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TECHNICAL NOTE

NUMERICAL SIMULATIONS OF PARTICLE-LADEN
AXISYMM ETRIC TURBULENT FLOWS

S. Liao
School of Naval Architecture and Ocean Engineering,
Shanghai Jiao Tong University, Shanghai , China

F. Mashayek and D. Guo
Department of Mechanical Engineering, University of Illinois at Chicago,
Chicago, Illinois, USA

INTRODUCTION

In this short communication, we report some of our recent results obtained
from direct numerical simulation (DNS) of two homogeneous particle-laden
turbulent £ows, namely, axisymmetric contraction and expansion, which have been
previously studied in the context of single-phase £ows [1]. This work extends
our previous efforts (see, e.g., [2] and references therein) in generating a reliable
data bank for preliminary assessment of various statistical/stochastic models for
particle-laden turbulent £ows. Because of space limitation, we restrict the presen-
tation of the results to only those statistics that are required in the process of model
assessment [3^5].

For the incompressible, axisymmetric contraction and expansion £ows con-
sidered in this study, the instantaneous velocity ¢eld can be described as

Ûa ˆ Ua;axa ‡ ua a ˆ 1; 2; 3 …1†

with no summation over Greek indices. Here, the hat ^ denotes the instantaneous
quantity, ua is the carrier-phase £uctuating velocity in the xa direction, and
Ua;a ˆ dUa=dxa where Ua ˆ hÛai with h i denoting the Eulerian ensemble average
over the number of grid points. The intensity (or rapidity) of a mean strain rate,
referred to as ``equivalent mean strain rate’’ [1], can be measured in terms of
S ˆ …SijSij=2†1=2 where Sij ˆ …Ui;j ‡ Uj;i†=2 and summation over repeated indices
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is implied. For axisymmetric contraction and expansion £ows, respectively, we have

Sij ˆ
2S���

3
p

‡1 0 0
0 ¡ 1

2 0
0 0 ¡ 1

2

0

@

1

A Sij ˆ
2S���

3
p

¡1 0 0
0 ‡ 1

2 0
0 0 ‡ 1

2

0

@

1

A …2†

In the following, we present the formulation of the problem in a general manner that
is also applicable to our previously studied plain strain £ow [2], provided that the
corresponding mean strain rate tensor, Sij , is used.

FORMULATION AND METHODOLOGY

The carrier and dispersed phases are simulated in the Eulerian and Lagrangian
frames, respectively. Let P̂, Ûi,V̂i, and Û ¤

i denote the instantaneous £uid pressure,
£uid velocity, particle velocity, and £uid velocity at the particle position Xi,
respectively. The governing equations are described by the instantaneous continuity
and momentum equations for the £uid:

@Ûj

@xj
ˆ 0

@Ûi

@t
‡ @…ÛiÛj†

@xj
ˆ ¡ 1

rf

@P̂
@xi

‡ n
@2Ûi

@xj@xj
…3†

along with the Lagrangian equations of motion for a single particle

dXi

dt
ˆ V̂i

dV̂i

dt
ˆ 1

tp
…Û ¤

i ¡ V̂i† …4†

where xi and t are the spatial and temporal coordinates, rf and n denote the £uid
density and kinematic viscosity, respectively, and the superscript ¤ refers to a £uid
property evaluated at the particle location. For a spherical particle, the particle time
constant is de¢ned as tp ˆ rpd

2
p =18m, where rp and dp are the particle density and

diameter, respectively, and m ˆ rf n. Here, we restrict our attention to small particles
with rp ¾ rf such that only the Stokes drag (without a correction because of large
particle Reynolds numbers) is required to describe the particle dynamics.

