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Newton-homotopy analysis method for nonlinear equations
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Abstract

In this paper, we present an efficient numerical algorithm for solving nonlinear algebraic equations based on Newton–
Raphson method and homotopy analysis method. Also, we compare homotopy analysis method with Adomian’s decom-
position method and homotopy perturbation method. Some numerical illustrations are given to show the efficiency of
algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Finding roots of nonlinear equations efficiently has widespread applications in numerical mathematics and
applied mathematics. Newton–Raphson method is the most popular technique for solving nonlinear equa-
tions. Many topics related to Newton’s method still attract attention from researchers. As is well known, a
disadvantage of the methods is that the initial approximation x0 must be chosen sufficiently close to a true
solution in order to guarantee their convergence. Finding a criterion for choosing x0 is quite difficult and
therefore effective and globally convergent algorithms are needed [1]. There is a wide literature concerning
such methods, a brief review of which is given in the following.

Adomian’s decomposition method (ADM) [2] is a well-known, easy-to-use tool for nonlinear problems. In
1992, Liao [3] employed the basic ideas of homotopy to propose a general method for nonlinear problems,
namely the homotopy analysis method (HAM), and then modified it step by step (see [4–7]). This method
has been successfully applied to solve many types of nonlinear problems (for example, please refer to
[8–15]). Following Liao, an analytic approach based on the same theory in 1998, which is the so-called
‘‘homotopy perturbation method’’ (HPM), is provided by He [16] and recently HPM is applied for getting
Newton-like iteration methods for solving nonlinear equations [17].

In this paper, we propose HAM to solve some nonlinear algebraic equations (the stopping criterion is
j f ðxnÞ j< 10�20Þ. The solutions of them are also given by ADM and HPM. We reveal the relationship between
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HAM and other two methods. Furthermore, combining the Newton–Raphson scheme, we construct a more
efficient numerical algorithm named Newton-homotopy analysis method (N-HAM). Some examples are
tested, and the obtained results suggest that newly improvement technique introduces a promising tool and
powerful improvement for solving nonlinear equations.

2. Homotopy analysis method

Consider the nonlinear algebraic equation
f ðxÞ ¼ 0; ð1Þ
where a is a simple root of it and f is a C2 function on an interval containing a, and we suppose that jf 0(a)j > 0.
By using Taylor’s expansion near x
f ðx� dÞ ¼ f ðxÞ � df 0ðxÞ þ d2

2
f 00ðxÞ þOðd3Þ
and we are looking for d such as
f ðx� dÞ ¼ 0 � f ðxÞ � df 0ðxÞ þ d2

2
f 00ðxÞ
giving
d ¼ f ðxÞ
f 0ðxÞ þ

d2

2

f 00ðxÞ
f 0ðxÞ ;
which can be written as
AðdÞ ¼ LðdÞ þ NðdÞ ¼ c;
where
LðdÞ ¼ d; NðdÞ ¼ cd2;
and
c ¼ � 1

2

f 00ðxÞ
f 0ðxÞ ; c ¼ f ðxÞ

f 0ðxÞ :
Abbaoui and Cherruault [18] applied the standard Adomian decomposition on simple iteration method to
solve the nonlinear algebraic equation (1) and proved the convergence of the series solution. Also, homotopy
techniques were applied to find all the roots of [4]. Modified Adomian’s decomposition method (MADM) and
modified homotopy perturbation method (MHPM) are considered in [19,20], respectively.

In this section, homotopy analysis method (HAM) is proposed to solve (1) by using Newton–Raphson
method. Let q 2 [0,1] denotes an embedding parameter, �h 5 0 an auxiliary parameter, H(d) 5 0 an auxiliary
function, and L an auxiliary linear operator. We construct the zero-order deformation equation [5]
ð1� qÞL½vðqÞ � d0� ¼ q�hHðdÞfA½vðqÞ� � cg; ð2Þ

where d0 is the initial approximation of d, and v(q) is a unknown function. It should be emphasized that one
has great freedom to choose the initial guess value, the auxiliary linear operator, the auxiliary parameter �h,
and the auxiliary function H(d). Obviously, when q = 0 and q = 1, it holds
vð0Þ ¼ d0; vð1Þ ¼ d;
respectively. When q increases from 0 to 1, v(q) varies from the initial guess d0 to the solution d. Expanding
v(q) in Taylor series with respect to the embedding parameter q, one has
vðqÞ ¼ d0 þ
X1
m¼1

dmqm; ð3Þ
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where
dm ¼
1

m!

dmvðqÞ
dqm

����
q¼0

:

If the auxiliary linear operator, the initial guess, the auxiliary parameter �h, and the auxiliary function are so
properly chosen that the series (3) converges at q = 1, one has
d ¼ d0 þ
X1
m¼0

dm; ð4Þ
which must be one of the solutions of (1), as proved by Liao [21]. It is very important to ensure the conver-
gence of series (3) at q = 1, otherwise, the series (4) has no meanings. As �h ¼ �1 and H(d) = 1, we obtained
‘‘homotopy perturbation method’’ [22,23].

