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Abstract

A general analytic approach is proposed for nonlinear eigenvalue problems governed
by nonlinear differential equations with variable coefficients. This approach is based
on the homotopy analysis method for strongly nonlinear problems. As an example, a
beam with arbitrary variable cross section acted on by a compressive axial load is used
to show its validity and effectiveness. This approach provides us with great freedom
to transfer the original nonlinear buckling equation with variable coefficients into an
infinite number of linear differential equations with constant coefficients that are much
easier to solve. More importantly, it provides us with a convenient way to guarantee the
convergence of solution series. As an example, the beam displacement and the critical
buckling load can be obtained for arbitrary variable cross sections. The influence of
nonuniformity of moment of inertia is investigated in detail and the optimal distributions
of moment of inertia are studied. It is found that the critical buckling load of a beam
with the optimal distribution of moment of inertia can be approximately 21–22% larger
than that of a uniform beam with the same average moment of inertia. Mathematically,
this approach is rather general and thus can be used to solve many other linear/nonlinear
differential equations with variable coefficients.
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1. Introduction

There are many interesting problems in engineering, such as nonlinear dynamics
of beams with variable cross section [11, 16, 21, 24, 42], properties of structures
made of functional graded materials [13, 17, 18, 20, 36, 43, 45, 50], the wave
propagation in nonuniform waveguides [25], and the mechanical properties of
nonuniform beams [8–10, 12, 14, 15, 22, 23, 38]. All of these problems are
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governed by linear/nonlinear differential equations with variable coefficients, and have
important practical applications. However, it is well known that nonlinear differential
equations with variable coefficients are difficult to solve, especially by means of
analytic techniques. The traditional analytic techniques such as perturbation methods
cannot handle such problems effectively, because perturbation approximations are
often strongly dependent upon small physical parameters and thus mostly valid only
for problems with weak nonlinearity. Therefore, it is practically and theoretically
meaningful to develop an effective analytic approach to solve this kind of nonlinear
differential equation with variable coefficients.

Let us consider here a beam on two supports under a compressive axial load P with
arbitrary cross section, as shown in Figure 1. Let l denote the length of such a beam,
θ the rotation of the cross section and u its deflection, respectively. Let ξ denote the arc
coordinate of the natural axis which passes through the centroid of each cross section
of the beam in its straight or unbuckled state, I (ξ) the smallest moment of inertia of
the cross section about a line in its plane through the centroid, and E Young’s modulus
of the beam material. Assume that all of the principle axes of inertia are parallel so that
the beam is not twisted. However, unlike Keller [23], we consider here a more general
case where the shape of each cross section does not need to be similar. Mathematically,
the problem is governed by

E I (ξ)
dθ

dξ
+ Pu = 0, u(0)= u(l)= 0, (1.1)

where I (ξ) is nonnegative. Differentiating the original governing equation (1.1) with
respect to ξ and using the relationship sin θ = du/dξ , we have the nonlinear buckling
equation

(E Iθ ′)′ + P sin[θ(ξ)] = 0, (1.2)

where the prime denotes the differentiation with respect to ξ . Substituting u(0)=
u(l)= 0 into (1.1) gives the corresponding boundary conditions θ ′(0)= θ ′(l)= 0,
which means that the bending moment at two ends of the beam is zero. The
corresponding linear buckling equation is given by

E I (ξ)u′′(ξ)+ Pu(ξ)= 0, u(0)= u(l)= 0. (1.3)

The linear equation (1.3) has nonzero solutions only when the axial load is an
eigenvalue, and the critical buckling load Pc is given by the smallest eigenvalue.
However, for the nonlinear buckling equation (1.2), nonzero solutions exist as long
as the axial load P is greater than the critical load Pc.

Define the dimensionless arc coordinate of the natural axis s = (ξ/ l)π , and write
I = I0φ(ξ)= I0φ(s), where φ(s) is a distribution function of I , and I0 is the average
moment of inertia, defined by

I0 =
1
l

∫ l

0
I (ξ) dξ =

1
π

∫ π

0
I (s) ds.
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FIGURE 1. Beam acted on by a compressive axial load P with variable moment of inertia I (ξ).

Obviously,
1
π

∫ π

0
φ(s) ds = 1. (1.4)

The problem under consideration is governed by

φ(s)θ ′′(s)+ φ′(s)θ ′(s)+ λ sin[θ(s)] = 0, θ ′(0)= θ ′(π)= 0, (1.5)

where the prime denotes differentiation with respect to s, and λ= (P/E I0)(l/π)2

is called the axial load parameter. As long as λ is known, one has the axial load
P = λ(E I0)(π/ l)2. Note that (1.5) is a second-order nonlinear ordinary differential
equation (ODE) with two variable coefficients φ(s) and φ′(s). Given an axial load P
and any a distribution φ(s) of the moment of inertia, we need to obtain convergent
series of θ(s) by solving the above nonlinear ODE. This is not easy by means of the
traditional analytic techniques. Keller [23] suggested an analytic approach based on
perturbation methods for the nonlinear buckling equation (1.5), but without giving any
results.

The homotopy analysis method (HAM) [27–31, 33, 35], an analytic method for
highly nonlinear problems, has been widely applied to solve many nonlinear problems
in science, engineering and finance [1–7, 26, 37, 40, 41, 44, 46–49, 51, 52].
Unlike perturbation techniques, the HAM is independent of any small physical
parameters. More importantly, the HAM provides a simple way to ensure the
convergence of solution series so that one can always get accurate enough approxi-
mations even for strongly nonlinear problems; see, for example, Abbasbandy [2] and
Liang and Jeffrey [26]. Furthermore, the HAM provides great freedom to choose the
so-called auxiliary linear operator so that one can approximate a nonlinear problem
more effectively by means of better base functions, as illustrated by Liao and Tan [35].
This kind of freedom is so great that the second-order nonlinear two-dimensional
Gelfand equation can be solved even by means of a fourth-order auxiliary linear
operator in the frame of the HAM, as shown in [35]. In particular, by means of the
HAM, a few new solutions of some nonlinear problems are found [32, 34] which are
neglected by all other analytic methods and even by numerical techniques. All of these
show the potential of the HAM. In this paper the HAM is applied to give a convergent
series solution of the nonlinear differential equation (1.5) for any given distribution
function φ(s) of the moment of inertia.

