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Abstract The general Boundary Element Method (BEM)
for strongly non-linear problems proposed by Liao (1995)
is further applied to solve a two-dimensional unsteady
non-linear heat transfer problem in the time domain,
governed by the hyperbolic heat conduction equation
(HHCE) with the temperature-dependent thermal con-
ductivity coef®cients which are different in the x and y
directions. This paper con®rms that the general BEM can
be used to solve even those non-linear unsteady heat
transfer problems whose governing equations do not
contain any linear terms in spatial domain.

Nomenclature
A non-linear operator
c thermal propagation speed
k1 thermal conductivity coef®cient in the x direction
k2 thermal conductivity coef®cient in the y direction
L auxiliary linear operator
L0 linear operator
N0 non-linear operator
p imbedding parameter
~r point vector
S heat-source term
t time
T temperature
x; y spatial coordinates

Greek letters
a thermal diffusivity
b =1/Dt
C boundary of spatial domain
k iterative parameter
h non-dimensional temperature
h0 initial approximation of h
H homotopy
x fundamental solution
X spatial domain

1
Introduction
Although the Boundary Element Method (BEM) is essen-
tially based on the linear superposition of fundamental

solutions, many researchers such as Baumeister and Hamil
(1969), Partridge (1995) and so on, have successfully
applied it to solve non-linear boundary-value problems
governed by an equation with a non-linear differential
operator A such as

A�u� � f �~r� : �1:1�
If the non-linear differential operator A can be divided
into two parts L0 and N0, i.e. A � L0 � N0, where L0 is a
linear operator and N0 is a non-linear one, Eq. (1.1) can be
rewritten as

L0�u� � f �~r� ÿ N0�u� �1:2�
from which we can obtain an equation of integral opera-
tors

c�~r�u�~r� �
Z

C
�uB0�x0� ÿ x0B0�u��dC

�
Z

X
�f ÿ N0�u��x0 dX ; �1:3�

where x0 is the fundamental solution of the adjoint op-
erator of the linear differential operator L0; B0 is the
corresponding operator on the boundary C.

The basic idea of the above traditional BEM for non-
linear problems is to move all non-linear terms to the
right-hand side of the equation and then ®nd the funda-
mental solution x0 of the linear operator L0 remaining on
the left-hand side, although it seems not easy in most cases
to ®nd such a fundamental solution x0 of the linear op-
erator L0, especially when L0 is unfamiliar to us. It means
that both the linear operator and the corresponding fun-
damental solution are very important and absolutely
necessary for the traditional BEM. However, there exists
obviously such a possibility that there is NOTHING left
after moving all non-linear terms to the right-hand side of
the equation. In this special case, the above-mentioned
traditional BEM does not work at all.

This situation indeed occurs for many non-linear
problems in engineering. For instance, consider a 2D
steady-state non-linear heat transfer problem of inhomo-
geneous materials, governed by

o
ox

k1�h� oh
ox

� �
� o

oy
k2�h� oh

oy

� �
� S�x; y� � 0;

�x; y� 2 X ; �1:4�
where h denotes the temperature, S�x; y� is the heat-source
term, X denotes the domain of the temperature distribu-
tion, k1�h� and k2�h� are thermal conductivity coef®cients
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in the x and y directions, respectively. If the thermal
conductivity coef®cients k1�h� and k2�h� are not only de-
pendent on temperature h but also different in the x and y
directions, for instance,

k1�h� � exp�c1h�; k2�h� � exp�c2h� �c1 6� c2� ;
�1:5�

then nothing is left on the left-hand side of Eq. (1.1) after
moving all non-linear terms and the heat-source term to
the right-hand side, so that the traditional BEM is invalid
at all to solve this kind of steady-state non-linear heat
transfer problems.

Liao (1995) proposed a general BEM for strongly non-
linear problems which is valid even for those non-linear
problems whose governing equations do not contain any
linear terms. Liao and Chwang (1996) successfully applied
the general BEM to solve the above-mentioned steady-state
non-linear heat transfer problem of inhomogeneous ma-
terials.

