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Abstract

We give an analytic solution at the 10th order of approximation for the steady-state laminar viscous #ows past
a sphere in a uniform stream governed by the exact, fully non-linear Navier}Stokes equations. A new kind of analytic
technique, namely the homotopy analysis method, is applied, by means of which Whitehead's paradox can be easily
avoided and reasonably explained. Di!erent from all previous perturbation approximations, our analytic approxima-
tions are valid in the whole "eld of #ow, because we use the same approximations to express the #ows near and far from
the sphere. Our drag coe$cient formula at the 10th order of approximation agrees better with experimental data in
a region of Reynolds number R

�
(30, which is considerably larger than that (R

�
(5) of all previous theoretical

ones. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider the steady-state laminar viscous #ow
past a sphere in a uniform stream with velocity
;
�

at in"nity. Assume that the #uid is incompress-
ible. Let a, d denote the radius and diameter of the
sphere, respectively. In a spherical coordinate system
whose origin is taken at the center of the sphere, the
#ow is governed by the Navier}Stokes equations:

u
�

�u
�

�r
#

u�
r

�u
�

��
!

u��
r

"

!

�p

�r
#

1

R
�
���u

�
!

2u
�

r�
!

2

r�
�u�
��

!

2u� cot �
r� �,

(1.1)

u
�

�u�
�r

#

u�
r

�u�
��

#

u
�
u�
r

"

!

1

r

�p

��
#

1

R
�
���u�#

2

r�

�u
�

��
!

u�
r� sin� ��, (1.2)

and the continuation equation
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where u
�
denotes the radial velocity, u� the tangen-

tial velocity, p the pressure, R
�
"a;

�
/� the

Reynolds number, � the kinematic viscosity, respec-
tively. All variables in the above equations are non-
dimensional. On the surface of the sphere we have
the non-slip conditions

u
�
"u�"0, r"1. (1.4)
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At in"nity, there exists the uniform stream condition
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(u
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cos �!u� sin �)"1. (1.5)

Like Proudman and Pearson [11], we rewrite the
above problem in a simpler way. There exists such
a stream-function �(r, �) satisfying
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that (1.3) is automatically satis"ed. As a result, (1.1)
and (1.2) can combine to yield
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with non-slip conditions on the surface

�(1, �)"�
�
(1, �)"0, (1.8)

and the uniform-stream condition at in"nity
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where the linear operators D� and D� are de"ned
by
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respectively.
The non-dimensional drag coe$cient C

�
is de-

"ned by

C
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, (1.12)

where D denotes the drag of the sphere. C
�
only

depends upon the Reynolds number R
�
. It has

important physical and mathematical meanings to
have a satisfactory analytic drag formula. However,
this famous classical problem seems rather di$cult,
even today when the supercomputer has become
a powerful calculation tool. The story detailing the
attack of this problem is long. In 1851, neglecting
completely the non-linear (inertia) term in the

Navier}Stokes equations, Stokes [13] solved a set
of linear partial di!erential equations (PDE), cur-
rently called Stokes equations, and gained his well-
known drag formula
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where the Reynolds number R
�

is de"ned by
R

�
"d;

�
/�"2R

�
. As shown in Fig. 1, only in

a small region R
�
(0.2, (1.13) agrees well with the

experimental data given by Maxworth [8], Ocken-
don and Evans [9], Roos et al. [12] and Wiesel-
sberger [18,19]. It indicates that the non-linear
terms of the Navier}Stokes equations have an im-
portant role and therefore had to be considered. In
1889, Whitehead [17] assumed an expansion of the
stream function in power series of the Reynolds
number and then applied straight forward per-
turbation techniques to this problem. However, he
found that his second-order approximation re-
mains "nite at in"nity in a way incompatible with
the uniform-stream condition (1.9). Besides, his
higher-order approximations to the velocity distri-
bution diverge at in"nity. This is currently referred
to as `Whitehead paradoxa in textbooks. The para-
dox reveals that it is impossible to apply straight-
forward perturbation techniques to gain a valid
high-order analytic approximation for the viscous
#ow past a sphere. In 1910, to avoid the Whitehead
paradox, Oseen [10] linearized the inertia term of
the Navier}Stokes equations by using the velocity
"eld far from the sphere. He obtained a set of linear
PDEs, currently called Oseen equation in textbooks.
He considered the "rst-term approximation of this
set of PDEs and gave the famous drag formula
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In 1929, following Oseen's [10] approach, Gold-
stein [2] considered more terms in the solution of
the Oseen equation and gained the drag formula
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Fig. 1. Comparisons of the previous theoretical drag formulas
(solid line) with experimental data (symbols) given by Roos et al.
[12] and Wieselsberger [18,19]).