This paper is organized as follows. In Section 2 the basic idea of the analytic
approach is described. In Section 3 the convergence of the solution series is
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investigated, and deformations of a beam with symmetrical or asymmetrical distri-
butions of the moment of inertia I studied. Further, the optimal distributions of I
are obtained for given average moment of inertia, I0. Some conclusions are given in
Section 4.

2. Basic ideas

In this section, Equation (1.5) is used as an example to describe the basic ideas of
an analytic approach for nonlinear ODEs with variable coefficients. The homotopy
analysis method [28, 30, 31, 35] is based on homotopy [19], a fundamental concept
in topology and differential geometry which can be traced back to Poincaré [39]. In
brief, by means of the HAM, one constructs a continuous mapping of an initial guess
approximation to the exact solution of the equations considered. An auxiliary linear
operator is chosen to construct such a continuous mapping, and an auxiliary parameter
(called the convergence-control parameter) is used to ensure the convergence of the
series solution. The method provides great freedom in choosing initial approximations
and auxiliary linear operators. Through such freedom, a complicated nonlinear
problem can be transformed into an infinite number of much simpler, linear sub-
problems, as shown by Liao and Tan [35].

There are two different strategies to solve the nonlinear eigenvalue problem under
consideration. One is to regard the axial load parameter λ as a given parameter, but
consider the value of θ(s) at the boundary s = 0 as unknown. The other is to regard λ
as unknown but consider θ(0)= α as an additional boundary condition of θ(s),
where α is given. Physically, these two strategies give the same result for the same
axial load P and the same distribution φ(s) of I . We adopt the second strategy: for
the given distribution φ(s) of I and the given value of α with the additional boundary
condition θ(0)= α, our aim is to find the corresponding series solution of θ(s) and the
unknown axial load parameter λ.

In this case, Equation (1.5) can be rewritten in the form

φ(s)θ ′′(s)+ φ′(s)θ ′(s)+ λ sin[θ(s)] = 0, 0< s < π, (2.1)

subject to the boundary conditions

θ ′(0)= θ ′(π)= 0, θ(0)= α. (2.2)

For small θ , one can linearize (2.1) as

φ(s)θ ′′(s)+ φ′(s)θ ′(s)+ λθ(s)= 0, 0< s < π. (2.3)

Even this linear ODE with variable coefficients is not easy to solve analytically.
Note that both of θ(s) and λ are unknown for given α. According to Equation (2.1),

we define a nonlinear operator

N [W (s; q), 3(q), q]

= φ(s)
∂2W (s; q)

∂s2 + φ′(s)
∂W (s; q)

∂s
+3(q)

(
sin[qW (s; q)]

q

)
,
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where q ∈ [0, 1] is called the homotopy parameter, an embedding parameter
without physical meaning, and W (s; q) and 3(q) correspond to the unknown θ(s)
and λ, respectively. Note that sin[qW (s; q)]/q corresponds to the term sin(θ) in
Equation (2.1), and tends to W (s; q) as q→ 0. Let θ0(s), which satisfies the
boundary conditions (2.2), denote an initial guess of θ(s). Let L denote an auxiliary
linear operator with respect to s, and h̄ a nonzero auxiliary parameter (called the
convergence-control parameter), respectively. All of the initial guess θ0(s), the
auxiliary linear operator L and the convergence-control parameter h̄ can be chosen
with great freedom, as shown later. Then, we construct a two-parameter1 family of
differential equations

(1− q)L [W (s; q)− θ0(s)]= qh̄N [W (s; q), 0(q), q], 0< s < π, (2.4)

subject to the boundary conditions

∂W (s; q)

∂s

∣∣∣∣
s=0
=
∂W (s; q)

∂s

∣∣∣∣
s=π
= 0, W (0; q)= α. (2.5)

Obviously, when q = 0, because L(0)= 0 for any linear operator L, Equations (2.4)
and (2.5) have the solution

W (s; 0)= θ0(s). (2.6)

When q = 1, since h̄ 6= 0, Equations (2.4) and (2.5) are equivalent to the original
equations (2.1) and (2.2), provided that

W (s; 1)= θ(s), 3(1)= λ. (2.7)

Write
3(0)= λ0, (2.8)

where λ0 denotes the initial guess of the axial load parameter λ. Then, as the
homotopy parameter q increases from 0 to 1, W (s; q) varies (or deforms) from the
initial guess θ0(s) to the unknown exact solution θ(s), as does 3(q) from the initial
guess λ0 to the unknown λ. Obviously, the deformations of W (s; q) and 3(q) are
completely determined by Equations (2.4) and (2.5), which are called the zeroth-order
deformation equations.

On expanding W (s; q) and 3(q) into a Taylor series with respect to the homotopy
parameter q , we have, using (2.6) and (2.8), the so-called homotopy series

W (s; q)= θ0(s)+
+∞∑
m=1

θmqm, 3(q)= λ0 +

+∞∑
m=1

λmqm, (2.9)

where
θm(s)=Dm[W (s; q)], λm =Dm[3(q)], (2.10)

1 They are the homotopy parameter q ∈ [0, 1] and the convergence-control parameter h̄.
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with

Dm f :=
1

m!

∂m f

∂qm

∣∣∣∣
q=0

.