In this paper, we further apply the general BEM to solve
2D unsteady non-linear heat transfer problems of imho-
mogeneous materials, but now governed by the so-called
hyperbolic heat conduction equation (HHCE)

1

c2

o2T

ot2 �
1

a
oT

ot
� o

ox
k1�T� oT

ox

� �
� o

oy
k2�T� oT

oy

� �
� S�x; y;T� ; �1:6�

where T denotes temperature, a is the thermal diffusivity
and c is the thermal propagation speed. Note that every
variable in (1.6) has unit. Currently, many researchers are
attracted by HHCE. The second derivative in time renders
Eq. (1.6) hyperbolic in nature, and thus models the ther-
mal wave propagation. The ®rst derivative in time which
accounts for the diffusive nature of the thermal
propagation introduces the damping term. Therefore, Eq.
(1.6) can model the propagation of thermal waves with a
sharp front damped in time. In case k1�T� � k2�T�; Eq.
(1.6) can be solved by the traditional BEM. However, in
case k1�T� 6� k2�T� which occurs when imhomogeneous
materials are under consideration, the traditional BEM is
invalid at all to solve Eq. (1.6). In this paper, we will show
that the general BEM is still valid to solve the HHCE even
in the case k1�T� 6� k2�T�.

2
Formulations of the general BEM
One can rewrite Eq. (1.6) in such a non-dimensional form:

o2h
ot2
� oh

ot
� o

ox
k1�h� oh

ox

� �
� o

oy
k2�h� oh

oy

� �
� S�x; y; h� ;

�2:1�
with the boundary conditions

h � g1�x; y; t�; �x; y� 2 C1; t � 0 ; �2:2�

oh
on
� g2�x; y; t�; �x; y� 2 C2; t � 0 ; �2:3�

and the two initial conditions

h � f0�x; y�; �x; y� 2 X; t � 0 ; �2:4�
oh
ot
� f1�x; y�; �x; y� 2 X; t � 0 ; �2:5�

where h denotes the non-dimensional temperature,
S�x; y; h� is the heat-source term, k1�h� and k2�h� are
thermal conductivity coef®cients in the x and y directions,
X denotes the domain of the temperature distribution,
C1 [ C2 � C denotes the boundary of the domain X, and
f0�x; y�; f1�x; y�; g1�x; y; t�; g2�x; y; t� are known real func-
tions, t and x; y are coordinates in time and space, res-
pectively. Note that all of these variables are non-
dimensional.

Let Dt denotes the time step and write hn � h�x; y; nDt�.
Moreover, write b � 1=Dt. Then, at the nth time step
t � nDt �n � 2�, Eq. (2.1) can be approximately rewritten
as

�b2 � b�hn ÿ �2b2 � b�hnÿ1 � b2hnÿ2

� o
ox

k1�hn� ohn

ox

� �
� o

oy
k2�hn� ohn

oy

� �
� S�x; y; hn�; �x; y� 2 X ; �2:6�

with the boundary conditions

hn � g1�x; y; nDt� �x; y� 2 C1 ; �2:7�
ohn

on
� g2�x; y; nDt� �x; y� 2 C2 ; �2:8�

This is a non-linear boundary value problem about the
non-dimensional temperature distribution
hn � h�x; y; nDt�. Here, we use the fully implicit expres-
sion of Eq. (2.1) in time domain. Note that, when we solve
Eqs. (2.6) to (2.8) at the nth time step t � nDt�n � 2�, the
temperature distribution hnÿ1 � h�x; y; nDt ÿ Dt� at
�nÿ 1�th time step and hnÿ2 � h�x; y; nDt ÿ 2Dt� at
�nÿ 2�th time step are known. For simplicity in expres-
sion, we de®ne such a non-linear operator:

A�hn� � o
ox

k1�hn� ohn

ox

� �
� o

oy
k2�hn� ohn

oy

� �
� S�x; y; hn�

ÿ �b2 � b�hn � �2b2 � b�hnÿ1 ÿ b2hnÿ2 :

�2:9�
Obviously, if we consider

S�x; y; hn� ÿ �b2 � b�hn � �2b2 � b�hnÿ1 ÿ b2hnÿ2

�2:10�
as a new ``heat-source term'', then at each time step
t � nDt �n � 2�, the boundary value problem governed by
Eqs. (2.6) and (2.8) can be seen as a steady-state heat
transfer problem governed by (1.4) which has been suc-
cessfully solved by Liao and Chwang (1996) by means of
the general BEM.

