injection or suction alone when γ was chosen properly.

One other interesting point about the wall jet flow is that the similarity solution in general is not unique. Glauert [1]
noticed that there was an undetermined coefficient at infinity. He used that coefficient for normalization and obtained
his close-form solution. In the work of Magyari and Keller [5] when suction was included and the flow decayed
algebraically, they found that the solution was also non-unique but for different reasons. They showed that a family
of solutions were possible corresponding to the different skin friction on the wall. By altering γ , Cohen, Amity and
Bayly [4] extended Glauert’s analysis and obtained a family of similarity solutions.

In the present paper, we shall first demonstrate that in the model of Cohen, Amity and Bayly [4], further solutions
are possible, which seems to have been overlooked so far. The homotopy analysis method (HAM) [6–13] will then be
used to solve the wall jet flow problem. By introducing an embedding parameter q the nonlinear ordinary differential
equation is converted to a linear differential equation at q = 0 . When q evolves, the differential equation becomes the
original one at q = 1. The method has been used in a variety of problems and the details can be found in Liao [6,7].
Here the method is first used to solve the problem based on the models of Glauert [1] and Magyari and Keller [5] and
the results are found to be in agreement with those obtained from the methods in their papers. The HAM is then used
to find the solution for the model of Cohen, Amity and Bayly [4]. Apart from those solutions in their paper, additional
solutions are also found.

2. Mathematical description

We consider a two dimensional laminar jet flowing over a fixed plane wall in the presence of a lateral suc-
tion/injection. The governing equations can be given based on the steady boundary layer theory

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (2)

where x and y are the axises parallel and normal to the wall surface, respectively, u and v are the corresponding
velocity components, ν is the kinematic viscosity.

The boundary conditions on the wall and at infinity can be written as

u = 0, v = Vw(x), at y = 0, u → 0 as y → ∞. (3)

Let ψ denote the stream function, satisfying

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (4)

By introducing the following non-dimensional variables

u = Uû, v = Uv̂, x = νx̂/U, y = νŷ/U, ψ = νψ̂, (5)

where U is a constant reference velocity, Eq. (2) can be written as

∂ψ̂

∂ŷ

∂2ψ̂

∂x̂∂ŷ
− ∂ψ̂

∂x̂

∂2ψ̂

∂ŷ2
= ∂3ψ̂

∂ŷ3
. (6)

To find similarity solutions, it is assumed that the jet streamwise velocity û ∝ x̂a and the jet thickness δ ∝ x̂b , as in
Glauert [1]. we then introduce function f and its variable η as

ψ̂ = x̂a+b · f (η), η = d · ŷ/x̂b, (7)

where d is a positive constant. Substituting (7) into (6), we have
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af ′2 − (a + b)ff ′′ = d · x̂−a−2b+1f ′′′. (8)

For similarity solutions to exist, it obviously requires

a + 2b = 1, (9)

d here is to adjust the scale of η and can be chosen as d = (1 − b) > 0, as in Glauert [1], and in Cohen, Amitay and
Bayly [4]. Eq. (8) then becomes

f ′′′ + ff ′′ + γf ′2 = 0, (10)

subject to the following boundary conditions

f (0) = fw, f ′(0) = f ′(∞) = 0, (11)

where γ = (2b − 1)/(1 − b) and fw = x̂bVw(x)/(Ub − U) is a suction/injection coefficient. For similarity solutions
to hold, Vw(x) ∝ x̂−b is assumed.

Glauert [1] considered the case of an impermeable wall with fw = 0. He found that when there was no reverse
flow (f ′′(0) � 0), similarity solutions would be possible only when γ = 2. He noticed that when f (η) was a solution
of Eq. (10), Af (Aη) would also be a solution. Thus without loss of generality, he obtained the following close-form
solution for f (∞) = 1

η = 31/2 arctan

[
(3f )1/2

2 + f 1/2

]
+ ln

[
(1 + f + f 1/2)1/2

1 − f 1/2

]
. (12)

This leads to

f ′(η) → √
12 exp

(
π√
12

− η

)
, η → ∞, (13)

which decays exponentially.
Magyari and Keller [5] showed that when injection was applied, no similarity solutions would be possible when