Here, θm(s) and λm are called the mth-order homotopy derivative of W (s; q)
and 3(q), respectively. We need to ensure that the convergence radius of the
power series is finite. Fortunately, the homotopy series (2.9) contain the so-called
convergence-control parameter h̄, and besides we have great freedom to choose the
auxiliary linear operator L. Obviously, the convergence-control parameter h̄ and the
auxiliary linear operator L have great influence on the convergence of the homotopy
series (2.9). Assume that the auxiliary linear operator L and the convergence-control
parameter h̄ are properly chosen so that the homotopy series (2.9) are convergent at
q = 1. Then, using (2.7), we have the so-called homotopy-series solution

θ(s)= θ0(s)+
+∞∑
m=1

θm, λ= λ0 +

+∞∑
m=1

λm . (2.11)

According to the fundamental theorems in calculus, each coefficient of the Taylor
series of a smooth function is unique. Thus, θm(s) and λm are unique, and are
completely determined by W (s; q) and 3(q), respectively. Therefore, the governing
equations and the boundary conditions of θm(s) and λm can be directly deduced from
the zeroth-order deformation equations (2.4) and (2.5). For simplicity, define the
vectors

Eθn = {θ0(s), θ1(s), θ2(s), . . . , θn(s)} , Eλn = {λ0, λ1, λ2, . . . , λn}.

Differentiating the zeroth-order deformation equations (2.4) and (2.5) m times with
respect to q , then setting q = 0, and finally dividing by m!, we have the so-called
mth-order deformation equation:

L
[
θm(s)− χmθm−1(s)

]
= h̄ Rm

(
Eθm−1, Eλm−1

)
where χm =

{
0, m ≤ 1,

1, m > 1,
(2.12)

subject to the boundary conditions

θ ′m(0)= θ
′
m(π)= 0, θm(0)= 0, (2.13)

and

Rm(Eθm−1, Eλm−1) =
1

(m − 1)!
dm−1N [W (s; q), 0(q), q]

dqm−1

∣∣∣∣∣
q=0

= φ(s)θ ′′m−1(s)+ φ
′(s)θ ′m−1(s)+

m−1∑
n=0

λn Sm−n(s).
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Note that, directly substituting (2.9) into the zeroth-order deformation equations (2.4)
and (2.5), and then equating the coefficients of like powers of the homotopy parameter
q ∈ [0, 1], one can get exactly the same high-order deformation equations mentioned
above, as pointed out by Sajid et al. [40, 41]. A systematic method for obtaining high-
order deformation equations in general cases is given by Liao [33]. Here, Sn(s) is
given by the recurrence formulas described in Appendix A. For example,

R1(Eθ0, Eλ0) = φ(s)θ
′′

0 (s)+ φ
′(s)θ ′0(s)+ λ0θ0(s),

R2(Eθ1, Eλ1) = φ(s)θ
′′

1 (s)+ φ
′(s)θ ′1(s)+ λ0θ1(s)+ λ1θ0(s),

R3(Eθ2, Eλ2) = φ(s)θ
′′

2 (s)+ φ
′(s)θ ′2(s)+ λ0θ2(s)+ λ1θ1(s)+ λ2θ0(s)−

λ0

6
θ3

0 (s),

and so on. By means of symbolic computation software such as Mathematica, Maple
or Matlab, it is not difficult to get Rm(Eθm−1, Eλm−1) for large m. Note that, if the
linearized equation (2.3) is used, we have simply

Rm(Eθm−1, Eλm−1)= φ(s)θ
′′

m−1(s)+ φ
′(s)θ ′m−1(s)+

m−1∑
n=0

λnθm−1−n(s).

Note also that Rm(Eθm−1, Eλm−1) is dependent only upon θ0, θ1, θ2, . . . , θm−1 and λ0,
λ1, λ2, . . . , λm−1.

Note that Equation (2.12) is rather general, because the auxiliary linear operator L,
the initial guess θ0(s) and the convergence-control parameter h̄ in this equation are not
yet determined. It should be emphasized that we have great freedom to choose θ0(s)
and L. It is well known that, in the special case of φ(s)= 1, corresponding to a beam
of uniform cross section, θ(s) can be expanded in a set of periodic base functions{
cos(nκs) | n, κ ≥ 1, n, κ ∈ N

}
as

θ(s)=
+∞∑
n=1

bn cos(nκs),

where κ ≥ 1 is a positive integer, called the mode-shape number. To include this
special case and to satisfy the boundary condition (2.2), we choose the initial guess
θ0(s)= α cos(κs)= α(eκsi

+ e−κsi )/2, and the auxiliary linear operator

Lθ = θ ′′ + κ2θ, (2.14)

with the property that L[C1 cos(κs)+ C2 sin(κs)] = 0, where C1, C2 are constant
coefficients and i =

√
−1 represents the imaginary unit. Note that the linear term

φ(s)θ ′′(s)+ φ′(s)θ ′(s) in Equation (2.1) contains two variable coefficients φ(s) and
φ′(s). It is much more difficult to solve the corresponding linearized differential
equation with arbitrary variable coefficients

φ(s)θ ′′(s)+ φ′(s)θ ′(s)+ λθ(s)= 0
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than the linear differential equation with constant coefficients

θ ′′(s)+ κ2θ(s)= 0,

so it is not a good idea to choose

Lθ = φ(s)θ ′′(s)+ φ′(s)θ ′(s)+ λθ(s)

as the auxiliary linear operator. Fortunately, in contrast to other analytic techniques,
the HAM provides great freedom and flexibility to choose an auxiliary linear operator
(2.14) such that the corresponding high-order deformation equation (2.12) is a linear
ODE with known constant coefficients. So, by choosing this kind of auxiliary
linear operator (2.14), it becomes much easier to solve the high-order deformation
equations (2.12) and (2.13), so that we can get analytic results at a rather high order of
approximation by means of symbolic computation software. In this way, we transfer
the original nonlinear ODE with arbitrary variable coefficients into an infinite number
of linear ODEs with the known constant coefficients. Such a transformation does not
need any small physical parameters.