First of all, we select an auxiliary 2D linear operator L,
whose fundamental solution x is known, to construct such
a family of equations as follows:

�1ÿ p�L�H�x; y; p� ÿ h0�x; y��
� ÿpA�H�x; y; p��; �x; y� 2 X; p 2 �0; 1� ; �2:11�
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with boundary conditions

H�x; y; p� � pg1�x; y; nDt� � �1ÿ p�h0�x; y�;
�x; y� 2 C1; p 2 �0; 1� ; �2:12�

oH�x; y; p�
on

� pg2�x; y; nDt� � �1ÿ p� oh0

on
;

�x; y� 2 C2; p 2 �0; 1� ; �2:13�

where p is an embedding parameter, A�H� is de®ned by
(2.9), h0�x; y� is an initial approximation of the tempera-
ture distribution hn.

Note that H�x; y; p� is also a function of the embedding
parameter p. At p � 0, we obtain from Eqs. (2.11) to (2.13)
that

L�H�x; y; 0�� � L�h0�x; y��; �x; y� 2 X ; �2:14�
with boundary conditions

H�x; y; 0� � h0�x; y� �x; y� 2 C1 ; �2:15�
oH�x; y; 0�

on
� oh0�x; y�

on
�x; y� 2 C2 ; �2:16�

whose solution is obviously

H�x; y; 0� � h0�x; y� : �2:17�
Moreover, at p � 1, we obtain from Eqs. (2.11) and (2.13)
the governing equation A�H�x; y; 1�� � 0; i.e.

o
ox

k1�H� oH
ox

� �
� o

oy
k2�H� oH

oy

� �
� S�x; y;H�

ÿ �b2 � b�H� �2b2 � b�hnÿ1 ÿ b2hnÿ2 � 0 ;

�x; y� 2 X; p � 1 ; �2:18�
with the two boundary conditions

H�x; y; 1� � g1�x; y; nDt�; �x; y� 2 C1 ; �2:19�
oH�x; y; 1�

on
� g2�x; y; nDt�; �x; y� 2 C2 : �2:20�

Comparing Eqs. (2.18) to (2.20) with the governing
Eq. (2.6) and the two boundary conditions (2.7) and (2.8),
it is clear that H�x; y; 1� is just the solution of Eqs. (2.6)
to (2.8). Thus, we have

H�x; y; 1� � hn � h�x; y; nDt� : �2:21�
Therefore, Eqs. (2.11) to (2.13) construct a family of
equations in parameter p 2 �0; 1�; whose solution at p � 0
is simply the known initial approximation h0�x; y� but at
p � 1 is the unknown temperature distribution
hn � h�x; y; nDt� itself. The process of the continuous
change of the imbedding parameter p from 0 to 1 is just
the process of the continuous variation of solution
H�x; y; p�; governed by Eqs. (2.11) to (2.13), from h0�x; y�
to hn � h�x; y; nDt�. This kind of continuous variation is
called deformation in topology, meanwhile, H�x; y; p� is
called homotopy, h0�x; y� and hn � h�x; y; nDt� are called
homotopic. Notice that this kind of continuous deforma-
tion is completely governed by Eqs. (2.11) to (2.13). So, we
call them the zeroth-order deformation equations.

Thus, expanding at ®rst H�x; y; p� at p � 0 by the
Taylor formula and then using (2.17), we have

H�x; y; p� � H�x; y; 0� �
X1
m�1

h�m�0 �x; y�
m!