Setting L � L, and HðdÞ � 1, we have the high-order deformation equation [5]
L½dm � vmdm�1� ¼ �hRmðd0; . . . ; dm�1Þ;

where
vm ¼
0; m 6 1;
1; m > 1

�

and
Rmðd0; . . . ; dm�1Þ ¼ dm�1 þ c
Xm�1

j¼0

djdm�1�j � ð1� vmÞc:
Hence the following recursive scheme for m P 1 is obtained
dm ¼ ðvm þ �hÞdm�1 þ �hc
Xm�1

k¼0

dkdm�1�k � �hð1� vmÞc: ð5Þ
Let DM ¼ d0 þ � � � þ dM denotes the M-term approximation of d. Hence, we have the following iterative rela-
tions for various M.

For M = 0,
d � D0 ¼ d0 ¼ c ¼ f ðxÞ
f 0ðxÞ ;

a ¼ x� d � x� D0 ¼ x� f ðxÞ
f 0ðxÞ ;

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

which is the Newton–Raphson method and the same as MADM and MHPM [19,20].
For M = 1,
d � D1 ¼ d0 þ d1;

a ¼ x� d � x� D1 ¼ x� f ðxÞ
f 0ðxÞ þ �h

f 2ðxÞf 00ðxÞ
2f 03ðxÞ ;

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

þ �h
f 2ðxnÞf 00ðxnÞ

2f 03ðxnÞ
;

which is the Householder’s iteration [24] and the same as MADM and MHPM [19,20] when �h ¼ �1.
For M = 2,
d � D2 ¼ d0 þ d1 þ d2;

a ¼ x� d � x� D2 ¼ x� f ðxÞ
f 0ðxÞ þ ð2þ �hÞ�h f 2ðxÞf 00ðxÞ

2f 03ðxÞ � �h2 f 3ðxÞf 002ðxÞ
2f 05ðxÞ ;

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

þ ð2þ �hÞ�h f 2ðxnÞf 00ðxnÞ
2f 03ðxnÞ

� �h2 f 3ðxnÞf 02ðxnÞ
2f 05ðxnÞ

; ð6Þ
which is the same as MADM and MHPM [19,20] for �h ¼ �1.
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If one luckily chooses a good enough approximation, one can get accurate results by only a few terms
[19,20]. When the initial value x0 is not good, comparing with the results given by other methods, much fewer
iterations are needed by HAM; even if a bad initial approximation is chosen, which leads to divergent results
by other method, we can still find the root efficiently (see Tables 1 and 2). It clearly illustrates that, by means of
HAM, convergence region and rate of solution can be adjusted and controlled by the auxiliary parameter �h.
The value of �h can be determined by plotting the so-called �h-curves, as suggested by Liao [21].

Example 2.1. Equation
Table
Compa

Newto

103

Table
Compa

Examp
Examp
f ðxÞ ¼ x2 � ex � 3xþ 2 ¼ 0
with solution a = 0.25753. Let the initial value x0 = 100. For the convenience of comparison, we choose the
different values of �h in the iterative formula (6) and obtain solution in Table 1.

Example 2.2. Equation
f ðxÞ ¼ xex2 � sin2 xþ 3 cos xþ 5 ¼ 0
with solution a = �1.20765 and the same initial value x0 = 10.

Example 2.3 (Problem 5 in [25]). Equation
f ðxÞ ¼ x1=3 � 1 ¼ 0
with exact solution a = 1 and the same initial value x0 = 5.

Above two examples illustrate that HAM can give the solution when Newton, ADM and HPM fail to do
that, as shown in Table 2.

In some cases, we can seek all roots with different �h, as shown in Table 3.