It is worthwhile to emphasize the great flexibility and freedom of the HAM in the
choice of the auxiliary linear operator: for example, by means of the HAM, one can
even transform the second-order nonlinear Gelfand equation into an infinite number
of fourth-order (in the two-dimensional case) or sixth-order (in the three-dimensional
case) linear partial differential equations so as to greatly simplify resolving the original
problem, as illustrated by Liao and Tan [35]. Similarly, using the great freedom and
flexibility of the HAM in the choice of the auxiliary linear operator, we transform
the original nonlinear ODE (2.1) with arbitrary variable coefficients into an infinite
number of linear ODEs (2.12) with the known constant coefficients. In this way, it
becomes much easier to solve the original nonlinear problem.

As mentioned above, the mth-order deformation equations (2.12) and (2.13) are
linear ODEs with constant coefficients and thus are easy to solve. Note that
Equation (2.12) contains two unknowns: θm(s) and λm−1. Let θm(s) denote a special
solution of Equation (2.12). Its general solution reads

θm(s)= θm(s)+ χmθm−1(s)+ Cm cos(κs)+ Dm sin(κs),

where Cm and Dm are integral coefficients to be determined. The boundary conditions
θ ′m(0)= 0 and θ ′m(π)= 0 give us two algebraic equations

θ
′

m(0)+ χmθ
′

m−1(0)+ Dmκ = 0, (2.15)

θ
′

m(π)+ χmθ
′

m−1(π)+ Dmκ cos(κπ)= 0. (2.16)

Equations (2.15) and (2.16) contain two unknowns: Dm and λm−1. From (2.15),

Dm =−
θ
′

m(0)+ χmθ
′

m−1(0)

κ
. (2.17)
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Substituting (2.17) into (2.16) gives

θ
′

m(π)+ χmθ
′

m−1(π)=
[
θ
′

m(0)+ χmθ
′

m−1(0)
]
cos(κπ). (2.18)

Solving Equation (2.18) gives λm−1. Furthermore, using the boundary condition
θm(0)= 0 leads to

Cm =−θm(0)− χmθm−1(0).

In this way, we obtain λ0, θ1(s) by solving the first-order deformation equations, then
λ1, θ2(s) by the second-order deformation equations, and so on. This is easy to do
by means of symbolic computation software. In this way we can get results to a high
order of approximation. The M th-order approximation is given by

θ(s)≈ θ0(s)+
M∑

n=1

θn(s), λ≈ λ0 +

M∑
n=1

λn.

Note that to get this approximation we had to solve (M + 1)th-order deformation
equations (2.12) and (2.13).

It should be emphasized that the above approach is valid for an arbitrary distribution
function φ(s)≥ 0 of the moment of inertia, as shown in the following section. Besides,
the value of the convergence-control parameter h̄ has not yet been chosen, which
provides us with a convenient way to guarantee the convergence of the solution series,
as shown later.

3. Series solution

Let (x, u) denote the coordinates of a point on the beam, where u(s) is the
displacement. Then

x(s)=
∫ s

0
cos[θ(s)] ds, u(s)=

∫ s

0
sin[θ(s)] ds,

where 0≤ s ≤ π is the arc length of the beam. If θ(s) is a solution when α = γ , then
−θ(s) is the solution when α =−γ . So it is necessary only to discuss the case of
α ≥ 0.

3.1. Results for a symmetrical distribution of I From a practical point of view,
the distribution of the moment of inertia of a beam is usually symmetrical. For the
sake of simplicity, let us first consider the case φ(s)= 1+ β cos(2s), where |β|< 1
and 0≤ s ≤ π . In this case, the distribution of I is symmetrical with respect to the
center of beam. The case β = 0 corresponds to a beam with the same moment of
inertia. When β > 0, the distribution of I is dumbbell-shaped: it has the maximum
value 1+ β at the ends of a beam and decreases monotonically to the minimum value
1− β at the center. When β < 0, the distribution of I is olive-shaped: it has maximum
value 1+ |β| at the center and decreases monotonically to the minimum value 1− |β|
at the ends. Some examples of the symmetric distribution of the moment of inertia are
shown in Figure 2.
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FIGURE 2. Examples of the distribution of the moment of inertia: curve 1, dumbbell-shaped distribution
where φ(s)= 1+ cos(2s)/4; curve 2, olive-shaped distribution where φ(s)= 1− cos(2s)/4; curve 3,
olive-shaped distribution where φ(s)= 1− cos(2s)/2+ cos(40s)/20.

It is well known that the deformation of a beam under axial load can have different
patterns (or mode shapes), determined by different values of the mode-shape number
κ . First of all, let us consider the case κ = 1, which corresponds to the simplest
mode shape of deformation. Note that our approximations contain the convergence-
control parameter h̄, which appears in the high-order deformation equation (2.12). For
example, the first-, second- and third-order approximations of λ read

λ ≈ 1−
β

2
+

9
32
β2h̄,

λ ≈ 1−
β

2
+

9
32
β2h̄(2+ h̄)+

9
512

β3h̄2
+

1
8

(
1−

β

2

)
α2,

λ ≈ 1−
β

2
+

9
32
β2h̄(3+ 3h̄ + h̄2)+

9
512

β3h̄2(3+ 2h̄)+
603
8192

β4h̄3

+
1
8

[
1−

1
8
β(4+ h̄)+

11
32
β2h̄

]
α2,

respectively. The corresponding first- and second-order approximations of θ(s) are

θ(s) ≈ α cos(s)−
(

3
16

)
αβ h̄[cos(s)− cos(3s)],

θ(s) ≈ α cos(s)−
(

3
16

)
αβ h̄(2+ h̄)[cos(s)− cos(3s)]

−

(
3

256

)
αβ2h̄2[3 cos(s)+ 2 cos(3s)− 5 cos(5s)],

respectively.
As pointed out by Liao [30, 31, 35], the convergence-control parameter h̄, an

auxiliary parameter without physical meaning, provides a simple way to control and
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TABLE 1. The value of λ at different orders of approximation and values of h̄ for the case where α = 1
and φ(s)= 1− 0.5 cos(2s).