γ = 2. However, when suction was applied, although no similarity solutions which decayed exponentially would be
possible (Merkin and Needham [2], and Needham and Merkin [3]), similarity solutions which decayed algebraically
were possible. In fact, it is obvious if

f ′(η) → βη−2/3 as η → ∞, (14)

where β is a constant, Eq. (10) can be satisfied at η → ∞. The behavior of f ′(η) in Eq. (14) is therefore very much
different from that in (13). Magyari and Keller [5] then showed that the boundary conditions in Eq. (11) did not give
a unique solution. They introduced a condition on f ′′(0) which was related to the skin friction on the wall. Numerical
solutions were then obtained for different fw with the skin friction equal to that in Glauert [1].

Cohen, Amitay and Bayly [4] obtained the similarity solutions with γ �= 2 and fw = 0. They showed that the
solution would be possible if (i) fw > 0, γ > 2, (ii) fw = 0, γ = 2, and (iii) fw < 0, 1 < γ < 2. Here we shall
demonstrate that solutions are also possible when these two parameters are outside these ranges. As in Magyari and
Keller [5], we may assume

f (η) ∼ β∗ηα∗ + C. (15)

Substituting Eq. (15) into (10) and equating the leading terms, we obtain

α∗ = 1

1 + γ
. (16)

This gives

f ′(η) ∼ β∗

1 + γ
η

− γ
1+γ as η → ∞. (17)

We shall show that this form of solutions exists even when fw and γ are outside the ranges given by Cohen, Amitay
and Bayly [4].
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3. Analytical approximations

To seek the new solutions discussed above, we introduce the following transformation with a constant λ > 0

f (η) = g(ξ)/λ, ξ = 1 + λη, (18)

which is to shift the origin and to adjust the scale of the axis. Eq. (10) then takes the form

λ2g′′′ + gg′′ + γ g′2 = 0, (19)

and the boundary conditions become

g(1) = λfw, g′(1) = 0, g′(∞) = 0. (20)

Because of the behavior of g(ξ) at infinity in Eq. (20) and the principle discussed in Liao [7], we assume that the
solution can be written as

g(ξ) = b1,0ξ
α∗ +

+∞∑
m=1

+∞∑
n=1

bm,nξ
nα∗−m. (21)

Based on the general form in Eq. (21) and the boundary conditions in Eq. (20), we choose

g0(ξ) = −2fwλ + 4α∗fwλ − 2α∗2fwλ − σ

α∗ − 2
ξα∗ + −2α∗fwλ + 2α∗2fwλ + σ

α∗ − 1
ξα∗−1

+ −α∗fwλ + α∗2fwλ + σ

(α∗ − 2)(α∗ − 1)
ξ2α∗−2, (22)

as the initial approximation to the solution, where σ = f ′′(0)/λ is a constant. We then define a linear operator as

L[φ] = ξ3φ′′′ − 2(2α∗ − 3)ξ2φ′′ + (α∗ − 1)(5α∗ − 6)ξφ′ − 2α∗(α∗ − 1)2φ, (23)

which has the following property

L
[
C0ξ

α∗ + C1ξ
α∗−1 + C2ξ

2α∗−2] = 0, (24)

where C0, C1 and C2 are constants. A nonlinear operator in the HAM can also be defined as

N [Φ(ξ ;q)] = λ2 ∂3Φ(ξ ;q)

∂ξ3
+ Φ(ξ ;q)

∂2Φ(ξ ;q)

∂ξ2
+ γ

[
∂Φ(ξ ;q)

∂ξ

]2

, (25)

where q ∈ [0,1] is an embedding parameter. Following these definitions, we can construct the HAM deformation
equation as

(1 − q)L
[
Φ(ξ ;q) − g0(ξ)

] = qh̄H(ξ)N
[
Φ(ξ ;q)

]
, (26)

which is subject to the boundary conditions below

Φ(1;q) = λfw,
∂Φ(ξ ;q)

∂ξ

∣∣∣∣
ξ=1

= 0,
∂2Φ(ξ ;q)