" #
pm

� h0�x; y� �
X1
m�1

h�m�0 �x; y�
m!

" #
pm ; �2:22�

where h�m�0 �x; y��m � 1� is called the mth-order deforma-
tion derivative at p � 0, de®ned by

h�m�0 �x; y� �
omH�x; y; p�

opm

����
p�0

�m � 1� : �2:23�

Assume that the convergence radius of (2.22) is not less
than one. Then, in case p � 1, we have by (2.21) and (2.22)
that

h�x; y; nDt� � h0�x; y� �
X1
m�1

h�m�0 �x; y�
m!

; �2:24�

which gives a relationship between the initial approxima-
tion h0�x; y� and the unknown temperature distribution
hn � h�x; y; nDt� at the nth time step.

By (2.24), the key of the problem becomes how to solve
the so-called mth-order derivatives h�m�0 �x; y��m � 1�. For
this purpose, we had to ®rst of all give the equations
governing h�m�0 �x; y��m � 1�. Differentiating the zeroth-
order deformation equations (2.11) to (2.13) m times with
respect to p and then setting p � 0, we obtain the following
mth-order deformation equation at p � 0:

L�h�m�0 �x; y�� � Rm�x; y�; m � 1; �x; y� 2 X ;

�2:25�
with the boundary conditions �m � 1�
h�m�0 � g1�x; y� ÿ h0�x; y�� �d1;m �x; y� 2 C1 ; �2:26�
oh�m�0

on
� g2�x; y� ÿ oh0�x; y�

on

� �
d1;m �x; y� 2 C2 ;

�2:27�
where dl;m is the Kronecker delta and

R1�x; y� � ÿA�h0�; �2:28�

Rm�x; y� � m r2h�mÿ1�
0 ÿ dmÿ1A�H�x; y; p��

dpmÿ1

����
p�0

" #
�m � 2� : �2:29�

Moreover, we have by (2.9) that

dA�H�x; y; p��
dp

����
p�0

� k01�h0� o
2h0

ox2
� k02�h0� o

2h0

oy2

�

� k001�h0� oh0

ox

� �2

� k002�h0� oh0

oy

� �2
#
h�1�0

� 2k01�h0� oh0

ox

� �
oh�1�0

ox
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� 2k02�h0� oh0

oy

� �
oh�1�0

oy

� k1�h0� o
2h�1�0

ox2
� k2�h0� o

2h�1�0

oy2

� oS�x; y; h0�
oh

ÿ b2 ÿ b

� �
h�1�0 ;

�2:30�
and so on.

We emphasize that the mth-order deformation
Eqs. (2.25) to (2.27) are linear about the mth-order de-
formation derivative h�m�0 �x; y��m � 1�. The linear
Eq. (2.25) contains the free selected, familiar auxiliary
linear operator L so that it can be easily solved by the
traditional BEM. For instance, we can solve the
following integral equationI

C
x

oh�m�0

on
ÿ ox

on
h�m�0

 !
dC

�
Z Z

X
x�~r 0;~r�Rm�x; y� dxdy �m � 1�

~r 0 � �n; g� 2 Xc; ~r � �x; y� 2 X ; �2:31�
to determine the unknown values of h�m�0 �x; y� on C2 and
oh�m�0 �x; y�=on on C1, where x�~r 0;~r� is the fundamental
solution of the auxiliary linear operator L, and Xc denotes
the exterior of domain X, excluding its boundary
C � C1 [ C2. After obtaining the unknown values of
h�m�0 �x; y� on C2 and oh�m�0 �x; y�=on �m � 1� on C1, we have
at point �n; g� 2 X0C such an integral equation

a�n; g�h�m�0 �n; g� �
I

C
x

oh�m�0

on
ÿ ox

on
h�m�0

 !
dC

ÿ
Z Z

X
x�~r 0;~r�Rm�x; y� dx dy;

~r 0 � �n; g� 2 X [ C; ~r � �x; y� 2 X; m � 1 ; �2:32�
where

a�n; g� � 1 if �n; g� 2 X ,
1=2 if �n; g� 2 C :