Calculated λ

Order of approx. h̄ =−1.1 h̄ =−1 h̄ =−0.9 h̄ =−0.8

2 1.3340 1.3337 1.3349 1.3374
4 1.3236 1.3233 1.3238 1.3252
6 1.3209 1.3207 1.3209 1.3214
8 1.3204 1.3203 1.3204 1.3206
10 1.3203 1.3203 1.3203 1.3204

15, 20 1.3203 1.3203 1.3203 1.3203

h

λ

0

1

2

3

-
–2 –1.5 –1 –0.5 0

FIGURE 3. The curves of λ∼ h̄ at the tenth-order of approximation in the case of φ(s)= 1+ β cos(2s)
when κ = 1. Solid line, α = 1/2, β = 3/4; dashed line, α = 1/2, β =−3/4; dash-dotted line, α = 1, β =
3/4; dash-dot-dotted line, α = 1, β =−3/4.

adjust the convergence of the HAM series. Mathematically, according to Liao’s
proof [30, 31, 35] in the general case, the homotopy series (2.11) must be the solution
of the original nonlinear ODEs (2.1) and (2.2), as long as they are convergent. On the
other hand, from a physical point of view, the value of λ is completely determined for
given α and β. Therefore, given α and β, all convergent homotopy-series solutions
of λ obtained by different values of h̄ should give the same result. This is indeed true,
as shown in Figure 3 for different values of α and β. Observing the curves λ∼ h̄
in Figure 3, it is obvious that the series of λ is convergent for all values of α and β
considered when −5/4≤ h̄ ≤−1/4. For example, when α = 1 and β =±1/2, the
series of λ given by different values of h̄ ∈ [−5/4,−1/4], such as h̄ =−1.1,−1,−0.9
and −0.8, converge to the same result λ= 1.3203 for β =−1/2, and λ= 0.7764 for
β = 1/2, respectively, as shown in Tables 1 and 2. Further, it is found that, as long as
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TABLE 2. The value of λ at different orders of approximation and values of h̄ for the case α = 1 and
φ(s)= 1+ 0.5 cos(2s).

Calculated λ

Order of approx. h̄ =−1.1 h̄ =−1 h̄ =−0.9 h̄ =−0.8

2 0.7768 0.7756 0.7759 0.7777
4 0.7762 0.7758 0.7760 0.7768
6 0.7763 0.7762 0.7763 0.7765

8, 10, 15, 20 0.7764 0.7764 0.7764 0.7764
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FIGURE 4. Comparison of the beam displacement at different orders of approximation for α = 1 and
φ(s)= 1+ β cos(2s) by means of h̄ =−1. Solid line, fifth-order approximation when β =−1/2; dashed
line, fifth-order approximation when β = 1/2; filled circles, tenth-order approximation when β =−1/2;
open circles, tenth-order approximation when β = 1/2.

the homotopy-series solution of λ is convergent, the corresponding homotopy-series
solution of θ(s) is also convergent. For example, in case of α = 1 and β =±1/2, the
fifth-order approximation of the beam displacement agrees well with the tenth-order
approximation, as shown in Figure 4. It is found that, when −5/4≤ h̄ ≤−1/4, the
homotopy-series solutions of θ(s) and λ converge for all possible values of α and β
having physical meaning, and the tenth-order approximation is accurate enough. So,
by means of the convergence-control parameter h̄, we can always get convergent series
solution of θ(s) and λ. This is an advantage of our approach over other analytic
techniques.

For simplicity, we choose h̄ =−1 here. In the case of φ(s)= 1+ β cos(2s) and
κ = 1, it is useful to define

λ[10]
c = 1−

β

2
−

9
32
β2
+

9
512

β3
−

603
8192

β4
+

1341
131 071

β5

−
159 687

4 194 304
β6
+ 0.007 135 28β7

− 0.024 454 6β8

+ 0.005 440 59β9
− 0.017 518 7β10

+ 0.004 376 13β11. (3.1)
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Now the corresponding tenth-order approximation of λ reads

λ ≈ λ[10]
c +

1
8

(
1− 0.375β − 0.351 563β2

+ 0.024 658 2β3
− 0.093 277β4

+ 0.014 399 5β5
− 0.048 685 7β6

+ 0.010 069 1β7
− 0.031 485 1β8

− 0.003 648 47β9
)
α2
+

(
0.011 067 7− 0.002 970 38β − 0.004 372 49β2

+ 0.000 240 813β3
− 0.001 155 82β4

+ 0.000 141 895β5
− 0.000 665 628β6

− 0.000 186 064β7
)
α4
+

(
9.168 84− 1.800 11β − 3.744 61β2

+ 0.159 778β3

− 1.255 04β4
− 0.291 921β5

)
10−4α6

+

(
7.698 83− 1.079 22β − 3.899 26β2

− 0.366 548 2β3
)

10−5α8

+ (3.628 201− 1.814 100β)10−6α10.

For given α, the axial load parameter λ has a maximum value in the region
β ∈ [−0.7,−0.6] and the minimum value at β = 1, as shown in Figure 5. Thus,
generally speaking, a beam with olive-shaped distribution of moment of inertia is
safer than that with dumbbell-shaped ones. For given β, λ has minimum value λc
as α→ 0. Note that the beam has no displacement when 0≤ λ≤ λc, so λc is regarded
as the critical axial load value and thus has important physical significance. At the
tenth-order of approximation, in the case of φ(s)= 1+ β cos(2s)

λc ≈ λ
[10]
c , (3.2)

where λ[10]
c is given by Equation (3.1). Formula (3.2) agrees well with the 40th-order

approximation of λc, as shown in Figure 6. At the tenth-order of approximation, λc has
the maximum value 1.1828 at β =−0.633 643. At the 40th order of approximation,
λc has maximum value 1.1827 at β =−0.632 23. The relative error is less than 0.01%.
Thus, (3.2) is quite accurate from a practical viewpoint. Given λc, it is easy to get the
critical buckling load Pc = λc(E I0)(π/ l)2. Note that a beam has no displacement if
P ≤ Pc.