∂ξ2

∣∣∣∣
ξ=1

= σ,
∂Φ(ξ ;q)

∂ξ

∣∣∣∣
ξ=∞

= 0, (27)

where Φ(ξ ;q) is a mapping of g(ξ), h̄ �= 0 is an auxiliary parameter and its role is to adjust to the rate of evolution
process, H(ξ) �= 0 is an auxiliary function and its role is to produce a prescribed series solution form of Eq. (19).
Here, we choose H(ξ) = ξ to obtain the solution form of Eq. (30). We can also set H(ξ) = 1 or H(ξ) = ξ2, etc., but
in these cases, the final solution form will be changed accordingly. The values of h̄ may be also changed for these
cases. Note that the HAM deformation equation (26) is non-unique because the linear operator L can be changeable.
For example, we can use the linear operator

L= ξ3φ′′′ − 3(α∗ − 2)ξ2φ′′ + 3(α∗ − 1)(α∗ − 2)ξφ′ − α∗(α∗ − 1)(α∗ − 2)φ (28)

and the auxiliary function H(ξ) = 1 to derive another solution form of Eq. (19)
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g(ξ) =
+∞∑
k=0

k+1∑
n=1

k+1∑
m=1

Ak
n,mξnα∗−m, (29)

which is obviously different from the present solution form given in Eq. (30).
For more details on how to choose a linear operator for a nonlinear problem and how to get the higher deformation

equation, readers are referred to Liao [7] or Xu et al. [12].
Using the homotopy analysis method, we finally derive the series solution of the present problem in the following

form

g(ξ) =
+∞∑
k=0

2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+χn

A
n,m
k ξnα∗−m, (30)

where [x] stands for the integer part of a real number x, and the coefficients A
n,m
k are given by

A
n,m
k = h̄(λ2B

n,m
k + C

n,m
k )

(nα∗ − m − α∗)(nα∗ − m − α∗ + 1)(nα∗ − m − 2α∗ + 2)

+ χ2k+2−nχ2k+1+[n/2]−mA
n,m
k−1, nα∗ − m �= α∗, α∗ − 1, α∗ − 2 (31)

B
n,m
k = (nα∗ − m + 2)(nα∗ − m + 1)(nα∗ − m)χ2k+2−nχ2k+3−m+[n/2]χm+1−n−χnA

n,m−2
k−1 , (32)

C
m,s
k =

k−1∑
n=0

min{2n+2,m−1}∑
p=max{1,m+2n−2k}

min{2n+1+[p/2],s+p−m−χm−p}∑
q=max{p−1+χp,s+2n−2k−[(m−p)/2]}

χm

× χ2k−s+3+[p/2]+[(m−p)/2]χs+3−m−χp−χm−p

[
(m − p)α∗ + q − s + 1

]
× {[

(m − p)α∗ + q − s
] + γ (pα∗ − q)

}
A

p,q
n A

m−p,s−q−1
k−1−n (33)

with

A
1,0
k = 2(α∗ − 1)2δ0 + (4 − 3α∗)δ1 + δ2

α∗ − 2
, (34)

A
1,1
k = −2α∗δ0 + 3δ1 − δ2

α∗ − 1
, (35)

A
2,2
k = α∗(1 − α∗)δ0 − 2(1 − α∗)δ1 − δ2

(α∗ − 1)(α∗ − 2)
, (36)

A
1,0
0 = −2fwλ + 4fwλ − 2α∗2fwλ − σ

−2 + α∗ , (37)

A
1,1
0 = −2α∗fwλ + 2α∗2fwλ + σ

−1 + α∗ , (38)

A
2,2
0 = −α∗fwλ + α∗2fwλ + σ

(1 − α∗)(2 − α∗)
, (39)

and σ = g′′(0) = λf ′′(0). Other parameters in these equations are defined as

δ0 =
2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+χn

A
n,m
k εn,m, (40)

δ1 =
2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+χn

A
n,m
k (nα∗ − m)εn,m, (41)

δ2 =
2k+2∑ 2k+1+[n/2]∑

A
n,m
k (nα∗ − m)(nα∗ − m − 1)εn,m, (42)
n=1 m=n−1+χn
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where