�
�2:33�

The fundamental solution x�~r 0;~r� depends on the se-
lected auxiliary linear operator L. For the 2D problem
under consideration, we use two kinds of auxiliary linear
operators. One is the 2D Laplace operator

L�u� � r2u � o2u

ox2
� o2u

oy2
; �2:34�

whose fundamental solution is

x�~r 0;~r� � ÿ 1

2p
ln

���������������������������������������
�xÿ n�2 � �yÿ g�2

q
: �2:35�

The other is the 2D modi®ed Helmholtz operator

L�u� � o2u

ox2
� o2u

oy2
ÿ �b2 � b�u ; �2:36�

whose fundamental solution is

x�~r 0;~r� � ÿ 1

2p
K0 K

���������������������������������������
�xÿ n�2 � �yÿ g�2

q� �
;

�2:37�
where K �

�������������
b2 � b

p
�b � 1=Dt�, and K0�t� is the modi®ed

Bessel function of the second kind of order zero,~r � �x; y�
and~r 0 � �n; g� are ®eld point and source point, respec-
tively.

Note that only limited numbers of deformation deri-
vatives h�m�0 �x; y��m � 1� can be obtained. If the con-
vergence radius q of the Taylor series (2.24) is greater than
or equal to one, we can use

h�x; y; nDt� � h0�x; y� �
XM

m�1

h�m�0 �x; y�
m!

�2:38�

to obtain a new approximation better than h0�x; y�, where
M denotes the order of the approximation. However, the
convergence radius q of the Taylor series (2.22) may be
less than one so that (2.24) does not hold. Even in this
case, H�x; y; k��0 < k < q� is in most cases still better than
the initial approximation h0�x; y� so that we can use the
following iterative formula

hk�1�x; y; nDt� � hk�x; y; nDt� �
XM

m�1

kmh�m�0 �x; y�
m!

�k � 0; 1; 2; 3; . . .� ; �2:39�
where k �0 < k < q� is treated as an iterative parameter.
We call (2.39) the Mth-order iterative formula. At the
beginning of each iteration process related to
hn � h�x; y; nDt�, we simply use the known temperature
distribution hnÿ1 � h�x; y; nDt ÿ Dt� as the initial ap-
proximation h0�x; y�. However, we should keep in mind
that h0�x; y� appearing in all of the above expressions
should be set new values before each iteration.

The temperature distribution h�x; y; 0� is determined
directly by the initial condition (2.2). We use the initial

condition oh�x;y;0�
ot � f1�x; y� to obtain the temperature dis-

tribution h�x; y;Dt� at the ®rst time step, i.e.

h�x; y;Dt� � h�x; y; 0� � f1�x; y�Dt :

Then, by means of the above-mentioned BEM formula-
tions, we can obtain the temperature distribution
h�x; y; 2Dt� at the second time step. Similarly, we can
further use h�x; y;Dt�; h�x; y; 2Dt� to obtain the tempera-
ture distribution h�x; y; 3Dt� at the third time step, and so
on. In this way, we obtain the solution of the original
unsteady Eqs. (2.1), (2.2) and (2.3) in the whole time do-
main.

3
Numerical example
In order to show the validity of the above-mentioned
formulations of the general BEM for unsteady non-linear
heat transfer problems of inhomogeneous materials gov-
erned by HHCE, we consider here such an unsteady heat
transfer problem of a 2D unit plate made of in-
homogeneous materials, governed by

o2h
ot2
� oh

ot
� o

ox
k1�h� oh

ox

� �
� o

oy
k2�h� oh

oy

� �
; �3:1�
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with the initial conditions h � 0; oh
ot � 0 and the boundary

conditions

h � 1 �x; y� 2 C1 ; �3:2�
oh
ot
� 0 �x; y� 2 C2 ; �3:3�

where C1 is the half center part of the left side of the unit
plate, C2 denotes the other sides of heat insulation, as
shown in Fig. 1.