The main objective of the simulations is to furnish statistics of the £uctuating
velocities for the assessment of statistical models. This requires the knowledge
of the mean velocity of the dispersed phase (note that the mean velocity of the carrier
phase is known a priori). Following the approach of Barrë et al. [2], we provide
analytical solutions for the mean velocity of the dispersed phase. We begin by
ensemble averaging the particle momentum equation (3) (which, under the current
conditions, also may be viewed as an Eulerian equation for the dispersed phase [6]):

D
V
Vi

Dt
ˆ

1
tp

…Û ¤
i ¡ V̂i†

* +* +
¡ vj

@vi

@xj

* +* +
…5†

where DV=Dt ˆ @=@t ‡ Vj…@=@xj†, the notation hh ii denotes the ensemble average
associated with the dispersed phase, and Vi …ˆ hhV̂iii) and vi are the particle mean
and £uctuating velocities, respectively. For a homogeneous dispersed phase, it
can be shown that the last correlation in (5) vanishes [2]. Nevertheless, substituting
(1) in (5) indicates that Vi ˆ Ui is not a solution for the particle mean velocity
in the axisymmetric £ows. Similar to Barrë et al. [2], we consider only one-way
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coupling and assume that the initial £uctuating velocity of the dispersed phase is
isotropic. Then, in an analogous manner to that in [2], it can be shown that the
particle mean velocity may be described as Va ˆ sa…t†xa, where

sa…t† ˆ
…xa ¡ V 0

a;a†Za exp…Zat† ¡ …Za ¡ V 0
a;a†xa exp…xat†

…xa ¡ V 0
a;a† exp…Zat† ¡ …Za ¡ V 0

a;a† exp…xat†
…6†

xa ˆ
¡1 ‡

������������������������
1 ‡ 4Ua;atp

p

2tp
Za ˆ

¡1 ¡
������������������������
1 ‡ 4Ua;atp

p

2tp
…7†

for 1 ‡ 4Ua;atp > 0,

sa…t† ˆ
V 0

a;a ¡ …V 0
a;a ‡ 1=2tp†t=2tp

1 ‡ …V 0
a;a ‡ 1=2tp†t

…8†

for 1 ‡ 4Ua;atp ˆ 0, and

sa…t† ˆ
2otpV 0

a;a ¡ …V 0
a;a ¡ 2Ua;a† tan…ot†

2otp ‡ …1 ‡ 2tpV 0
a;a† tan…ot†

…9†

o ˆ
��������������������������
j1 ‡ 4Ua;atpj

p

2tp
…10†

for 1 ‡ 4Ua;atp < 0. Here V 0
a;a is the initial value of sa…t†; and in our simulations we

have used

V 0
a;a ˆ

1
2tp

¡1 ‡
������������������������
1 ‡ 4Ua;atp

p
( ) when Ua;a ¶ 0

Ua;a otherwise

8
<

: …11†

It is emphasized that all of these expressions are valid for both axisymmetric con-
traction and expansion turbulent £ows. They are also valid for the plain strain £ow
considered in [2].

The above discussion assumes the homogeneity of the £ow, which is achieved
through the coordinate transformation [1]:

xi ˆ Bij…t†xj …12†

This transformation results in the following transport equation for the £uctuating
velocity of the carrier phase:

@ui

@t
‡ Ui;juj ‡ Bmj…t†

@uiuj

@xm
‡ 1

rf
Bmi…t†

@p
@xm

ˆ nBmj…t†Bnj …t†
@2ui

@xm@xn
…13†

where

Bij…t† ˆ
B0

11 exp…¡U1;1t† 0 0
0 B0

22 exp…¡U2;2t† 0
0 0 B0

33 exp…¡U3;3t†

0

@

1

A …14†

for both contraction and expansion £ows, with B0
ij ˆ Bij…0†. Applying the
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transformation to the particle momentum equation, we have

dvi

dt
ˆ 1

tp
…u¤

i ¡ vi† ¡ Vi;jvj …15†

The right-hand side of this equation does not show any dependency on position.
Therefore, if the initial particle £uctuating velocity is homogeneous, the evolution
of vi is independent of xi and the turbulence remains homogeneous.

The numerical methodology is similar to that implemented in [2] and will not be
repeated here for brevity. All the variables are normalized using reference scales for
length (L0), velocity (U0), and density (r0). The length scale is chosen, conveniently,
such that the length of the computational domain is 2p and the carrier-phase density
is taken as the reference density. The velocity scale is found by specifying a reference
Reynolds number Re0 ˆ r0U0L0=m ˆ 232:6, for all the simulations. The £uid
£uctuating velocity ui is calculated in the coordinate system O ¡ x1x2x3 and, with
a priori knowledge of the mean velocity Ui, the instantaneous £uid velocity can
be calculated using Ûi ˆ Ui ‡ ui. The instantaneous particle velocity V̂i is then
directly obtained from solving Lagrangian particle equation (4) in the inertial
coordinate system O ¡ x1x2x3 and the corresponding £uctuating particle velocity
vi is calculated using vi ˆ V̂i ¡ Vi.