εn,m = χ(n−1)2+m2+1χ(n−1)2+(m−1)2+1χ(n−2)2+(m−2)2+1, (43)

and

χk =
{

0, k = 1,

1, k > 1.
(44)

Once g(ξ) is obtained, Eq. (18) gives

f (η) = 1

λ

+∞∑
k=0

2k+2∑
n=1

2k+1+[n/2]∑
m=n−1+χn

A
n,m
k (1 + λη)nα∗−m. (45)

The two parameters λ and h̄ have been introduced to improve the solution procedure. For λ, the residual error of
the initially assumed solution g0(ξ) can be expressed by

E0(λ) =
∞∫

1

(
R1[�g0]

)2
dξ. (46)

Letting

dE0

dλ
= 0, (47)

we can get an optimal value corresponding to the least error. The value of h̄ is chosen by the following way. The series
solution (45) is the function of the auxiliary parameter h̄ and the variable η. Given any a prescribed value of η = η∗,
the analytic approximations (45) and its derivatives are only depend on h̄ now. At certain order HAM approximation,
we can get the curves of f (η) versus h̄, orf ′(η) versus h̄, or f ′′(η) versus h̄, etc. If all of these curves looks smooth
and they have the common region h̄min � h̄ � h̄max, we can obtain the proper value of h̄ from the region [h̄min, h̄max].
For more details, the readers are referred to Liao [7] or Xu et al. [12].

4. Results and discussions

It is important to ensure that the solution converges when more and more terms are used in Eq. (30). We thus
consider the case of Glauert [1], or γ = 2 and fw = 0 in Eqs. (10) and (11). Fig. 1 gives the results obtained with
h̄ = −4 and λ = 1/2, and the series in Eq. (45) is truncated at k = 30. They are compared with the solutions which
are obtained from 50,000 step numerical integration over η = 0 to η = 100 using the fourth order Runge–Kutta
method together with the Newton–Raphson technique. Very good agreement can be found. Fig. 2 gives the similar
results for fw = 1. This is the case considered by Magyari and Keller [5] and the solution decays algebraically at
infinity. The figure shows that the results from HAM and the numerical integration are in agreement. Also error in
|f ′(η) − βη−2/3|/η2/3 is checked and is found to be less than 1 × 10−6 when η = 100, where β = [f ′′(0)fw/9]1/3,
as shown in [5].

As has been discussed above, we reemphasize here that Cohen, Amitay and Bayly [4] found that the solution of
Eq. (10) would be possible if (i) fw > 0, γ > 2, (ii) fw = 0, γ = 2 and (iii) fw < 0, 1 < γ < 2. If we check their
proof procedure carefully however, we can see that the conclusion is valid only when (1) limη→∞ f (η)f ′(η) = 0 in
Eq. (18) and (2) limη→∞ f (η)

∫ ∞
η

f ′2(η) dη = 0 in Eq. (20) in their paper. These two conditions are certainly valid,
if f (η) decays exponentially. For a solution in a form in Eq. (52), we can use the leading term in the expansion and
find the conditions are satisfied when γ > 2. It is, however, important to point out that the proof by Cohen, Amitay
and Bayly cannot rule out that solution can exist when fw and γ are outside of all these three categories if conditions
(1) and (2) are not met.

We consider a case with fw = 1 and γ = 1.5 which are outside of the three categories of Cohen, Amitay and Bayly
[4]. Fig. 3 gives the obtained solution from HAM. To demonstrate the accuracy of the solution, we define an error
function as

Ef (η) = f ′′′ + ff ′′ + γf ′2. (48)
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Fig. 1. The 30th order approximations of f ′(η) given by the homotopy analysis method for different values of f ′′(0) when fw = 0. Line: HAM
approximations; Filled circles: Numerical results.

Fig. 2. The comparison of 30th order approximations of f ′(η) with the numerical results for some values of σ when fw = 1. Solid line: 30th order
HAM approximations; Filled circles: Numerical results.