According to Eqs. (2.11) to (2.13), the corresponding
zeroth-order deformation equation for the temperature
distribution hn � h�x; y; nDt��n � 2� is

�1ÿ p�L�H�x; y; p� ÿ h0�x; y�� � ÿp ~A�H�x; y; p��;
�x; y� 2 �0; 1� � �0; 1�; p 2 �0; 1� ; �3:4�

with the two boundary conditions

H�x; y; p� � p� �1ÿ p�h0�x; y� �x; y� 2 C1;

p 2 �0; 1� ; �3:5�
oH�x; y; p�

on
� �1ÿ p� oh0�x; y�

on
�x; y� 2 C2;

p 2 �0; 1� ; �3:6�
where L is either the 2D Laplace operator (2.34) or the 2D
modi®ed Helmholtz operator (2.36), and the non-linear
operator ~A�H� is now de®ned by

~A�H�x; y; p�� � k1�H� o
2H

ox2
� k2�H� o

2H
oy2

� k01�H�
oH
ox

� �2

� k02�H�
oH
oy

� �2

ÿ �b2 � b�H� �2b2 � b�hnÿ1 ÿ b2hnÿ2;

�x; y� 2 �0; 1� � �0; 1�; p 2 �0; 1� ; �3:7�
where b � 1

Dt.
According to Eqs. (2.25) to (2.27), h�m�0 �x; y��m � 1� are

governed by

L�h�m�0 �x; y�� � ~Rm�x; y�; �x; y� 2 �0; 1� � �0; 1�; m � 1

�3:8�
with boundary conditions

h�m�0 �x; y� � d1;m 1ÿ h0�x; y�� �; �x; y� 2 C1 ; �3:9�

oh�m�0 �x; y�
on

� ÿd1;m
oh0�x; y�

on
; �x; y� 2 C2 ; �3:10�

where d1;m is the Kronecker delta and

~R1�x; y� � ÿ ~A�h0� ; �3:11�

~Rm�x; y� � m r2h�mÿ1�
0 ÿ dmÿ1A�H�x; y; p��

dpmÿ1

����
p�0

" #
�m � 2� : �3:12�

The linear Eq. (3.8) with the linear boundary conditions
(3.9) and (3.10) can be easily solved by the traditional
BEM. Note that the boundary has now four sides, each of
which is divided into NC equal parts. At each corner, two
very close points, each respectively belongs to a different
boundary, are used to deal with the discontinuation.
Within every boundary element, the unknowns h�m�0 �x; y�
(on C2) and

oh�m�0 �x;y�
on (on C1) are linearly distributed.

Therefore, we have all together 4�NC � 1� unknowns on
the four sides of the unit plate. For the purpose of domain
integral, the domain �0; 1� � �0; 1� is divided into equal
NX � NX subdomains and four-point Gauss-integral for-
mula is used.

Our convergence criterion is

D �

������������������������������������������������PNX

i�0

PNX

j�0

~A h�xi; yj; nDt�� ��� ��2
�NX � 1�2

vuuuut � 10ÿ4 ; �3:13�

where the non-linear operator ~A is de®ned by (3.7).
We ®nd that, if we use the 2D Laplace operator (2.34) as

the auxiliary linear operator, the iteration diverges in most
cases, even if a very small value of k is used. However, if we
use the 2D modi®ed Helmholtz operator (2.36), whose
fundamental solution (2.37) is related to the modi®ed
Bessel function of the second kind of order zero, as our
auxiliary linear operator, the corresponding iteration
process converges and we always get accurate enough
approximations of the temperature distribution
hn � h�x; y; nDt� at the nth time step. This is quite inter-