Example 2.4 (Example 9 in [26]). Equation
f ðxÞ ¼ 1=x� sin xþ 1 ¼ 0:
Starting with the same initial value x0 = �1.3, we get a number of roots in Table 3.
3. Newton-homotopy analysis method

In homotopy analysis method, for example in (6), we set �h as a fixed constant and it can be determined by
�h-curves. However, it is computationally intensive with computing times for seeking a proper value of �h. In
Newton-homotopy analysis method (N-HAM), we determine �h by Newton–Raphson scheme as follows. Also,
1
rison of the iteration number of Example 2.1

n ADM HPM HAM(�h)

�2.0 �3.0 �4.0

53 53 38 30 24

2
rison of the iteration number of Examples 2.2 and 2.3

Newton ADM HPM HAM(�h)

le 2.2 >1000 Divergent Divergent 97(�0.125)
le 2.3 Divergent Divergent Divergent 5(�0.5)



Table 3
Multiple-roots given by HAM

Root �h Iteration number

�0.629446 �1/4 6
�3.988573 �1/144 12
�5.334676 �1/140 12
�10.55680 �1/137 12
�11.41723 �1/136 14
�16.93337 �1/134 14
�29.58439 �1/133 14
�42.19335 �1/132 12
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we can use another iterative schemes. Let x0 and �h0 are the initial values for a and �h, respectively. From (6), we
have
Table
Comp

Initial
Newto
ADM
HPM
N-HA
xnþ1 ¼ an þ �hnbn þ �h2
ncn;
where
an ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

bn ¼
f 2ðxnÞf 00ðxnÞ

f 03ðxnÞ
;

cn ¼
f 2ðxnÞf 00ðxnÞ

2f 03ðxnÞ
� f 3ðxnÞf 002ðxnÞ

2f 05ðxnÞ
:

After computing xnþ1, we want to renew �hn by Newton–Raphson scheme on gð�hÞ ¼ f ðanþ1 þ �hbnþ1þ
�h2cnþ1Þ ¼ 0. Hence
�hnþ1 ¼ �hn �
gð�hnÞ
g0ð�hnÞ

¼ �hn �
f ðanþ1 þ �hnbnþ1 þ �h2

ncnþ1Þ
f 0ðanþ1 þ �hnbnþ1 þ �h2

ncnþ1Þ½2�hncnþ1 þ bnþ1�
; ð7Þ
where
�h0 ¼ �
f ða0Þ

b0f 0ða0Þ
:

Therefore, this method does not need to choose �h and has better numerical behaviour. Some results are listed
in Tables 4 and 5.

Example 3.1 (Example 3.2 in [19,20]). Equation
f ðxÞ ¼ x� 2� e�x ¼ 0
with solution a = 2.120028239. Comparison among Newton method, ADM, HPM and Newton-HAM are
listed in Table 4.

Example 3.2. Equation
f ðxÞ ¼ cos x� x ¼ 0
4
arison of the iteration number of Example 3.1

value �10 �40 �100
n 15 45 105
[19] 8 23 53
[20] 8 23 53
M 8 11 17



Table 5
Comparison of the iteration number of Example 3.2

Initial value 2 3 4
Newton 4 7 Divergent
ADM 4 8 Divergent
HPM 4 8 Divergent
N-HAM 3 4 6

Table 6
The iteration procedure for �hn of Example 3.1

IN x0 = 2 x0 = �5

�hn f(xn) �hn f(xn)

0 �0.487238 �0.135335 �1.01685 �155.41316
1 �0.743565 �0.000222 �1.97808 �22.112262
2 �0.871783 �1.550 · 10�13 �1.69447 �0.7299097
3 �0.935891 �1.889 · 10�23 �1.34792 �0.0026254
4 �0.967946 �7.015 · 10�50 �1.17396 �3.966 · 10�8

5 �0.983973 �2.419 · 10�103 �1.08698 �2.277 · 10�18

6 �0.991986 �7.190 · 10�211 �1.04349 �1.876 · 10�39

7 �1.02175 �3.186 · 10�82

8 �1.01087 �2.296 · 10�168
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with solution a = 0.739085. Some result can be found in Table 5.

What we emphasize here is that �hn tends to the same value �1 when the root is obtain, as shown in Table 6.

4. Conclusion

To increase the range of initial value and the efficiency of convergence, this paper present a new implemen-
tation scheme based on HAM. We found that HAM logically contains ADM. Besides, if the same initial value
and the same auxiliary linear operator are chosen, the approximations given by HPM are exactly a special case
of those given by HAM when �h ¼ �1 and H = 1. Therefore, these two methods can be unified in the frame of
HAM. In HAM, we set �h as a fixed constant and it can be determined by �h-curves. In this work, we give a new
approach to determine the value of �h using Newton–Raphson scheme. Their efficiency is demonstrated by
numerical experiments.
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