Similarly, in the case of φ(s)= 1+ β cos(2s) with the mode-shape number κ = 2,
the tenth-order approximation of λc with h̄ =−1 reads

λc ≈ 4− 1.333 333β2
− 0.351 852β4

− 0.182 922β6

− 0.117 919β8
− 0.084 705 2β10,

which is always less than 4, the value of λc for a beam with uniform cross section when
κ = 2. In particular, for given β, λc in the case of κ = 2 is always greater than that for
the case of κ = 1, as shown in Figure 6. Similar phenomena are found for all κ > 1.
So, for a beam with arbitrary variable cross section, one need only consider λc in the
case of the mode-shape number κ = 1. Thus, when φ(s)= 1+ β cos(2s), the optimal
distribution of moment of inertia should be very close to φ(s)= 1− 0.632 23 cos(2s).
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FIGURE 5. The curves of λ versus β at the tenth-order of approximation for φ(s)= 1+ β cos(2s) when
κ = 1. Solid line, α = 0; dashed line, α = 1/2; dash-dotted line, α = 1; dash-dot-dotted line, α = 2.
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FIGURE 6. The critical axial load value λc versus β in the case of φ(s)= 1+ β cos(2s). Solid line,
tenth-order approximation (6) when κ = 1; circles, 40th-order approximation when κ = 1; dashed
line, tenth-order approximation when κ = 2; square, tenth-order approximation (3.3) in the case of
φ(s)= 1+ β cos(2s)+ cos(40s)/20 when κ = 1.

The above approach can be applied to get λc for a more complicated distribution
of moment of inertia. For example, when φ(s)= 1+ β cos(2s)+ cos(40s)/20, the
tenth-order approximation of λc with κ = 1 and h̄ =−1 reads

λc ≈ 0.998 748− 0.500 627β − 0.282 937β2
+ 0.016 862 6β3

− 0.075 603 9β4

+ 0.009 458 87β5
− 0.040 332 0β6

+ 0.006 320 20β7
− 0.026 900 3β8

+ 0.004 621 14β9
− 0.017 518 7β10

+ 0.004 376 13β11. (3.3)
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The difference between (3.3) and λc given by (3.2) for φ(s)= 1+ β cos(2s) is
rather small, as shown in Figure 6. It indicates that the influence of small high-
frequency terms in the distribution φ(s) of the moment of inertia on λc can be
neglected. Thus, the small inaccuracy of the moment of inertia of a beam caused
by machine precision can be neglected.

As mentioned above, for φ(s)= 1+ β cos(2s), λc has maximum value (λc)max =

1.183 at β =−0.632 23, corresponding to the optimal distribution of the moment of
inertia

φ∗(s)= 1− 0.632 23 cos(2s). (3.4)

In the general case φ(s)= 1+
∑M

j=1 β j cos(2 js), one can find the corresponding
(λc)max for given M in a similar way. For example, for φ(s)= 1+ β1 cos(2s)+
β2 cos(4s), we have first- and second-order approximations (with h̄ =−1) of the
critical axial load value

λc ≈ λ
[1]
c ≡ 1−

β1

2
−

9
32
β2

1 +
9
16
β1β2 −

13
24
β2

2 ,

λc ≈ λ
[2]
c ≡ λ

[1]
c +

9
512

β3
1 +

33
128

β2
1β2 −

311
1152

β1β
2
2 .

At the tenth-order of approximation, λc has the maximum value (λc)max = 1.206
at β1 =−0.6121 and β2 =−0.1957, corresponding to the optimal distribution of
moment of inertia

φ∗(s)= 1− 0.6121 cos(2s)− 0.1957 cos(4s). (3.5)

When M = 3, λc at the tenth-order of approximation has the maximum value
(λc)max = 1.213 at β1 =−0.6193, β2 =−0.1719 and β3 =−0.1114, corresponding
to the optimal distribution

φ∗(s)= 1− 0.6193 cos(2s)− 0.1719 cos(4s)− 0.1114 cos(6s).

For M = 4, λc at the tenth-order of approximation has the maximum value
(λc)max = 1.217 at β1 =−0.6257, β2 =−0.1727, β3 =−0.0917 and β4 =−0.0801,
corresponding to the optimal distribution

φ∗(s)= 1− 0.6257 cos(2s)− 0.1727 cos(4s)− 0.0917 cos(6s)− 0.0801 cos(8s).
(3.6)

Obviously, if M is large enough, one can get the optimal symmetrical distribution φ(s)
with the property φ′(0)= φ′(π)= 0. The optimal distributions φ(s) at different values
of M are shown in Figure 7. Note that, as the value of M increases, the moments of
inertia at two ends of the beam decrease and tend to zero. However, a beam with
very small moment of inertia at two ends is hardly used in practice. So, the optimal
distribution (3.5) of moment of inertia seems more useful in practice. Note that, for
given average moment of inertia, the critical buckling load of a beam with the optimal
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FIGURE 7. Comparison of the optimal distribution φ∗(s) of I with the property φ′(0)= 0. Dashed line,
formula (3.4); dash-dotted line, formula (3.5); solid line, formula (3.6).

symmetrical distribution (3.5) of moment of inertia (with the property φ′(0)= 0) may
be about 21% larger than that of a uniform beam.