Fig. 1. Boundary and initial conditions for microwave heating of a
2D unit plate

Fig. 2. Error versus number of iterations at the ®rst time step in
case k1�h� � exp�h�; k2�h� � 1;Dt � 0:01; k � 0:5;NC � NX � 40
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Fig. 3. Continuation and legend on page 403
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Fig. 3. a Propagation of thermal wave
of a 2D unit plate in the case k1�h� �
exp�h�; k2�h� � 1 at different non-
dimensional time: t � 0:25; 0:50; 0:75;
1:00 �NC � NX � 40;
k � 0:5;Dt � 0:01�. b Propagation of
thermal wave of a 2D unit plate in the
case k1�h� � exp�h�; k2�h� � 1 at
different non-dimensional time:
t � 1:25; 1:50; 1:75; 2:00
�NC � NX � 40; k � 0:5; Dt � 0:01�.
c Propagation of thermal wave of a 2D
unit plate in the case k1�h� �
exp�h�; k2�h� � 1 at different non-
dimensional time: t � 2:25; 2:50; 2:75;
3:00 �NC � NX � 40;
k � 0:5;Dt � 0:01�. d Propagation of
thermal wave of a 2D unit plate in the
case k1�h� � exp�h�; k2�h� � 1 at
different non-dimensional time:
t � 3:25; 3:50; 3:75; 4:00
�NC � NX � 40; k � 0:5; Dt � 0:01�.
e Propagation of thermal wave of a 2D
unit plate in the case k1�h� �
exp�h�; k2�h� � 1 at different non-
dimensional time: t � 5; 6; 7; 10
�NC � NX � 40; k � 0:5; Dt � 0:01�
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esting and deserves further research. It seems that the
auxiliary linear operator should be appropriately selected.
It means that, although the general BEM gives us great
freedom to select an auxiliary linear operator, this kind of
freedom is not absolute but restricted by something such
as the form of governing equations under consideration
and so on.

In the following parts of this paper, the 2D modi®ed
Helmholtz operator (2.36) is used as the auxiliary linear
operator, if we do not explicitly point out. Using different
values of M, we can obtain by (2.39) a family of iterative
formulae at different order of approximation. However, we
®nd that even the ®rst-order iterative formula

hk�1�x; y; nDt� � hk�x; y; nDt� � kh�1�0 �x; y� �3:14�
is good enough to obtain convergent results. Mostly, the
iteration converges quickly, as shown in Fig. 2 for the
history of the root-mean-square errors RMS at the second
time step �t � 2Dt� in case k1�h� � exp�h� and k2�h� � 1
under the numerical parameters NC � 40;NX � 40;
k � 0:5;Dt � 0:01.

Without loss of generality, we consider in this paper
only such a case where k1�h� � exp�lh� and k2�h� � 1,
which can not be solved by the traditional BEM unless
l � 0. We use the following numerical parameters such as
k � 0:5;Dt � 0:01;NX � 40;NC � 40, and the ®rst-order
iterative formula (3.14) �M � 1�. In case l � 0, our com-
puter program gives the propagation of thermal waves in
the time domain which agrees very well with that given by
the traditional BEM. In case l � 1 where the traditional
BEM is invalid, the above-mentioned formulations of the
general BEM are still valid and the iteration process con-
verges quickly at each time step with the iteration number
less than 25. Our numerical results clearly show the pro-
pagation of the thermal shock front at the beginning of
heat transfer and later the multiple re¯ections and inter-
actions of the thermal shocks off the insulated walls, as
shown in Fig. 3(a) to (e). Moreover, if time is long enough,
the temperature distribution in the whole inner ®eld tends
to a steady-state, i.e., h � 1. Our numerical results show
that the thermal shock front in case k1�h� � exp�h�;
k2�h� � 1 propagates faster than that in case k1�h� �
k2�h� � 1, for instance as shown in Fig. 4 �t � 0:75�. This
is reasonable, because in the former case, it holds
k1�h� � exp�h� > 1 for positive non-dimensional tem-

perature h so that more heat ¯ux goes through the half
center left-side of the unit plate under the same local
gradient of the non-dimensional temperature h�x; y; t�.