Substituting the expansion of f (η) with the obtained coefficients into Eq. (48), we find that errors tend to zero as k

increases, |Ef (η)| at the 80th order approximation is less than 5 × 10−6, as shown in Fig. 4. This is clearly a new
solution which has been overlooked so far.
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Fig. 3. 30th order approximations of f ′(η) given by the homotopy analysis method for some values of f ′′(0) when fw = 1 and γ = 1.5.

Fig. 4. Several order approximations of Ef (η) given by the homotopy analysis method when fw = 1, γ = 1.5 and f ′′(0) = 1.

We now consider cases with different γ at fw = 1. The results are given in Fig. 5. The case for γ > 2 clearly
belongs (i) above and the existence of the solution is expected. However, it is interesting to note that the solution in
this case seems to still decay algebraically. In fact we can rewrite Eq. (17) as

β∗
∗ = lim

η→∞
f ′(η)

α∗−1
. (49)
α η
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Fig. 5. 30th order approximations of f ′(η) given by the homotopy analysis method for some values of γ when fw = 1 and f ′′(0) = 1.

Table 1
Numerical results for Eq. (49) at fw = 1 and f ′′(0) = 1 when η → ∞
γ 30th order 40th order 50th order 60th order Exact result

1.5 0.58221 0.582279 0.582270 0.582270
2 0.480245 0.480780 0.480750 0.480749 0.480750
3 0.337486 0.337430 0.337434 0.337433
4 0.240066 0.240170 0.240207 0.240206

Substituting the solution in Eq. (45) into (49), we can work out the limit numerically as shown in Table 1 in which
the exact solution at γ = 2 is obtained from β∗/α∗ = [f ′′(0)fw/9]1/3, as in [5]. The table shows that the result tends
to a constant when k increases. This gives strong evidence that these solutions decay algebraically. It is appropriate at
this stage to compare the HAM and the numerical method. It may be possible to obtain the same new solution using
the numerical method. However, it is not so easy to get the insight of the way the function decays in the numerical
method. HAM on the other hand gives the strong indication through Table 1.

Fig. 6 gives the results for several values of f ′′(0) when γ = 3 and fw = 1 which belongs to case (i) above. The
convergence and accuracy of the results have been checked in a way similar to that used above. Cohen, Amitay and
Bayly [4] have used a normalization and gave solution for f (∞) = 1. However it is obvious that unlike the case of
Glauert [1], when fw �= 0, Af (Aη) is no longer a solution even when f (η) is the solution of Eq. (10). Thus solutions
for different f ′′(0) have therefore been given individually.

Although different solutions can be obtained by choosing different f ′′(0) for a fixed fw , for some choices of f ′′(0),
however, solutions cannot be obtained, in the sense that the error defined by Eq. (48) does not decay beyond a limit
no matter how many terms are used in the HAM expansion and what values are chosen for λ and h̄. It is then found
through systematic investigation that for a given f ′′(0), there exists a minimum value f min

w . When fw < f min
w , no

solution can be found through HAM despite extensive search. While fw > f min
w on the hand, solutions can always be

found. Figs. 7 and 8 give the solution for different fw at given f ′′(0) and γ . The figures show that when fw tends
to f min

w the solution seems to decay much faster. For many boundary flows (refer to [1,2,11]) have the exponentially
decaying property at infinity, we speculate that these wall jet flows have the similar property when fw = f min

w .
To verify that the existence of f min

w is not a false result due to the limitation of the HAM, Runge–Kutta method
has also been used to solve the problem. It is found that for given f ′′(0) and γ , the method gives a solution when
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Fig. 6. 30th order approximations of f ′(η) given by the homotopy analysis method for some values of f ′′(0) when fw = 1 and γ = 3.

Fig. 7. The 60th order HAM approximations of f ′(η) for f ′′(0) = 1 and γ = 1.5 as fw tends to f min
w .

fw = f min
w + ε, where ε is a small and positive number. When fw = f min

w − ε on the other hand, the numerical method
shows f ′(∞) → ∞. This remains to be true even when ε ≈ 10−5. Thus the result from Runge–Kutta method is clearly
consistent with what is found from the HAM and the existence of f min

w is unlikely to be a false result of HAM. Fig. 9
gives some typical curves which show the relationship between f ′′(0) and f min

w at different γ . It has to be emphasized
however that this is merely a conjecture based on the numerical evidence. Solid proof is still required before a definite
conclusion can be made.