A Fourier pseudospectral method is employed for the spatial representation of
the £uid pressure and £uctuating velocity in the O ¡ x1x2x3 coordinate system. All
calculations for the carrier phase are performed in the Fourier space with the excep-
tion of the nonlinear terms. For the sake of aliasing errors, energies outside of a
spherical wave number shell having radius

���
2

p
N=3 are truncated, where N is the

number of grid points in each direction. An explicit second-order accurate
Adams^Bashford method is applied for the temporal advancement of both the
Eulerian carrier phase equations and Lagrangian particle equations. A fourth-order
accurate Lagrange polynomial interpolation scheme is applied to evaluate £uid
variables at the particle locations. All the simulations are performed using
N ˆ 128 with a total number of particles Np ˆ 1:2 £ 105 and rp ˆ 721:8.

For all the simulations, the computational domain in the O ¡ x1x2x3
coordinate system is ¢xed in the region ‰0; 2pŠ £ ‰0; 2pŠ £ ‰0; 2pŠ. Nevertheless,
according to (12) and (14), the corresponding physical domain in the O ¡ x1x2x3

coordinate system changes in time. If Ga denotes the length of the corresponding
physical box in the xa direction, then we have

Ga…t† ˆ 2p
B0

aa
exp…Ua;at† a ˆ 1; 2; 3 …16†

Thus, the length Ga in the xa direction increases when Ua;a > 0 and decreases when
Ua;a < 0. In other words, the corresponding physical domain is elongated
(shortened) in the direction with positive (negative) mean strain rate. Therefore,
if we begin with an isotropic mesh con¢guration with three identical sides in the
physical coordinate system O ¡ x1x2x3, the mesh aspect ratio, de¢ned as the ratio
of the longest side of the mesh to the shortest side, increases in time. If the mesh
aspect ratio becomes too large, it is dif¢cult to resolve turbulence accurately in
all directions. To allow the simulations to continue for a long time, we implement
a predistorted initial physical domain with the short side in the direction to be
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elongated by positive main strain rate and vice versa. For contraction £ows, the
initial mesh aspect ratio of the physical domain is 1=2 :

���
2

p
:

���
2

p

(B0
11 : B0

22 : B0
33 ˆ 2 : 1=

���
2

p
: 1=

���
2

p
) and at the ¢nal simulation time it becomes

2 : 1=
���
2

p
: 1=

���
2

p
(B11 : B22 : B33 ˆ 1=2 :

���
2

p
:

���
2

p
). For the expansion £ows, the initial

mesh aspect ratio of the physical domain is 2 : 1=
���
2

p
: 1=

���
2

p

(B0
11 : B0

22 : B0
33 ˆ 1=2 :

���
2

p
:

���
2

p
) and this ¢nally becomes 1=2 :

���
2

p
:

���
2

p

(B11 : B22 : B33 ˆ 2 : 1=
���
2

p
: 1=

���
2

p
). All the simulations are stopped when the refer-

ence total strain c ˆ exp…St† reaches 3:32.
The initial conditions for the axisymmetric £ows are obtained by preliminary

simulations of homogeneous decaying turbulence. In decaying simulations, the
initial random velocity ¢eld for the carrier phase is given by the method described
in [2]. Each simulation of decaying turbulence is performed on a domain described
by the initial aspect ratio of the corresponding axisymmetric £ow. This domain
is kept the same throughout the decaying simulations, which are stopped once
higher-order statistics reach their asymptotic values. Then, the results of the
decaying simulations are used as the initial carrier-phase velocity for the
axisymmetric £ows. In the decaying cases, only the carrier phase is simulated.
At the beginning of simulations of two-phase axisymmetric £ows, the particles
are randomly distributed throughout the corresponding physical domain and are
speci¢ed to have no relative velocity with respect to the local £uid.