In the considered case k1�h� � exp�h� and k2�h� � 1, if
Dt � 0:01 and NX � NC � 20 are used as numerical
parameters, the iteration process converges under k � 1
with the number of iterations less than 10 at each time
step. However, the numerical approximations are a little
different from those at the same time steps obtained under
NX � NC � 40 and Dt � 0:01, as shown in Fig. 5 at the
non-dimensional time t � 3. Even though, the numerical
results in both cases still clearly show the propagation of
the thermal shock front, and also the multiple re¯ections
and interactions of the thermal shocks off the insulated
walls.

In case NX � NC � 40, we also solve the same problem
under Dt � 0:025. The corresponding numerical results
also clearly show the propagation of the thermal shock
front and the multiple re¯ections and interactions of the
thermal shocks off the insulated walls, although they are a
little different from those obtained at the same time steps
under NX � NC � 40 and Dt � 0:01, as shown in Fig. 6 for
t � 3. This small difference is acceptable, because we use
difference approximations in the time domain.

Therefore, the formulations of the general BEM pro-
posed in this paper for the unsteady non-linear heat
transfer problems of inhomogeneous materials governed
but the Heat Hyperbolic Conduction Eq. (2.1) are indeed
valid and insensitive to the descritizations of the non-di-
mensional temperature h�x; y; t� in both time and spatial
domain.

4
Conclusions
This paper has some relationships with the previous work
of Liao (1995, 1996) and Liao and Chwang (1996). Here, we
further apply the general BEM to solve 2D unsteady non-
linear heat transfer problems of inhomogeneous materials,
but now governed by a 2D hyperbolic heat conduction
equation (HHCE) in a rather general case: the thermal
conductivity coef®cients in the x and y directions may be
different. As an example, we consider a 2D unit plate
whose center half part of the left-side is heating �h � 1�
but other boundaries are insulated. Moreover, the material
of the unit plate is imhomogenous although we only

Fig. 4. Comparison of temperature dis-
tribution of inhomogeneous plate with
that of homogeneous plate at t � 0:75
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consider the case k1�h� � exp�h� and k2�h� � 1. By means
of the formulations of the general BEM proposed in this
paper, we successfully calculate the propagation of the
thermal shock front and the multiple re¯ections and in-
teractions of the thermal shock off the insulated walls of
the 2D unit plate. We emphasize that the traditional BEM
is invalid at all for this unsteady strongly non-linear pro-
blem, but the general BEM still works quite well.

In the paper of Liao and Chwang (1996), the general
BEM is successfully applied to solve 2D steady-state tem-
perature distributions of imhomogeneous materials gov-
erned by steady-state heat transfer equation. Here, we also
successfully apply the general BEM to solve unsteady heat
transfer problems governed by hyperbolic heat conduction
equation (HHCE). So, the general BEM is valid for both
steady and unsteady equations. So, we believe that the
general BEM can be applied to solve a large number of
strongly non-linear problems in engineering, no matter
steady or unsteady, especially when they can not be solved
by the traditional BEM.

We note that in the above-mentioned formulations of
the general BEM the domain integral appears which de-
creases the numerical ef®ciency of the method. However, a
boundary element technique, called the Dual Reciprocity
Boundary Element Method, has been well developed to
overcome this disadvantage by transforming the domain
integral to the surface integration. Thus, the general BEM
for unsteady, strongly non-linear problems, which are
hyperbolic in time, might become more ef®cient, when it is

combined with the Dual Reciprocity Boundary Element
Method.

Note that the mth-order deformation equations gov-
erning the mth-order deformation derivative h�m�0 �x; y��m � 1� are linear about h�m�0 �x; y��m � 1� under a se-
lected, familiar auxiliary linear operator L so that they can
be easily solved by the traditional BEM. This is the key of
the general BEM. However, we should point out that one
can also apply other numerical techniques such as Finite
Element Method (FEM) and Finite Difference Method
(FDM) to solve these linear mth-order deformation
equations without any dif®culties.

Finally, we emphasize that the traditional BEM is in-
valid to solve the unsteady non-linear heat transfer pro-
blem of the inhomogeneous materials under
consideration, but the general BEM is still valid for it. This
con®rms once again the validity and the great potential of
the general BEM, although more applications in en-
gineering are necessary.
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