Consider the symmetrical distribution of I with the property φ′(0) 6= 0. When

φ(s)= 1+ β
[

sin(s)−
2
π

]
,
−π

2
≤ s ≤

π

2
,

the tenth-order approximation of the critical axial load value reads

λc ≈ 1+ 0.212 206β − 0.033 122 4β2
− 0.002 406 67β3

− 0.001 850 14β4

− 4.263 74× 10−4β5
− 2.471 98× 10−4β6

− 8.833 28× 10−5β7

− 4.652 08× 10−5β8
− 2.037 25× 10−5β9

− 1.052 12× 10−5β10

− 5.098 152× 10−6β11,

which has maximum value (λc)max = 1.217 at β = π/2, corresponding to the optimal
distribution

φ∗(s)=
π

2
sin(s). (3.7)

For

φ(s)= 1+ β1

[
sin(s)−

2
π

]
+ β2

[
sin(3s)−

2
3π

]
,

the tenth-order approximation of λc has maximum value (λc)max = 1.219 at β1 =

1.5527 and β2 = 0.0543, corresponding to the optimal distribution

φ∗(s)= 1.5527 sin(s)+ 0.0543 sin(3s). (3.8)

Note that λc increases by only 0.2%, and the two optimal distributions are rather close,
as shown in Figure 8. Thus, φ∗(s)= (π/2) sin(s) should be rather close to the best
distribution of moment of inertia for φ′(0) 6= 0.

Furthermore, for

φ(s)= 1+ β

[(
s −

π

2

)2
−
π2

12

]
,
−6

π2 ≤ s ≤
6

π2 ,
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FIGURE 8. Comparison of the optimal distribution φ(s) of I with the property φ′(0) 6= 0. Dashed line,
formula (3.7); solid line, formula (3.8); filled symbols, formula (3.9); open symbols, formula (3.11).

TABLE 3. The value of λ at different orders of approximation with h̄ =−1 for the case α = 1 and
φ(s)= 1+ β (s − π/2).

Calculated λ

Order of approx. β = 1/3 β = 1/2

2 1.077 1.018
4 1.058 0.980
6 1.050 0.963
8 1.050 0.957

10, 12, 14, 16, 18, 20 1.050 0.956

the tenth-order approximation of the critical axial load value reads

λc = 1− 0.5β − 0.164 021β2
+ 0.033 853 6β3

− 0.055 170 8β4
+ 0.036 145 0β5

− 0.047 231 5β6
+ 0.046 340 5β7

− 0.058 201 8β8
+ 0.067 719 3β9

− 0.086 463 9β10
+ 0.109 149β11,

which has maximum value (λc)max = 1.218 at β =−6/π2, corresponding to the
optimal distribution

φ∗(s)=
6s(π − s)

π2 . (3.9)

It is interesting that the optimal distribution functions (3.8) and (3.9) of the moment
of inertia are nearly the same, as shown in Figure 8. Note that the optimal distribution
functions (3.7), (3.8) and (3.9) of I are zero at the ends, which hardly occurs in
practice. So, from a practical point of view, the optimal distribution (3.4) and (3.5)
of the moment of inertia with the property φ′(0)= 0 and φ(0) > 0 at the two ends
might be more useful.

Keller [23] considered the shape of the strongest column by means of the linear
buckling equation. For given volume V and length l of a beam whose cross sections
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FIGURE 9. Comparison of the beam displacement at different orders of approximation when α = 1 and
φ(s)= 1+ β(s − π/2) with h̄ =−1. Solid line, tenth-order approximation when β = 1/3; dashed line,
tenth-order approximation when β = 1/2; filled circles, 15th-order approximation when β = 1/3; open
circles, 15th-order approximation when β = 1/2.

are similar, Keller [23] obtained the optimal shape of the cross section of a beam,
whose area is defined by

A(s)=
4V

3l
sin2 t, s = t −

1
2

sin(2t), t ∈ [0, π ]. (3.10)

As pointed out by Clausen [10] and Keller [23], for given V and l, this kind of beam
can increase the critical buckling load by one third over that of a uniform one. Unlike
Keller [23], we give the optimal distribution φ(s) of I for given I0, the average
moment of inertia, without the assumption that all cross sections are similar. Our
result indicates that, for given average moment of inertia, a beam with the optimal
distribution of I can increase the critical buckling load by about 22% compared to a
uniform beam with the same average moment of inertia. Note that beams with the
same average moment of inertia might have different volume V , so our results cannot
be directly compared to those of Keller [23].

Keller [23] assumed that the shape of all cross sections is similar and that I (s)∼
A2(s). Thus, for Keller’s strongest beam, φ(s)= µA2(s), where µ is a constant. On
substituting (3.10) and the expression φ(s)= µA2(s) into (1.4), we have µ= 5/8.
Thus, the distribution of moment of inertia of Keller’s strongest beam is given by

φ∗(s)= 1.6 sin4(t), s = t −
1
2

sin(2t), t ∈ [0, π ]. (3.11)

It is interesting that, as shown in Figure 8, the above optimal distribution of moment
of inertia of Keller’s strongest beam is rather close to our optimal distributions (3.7),
(3.8) and (3.9) of I . This analysis indicates that our results are consistent with those
of Keller for the strongest column. Thus, for the sake of simplicity, the distribution of
I of the strongest beam (with I = 0 at two ends) can be approximately expressed by a
very simple formula

I (ξ)≈
π

2
sin
(
πξ

l

)
.
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FIGURE 10. The critical axial load value λc versus β in the case of φ(s)= 1+ β(s − π/2) and κ = 1.
Solid line, tenth-order approximation (3.12); circles, 15th-order approximation (3.13).

Finally, it should be emphasized that the optimal symmetrical distribution of
moment of inertia can be found by means of the HAM. This is an advantage of
the HAM over numerical techniques. It also illustrates the potential of the HAM
for nonlinear eigenvalue problems governed by differential equations with variable
coefficients.

3.2. Results for asymmetrical distribution of I For simplicity, let us further
consider the asymmetrical distribution φ(s)= 1+ β(s − π/2) of the moment of
inertia. In a similar way, it is found by plotting the curves λ∼ h̄ at the tenth-order
of approximation that the series of λ is convergent when −5/4≤ h̄ ≤−1/4 for all
possible values of α and β. For example, when α = 1 and β = 1/3 or β = 1/2, the
series solution of λ with h̄ =−1 converges to 1.050 and 0.956, respectively, as shown
in Table 3. It is also found that, as long as the series of λ converges, the corresponding
series of θ(s) also converges, as shown in Figure 9. So we simply set h̄ =−1 here.