Figure 1. Temporal evolution of the carrier-phase Reynolds stress and dissipation rate for (a) contraction
£ow, S ˆ 0:619; (b) contraction £ow, S ˆ 0:866; (c) expansion £ow, S ˆ 0:385; and (d) expansion £ow,
S ˆ 0:539.
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RESULTS

The accuracy of the code has been checked using a variety of tests that are not
included here for brevity. For each of the contraction or expansion £ows, two dif-

Figure 2. Temporal evolution of the dispersed-phase Reynolds stress and velocity covariance in the con-
traction £ow. (a) and (b) S ˆ 0:619, tp ˆ 0:112; (c) and (d) S ˆ 0:619, tp ˆ 0:434; (e) and (f)
S ˆ 0:866, tp ˆ 0:112; (g) and (h) S ˆ 0:866, tp ˆ 0:434.

852 S. LIAO ET AL.
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ferent values of the normalized mean strain rate parameter ~S ˆ Sq2=e ˆ 0:6 and 0.84
are considered. Here, q2 ˆ huiuii is twice the turbulence kinetic energy and
e ˆ nhui;jui;ji is the dissipation rate. Further, for a given mean strain rate parameter

Figure 3. Temporal evolution of the dispersed-phase Reynolds stress and velocity covariance in the
expansion £ow. (a) and (b) S ˆ 0:385, tp ˆ 0:112; (c) and (d) S ˆ 0:385, tp ˆ 0:434; (e) and (f)
S ˆ 0:539, tp ˆ 0:112; (g) and (h) S ˆ 0:539, tp ˆ 0:434.
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~S of each kind of £ow, two particle time constants (tp ˆ 0:112 and 0.434) are con-
sidered to investigate the effects of tp.

Because the main objective of this note is to provide statistics of two-phase
£ows for the assessment of various statistical/stochastic models, and also because
of space limitation, here we present only our results for the £uid (huiuji) and particle
(hhvivjii) Reynolds stresses along with the velocity covariance hhu¤

i vjii. For the
axisymmetric £ows in which we are interested, all the shear components in these
tensors are zero and we only present the temporal evolution of the normal com-
ponents in Figures 1^3 for various cases. Included in Figure 1 is also the dissipation
rate (e) of the turbulence kinetic energy of the carrier phase, which is used (along
with the turbulence kinetic energy) for the calculation of a turbulence time scale
in most of the statistical modelsöit should be emphasized that the values of the
dissipation rate shown on the ¢gure are divided by 3 to allow their presentation
within the scales used for the Reynolds stresses.

As we see in Figure 1, starting from the ¢nal output of the isotropic decaying
simulations as the initial condition, all the axisymmetric £ows initially experience
a decay in Reynolds stresses and dissipation rate. Nevertheless, it is observed in
expansion £ows that the hu1u1i component starts to grow during the ¢nal stages
of the simulations. This is attributed to the larger ``negative’’ strain rate in this
direction, which results in a stronger production term, that is, hu1u1idU1=dx1, in
the transport equation for hu1u1i. The increase in the production rate also explains
the increase in all the Reynolds stresses in both £ows, when a larger mean strain
rate is applied. It should be mentioned that the small difference between hu2u2i
and hu3u3i is an artifact of the slightly anisotropic initial conditions as produced
numerically during the decaying simulations.

Similar features are observed for the temporal evolution of hhvivjii and hhu¤
i vjii

in Figures 2 and 3. However, there is a notable initial increase in hhvivjii in the direct-
ions with a positive rate of production, that is, the x1 direction in the expansion £ow
and the x2 and x3 directions in the contraction £ow. These values are also generally
larger than their £uid counterparts, which is in agreement with previous studies
in homogeneous shear and plane strain £ows. It is clear that, because of the lack
of a small-scale viscous dissipation, the particle Renolds stress components are able
to grow as a result of the production by the mean velocity gradient. This is the
phenomenon observed during the early stages; however, later the increase in the
relative velocity between the particle and its surrounding £uid element enhances
the dissipating effect of the drag. This ¢nally causes the decrease in the particle
Reynolds stresses in all directions. Based on our previous experience with statistical
models, it appears that this behavior of the particle Reynolds stress creates one
of the most stringent tests on the performance of the two-phase turbulence models.
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