332 H. Xu et al. / European Journal of Mechanics B/Fluids 27 (2008) 322–334
Fig. 8. The 60th order HAM approximations of f ′(η) for f ′′(0) = 1 and γ = 3 as fw tends to f min
w .

Fig. 9. The minimum values of fw versus f ′′(0) for some values of γ .

In fact, it is easily to analyze the physical nature of these new solutions. Rewrite the continuity equation (1) in the
following integral form

∂

∂x

∞∫ ∞∫
u2 dy′ dy = v(0)

∞∫
u2 dy. (50)
0 y 0
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For the Glauert problem without suction (v(0) = 0), this provides us an integral constraint that permits the immediate
identification of the similarity parameters. In this case, it requires 3a + 2b = 0. With suction, this constraint is lost,
thus γ need not equal to 2.

For convince, we rewrite boundary condition (15) in the following form

f ′(∞) → βηα, (51)

where α = −γ /(1 + γ ) and β = β∗/(1 + γ ).
From Eq. (7), we further have

û = d · x̂af ′(η), (52)

v̂ = −x̂a+b−1[(a + b)f (η) − bηf ′(η)
]
. (53)

Substituting the boundary conditions (51) into Eqs. (52) and (53), we have

û = β · d · x̂aηα, (54)

v̂ = −β · x̂a+b−1ηα+1
(

a + b

α + 1
− b

)
− x̂a+b−1C(a + b). (55)

It is known that the flow will be unrealistic if v̂∞ tends to infinity, this requires

a + b

α + 1
− b = 0. (56)

From Eqs. (9) and (56), they hold

a = α

α + 2
, b = 1

α + 2
, (57)

which gives

γ = − α

α + 1
, (58)

the same result can be obtained from Eq. (15).
Integrating Eq. (10) once from η = 0 to ∞ one obtains

lim
η→∞

[
f ′′(η) + f (η)f ′(η)

] − f ′′(0) + (γ − 1)

∞∫
0

[
f ′(η)

]2
dη = 0. (59)

From Eq. (51), it holds

f ′′(η) = αβηα−1, (60)

f (η)f ′(η) = β2

α + 1
η2α+1 + βCηα. (61)

Taking into account the boundary conditions (59), Eqs. (60) and (61), and Eq. (15), it is found that when α < −1/2,
f ′′(0) = (γ − 1)

∫ ∞
0 [f ′(η)]2 dη, we have γ > 1 and f ′′(0) > 0. When α = −1/2, it reads f ′′(0) = β2/(α + 1)

and γ = 1. When α > −1/2, from Eq. (61), we knows that limf (∞)f ′(∞) tends to infinity, which results in∫ ∞
0 [f ′(η)]2 dη tends to infinity. For this case, the flows are obviously unpractical.

For the similarity flow to exist, it requires that a = α/(α + 2), b = 1/(α + 2) and Vw(x) ∝ x̂−b . These basic as-
sumptions guarantee that the flows are realized physically.

As mentioned above, these flows have an outstanding feature that they decay algebraically at infinity. They can be
categorized into the wall-bounded flow. The kind of flows have been reported by Kuiken [15,16], Weidman et al. [14]
Magyari et al. [5,17], etc. It should be noted that such power-law velocity profile for fully developed turbulent flows
has been put on firm theoretical ground by Barenblatt [18]. In this critical paper it is shown that the exponent α is
proportional to the inverse of the Reynolds number Re = ūd/v, where u is the local average streamwise velocity, d is
the characteristic dimension of the duct, and ν is the kinematic viscosity of the fluid.
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5. Conclusion

The two dimensional flow within wall jet is analyzed by the homotopy analysis method. It is found that the ranges
given by Cohen, Amitay and Bayly [4] in which solutions can exist are valid only under certain conditions which were
not explicitly given in their paper. New solutions outside these ranges have been obtained, which seem to decay alge-
braically and have been overlooked so far. The success of the present work has further demonstrated the effectiveness
of HAM, which has the potential to be used to understand many new phenomena in science and engineering.
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