Physically, due to the asymmetrical distribution of I , the displacement u of the
beam is also asymmetrical, as shown in Figure 9. Mathematically, the expression
for θ(s) becomes much more complicated. For example, the first- and second-order
approximations of θ(s) for φ(s)= 1+ β(s − π/2) are

θ(s) ≈ α

(
1−

βs

4

)
cos(s)+

αβ

4

(
1− πs + s2

)
sin(s),

θ(s) ≈ α

[
1−

sβ

4
−
π

16
β2s(1− s2)+

β2

32
s2
(

3− π2
− s2

)]
cos(s)

+
αβ

4

[
1+

πβ

4
−

(
π +

3β
4
+
π2β

4

)
s + (1+ πβ)s2

−
3
4
βs3

]
sin(s),
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respectively. It should be emphasized that our analytic approach is valid for a beam of
arbitrary variable cross section.

As mentioned above, the critical value λc of the axial load parameter λ given by
α = 0 has an important physical meaning. At the tenth-order approximation, λc reads

λc ≈ λ̃
[10]
c ≡ 1− 0.429 350β2

− 0.219 498β4
− 0.231 919β6

− 0.312 573β8

− 0.478 608β10, (3.12)

which agrees well with the 15th-order approximation

λc ≈ λ̃
[15]
c ≡ λ̃[10]

c − 0.793 727β12
− 1.390 927β14

− 2.538 460β16, (3.13)

as shown in Figure 10. Note that the critical value λc has its maximum value λc = 1
at β = 0, corresponding to a beam with uniform cross section. It is found that this
conclusion is valid in general. So, a uniform beam is safer than any beam with
asymmetrical distribution of moment of inertia. Thus, a beam under axial load with
asymmetrical distribution of moment of inertia should be avoided in practice.

4. Conclusion and discussion

A general analytic approach is proposed for nonlinear eigenvalue problems
governed by nonlinear differential equations with variable coefficients. This approach
is based on the homotopy analysis method for strongly nonlinear problems. As an
example, a beam with arbitrary variable cross section acted on by a compressive
axial load is used to show its validity and effectiveness. Mathematically, by means
of the HAM, the original nonlinear buckling equation with variable coefficients is
transformed into an infinite number of linear ODEs with constant coefficients. This
greatly simplifies the solution of the original nonlinear problem. Besides, unlike
perturbation techniques, such a transformation does not need any small physical
parameters. More importantly, unlike all other analytic techniques, this approach
introduces the so-called convergence-control parameter h̄, which is an auxiliary
parameter without physical meaning, to ensure the convergence of solution series so
that we can always get sufficiently accurate approximations.

Physically, for arbitrary distributions of the moment of inertia, the large deflection
of a beam under axial load with arbitrary variable cross section is obtained by the
HAM. Different types of distributions of I are investigated. It is found that a beam
under axial load with symmetric olive-shaped distribution of moment of inertia is
better than a uniform beam, and a uniform beam is better than a beam with symmetrical
dumbbell-shaped or asymmetrical distribution of I . Besides, it is found that the
influence of small high-frequency terms in the distribution of moment of inertia on
the critical buckling load can be neglected, and therefore the small inaccuracy of I due
to machining precision can be neglected in practice. Note that our analytic approach is
valid for a beam under axial load with arbitrary variable cross section, and provides a
way to find the optimal distribution of moment of inertia. Unlike Keller [23], we search
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for the optimal distribution of moment of inertia for given average moment of inertia.
Furthermore the cross section shapes need not be similar. For the distribution with
the property φ′(0) 6= 0, it is found that the optimal distribution of I is approximately
expressed by a very simple formula

φ∗(ξ)=
π

2
sin
(
πξ

l

)
, 0≤ ξ ≤ l,

which can increase the critical buckling load by about 22% over that of a uniform
beam with the same average moment of inertia. This conclusion is consistent with
Keller’s strongest column [23] for a given volume of beam. However, at the two ends,
the moment of inertia of such a beam equals zero, and thus it is hardly used in practice.
For the distribution with the property φ′(0)= 0, it is found that the optimal distribution
of I is approximately expressed by

φ∗(ξ)= 1− 0.6121 cos
(

2πξ
l

)
− 0.1957 cos

(
4πξ

l

)
, 0≤ ξ ≤ l,

which can increase the critical buckling load by about 21% over that of a uniform beam
with the same average moment of inertia. The moments of inertia of such a beam at
the two ends are not zero, and thus it is more useful in practice, although its critical
buckling load is about 1% less than the strongest beam with I = 0 at two ends.

Finally, it should be emphasized that the proposed analytic approach is
mathematically rather general, and thus can be applied to solve other linear/nonlinear
differential equations with variable coefficients [8–18, 20–25, 36, 38, 42, 43, 45, 50].
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Appendix A. Recurrence formulas of Sn(s)

Define

Sn =
1
n!

dn sin[qφ(s; q)]
dqn

∣∣∣∣
q=0

, An =
1
n!

dneiqφ(s;q)

dqn

∣∣∣∣∣
q=0

,

Bn =
1
n!

dne−iqφ(s;q)

dqn

∣∣∣∣∣
q=0

,
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where i =
√
−1. Then, using Euler’s formula sin x = (ei x

− e−i x )/2i and the
definition (2.10) of θm(s), one can deduce the recurrence formulae

A0 = 1, An = i
n−1∑
m=0

(
1−

m

n

)
Amθn−m−1, n ≥ 1,

B0 = 1, Bn =−i
n−1∑
m=0

(
1−

m

n

)
Bmθn−m−1, n ≥ 1,

Sn =
(An − Bn)

2i
, n ≥ 0.

For details, refer to Liao [33].
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