However, both Oseen's [10] drag formula (1.14)
and Goldstein's [2] drag formula (1.15) are valid
only for small Reynolds number, as shown in Fig. 1.
In 1970, Van Dyke [14,15] extended the above
drag formula to 24 terms by computer, a new
powerful calculation tool in the 20th century, and
found that its convergence is limited by a simple
pole at R

�
"!4.18172. Using Euler transforma-

tion, Van Dyke [14] enlarged its convergence re-
gion to in"nity. However, the agreement between
Van Dyke's [14] drag formula (given by Euler
transformation) with experimental data is not satis-
factory for R

�
'5, as shown in Fig. 1. However,

this disagreement is logically reasonable, because
the set of linear Oseen equations is only a kind of
approximation of the non-linear Navier}Stokes
equations. Thus, in order to gain a better drag
formula, the fully non-linear Navier}Stokes equa-
tions had to be considered. To the best of our
knowledge, only a few researchers directly attacked
the exact Navier}Stokes equations. In 1957, Proud-
man and Pearson [11] applied `matching per-
turbation techniquesa to give a 2nd-order matched
expression of outer and inner solutions. Both of
their inner and outer approximations are governed
by the exact Navier}Stokes equations. However,
their inner approximations do not satisfy the

uniform-stream condition (1.9) at in"nity, while
their outer approximations do not obey the non-
slip condition (1.8) on the surface of the sphere.
Thus, neither their inner approximations nor their
outer approximations are valid in the whole "eld of
#ow. They determined unknown coe$cients by
matching the inner and outer approximations. In
this way, Proudman and Pearson [11] proposed
such a second-order drag formula
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As shown in Fig. 1, this formula is valid only in
the region R

�
(1, and seems even worse than

the Oseen formula when R
�
'3. In 1969, follow-

ing Proudman and Pearson's [11] approach,
Chester and Breach [1] gave the 3rd-order drag
formula
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where � is the Euler constant. However, it is a little
ba%ing that, when R

�
'2, the above 3rd-order

drag formula is even worse than the 2nd-order
formula (1.16), as shown in Fig. 1. Chester and
Breach's [1] work clearly indicates that it seems
meaningless to exactly follow Proudman and Pear-
son's [11] approach to get higher-order approxi-
mations. Notice that when R

�
'5 there is a large

disagreement between all of above-mentioned the-
oretical drag formulae and experimental data. So,
as pointed out by White [16] in 1991, `the idea of
using creeping #ow to expand into the high
Reynolds number region has not been successfula.

All the above-mentioned perturbation ap-
proaches are based on the assumption that the
Reynolds number R

�
is su$ciently small. So, it is

logically reasonable and understandable that none
of the above perturbation drag formulae is valid for
a large Reynolds number. An obvious shortcoming
of the perturbation technique is that it is too
strongly dependent upon small parameter (per-
turbation quantity) and thus, in general, can only
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be applied to weakly non-linear problems.
Notice that for large Reynolds number even
the linear Oseen equation can give much better
results than the 2nd and 3rd-order perturbation
drag formulae (1.16) and (1.17). This is mainly be-
cause the Oseen equation has nothing to do with
any small parameters. This might be one perfect
witness that it is necessary to develop some
new analytic techniques independent of small
parameters.

Using the homotopy, a fundamental concept in
topology, Liao [3}5] proposed such a kind of new
analytic method for non-linear problems, namely
the homotopy analysis method (HAM). Essentially
di!erent from perturbation techniques, the validity
of the homotopy analysis method does not depend
upon whether non-linear problems under consid-
eration contain small parameters or not. Liao [3]
successfully applied the homotopy analysis method
to the Blasius' viscous #ows. Recently, Liao [4]
further applied it to gain, for the "rst time (to the
best of our knowledge), an explicit analytic solution
of the laminar viscous #ow over a semi-in"nite #at
plate governed by the Falkner}Skan equation. Dif-
ferent from perturbation approximations, Liao's
[4] solution for Falkner}Skan viscous #ows is valid
in the whole "eld of #ow. Liao [4] showed that his
50th-order approximation converges to the numer-
ical results of the Falkner}Skan equation quite
well. Besides, the basic ideas of the homotopy anal-
ysis method have been successfully applied to pro-
pose a simple approach to enlarge the convergence
region of perturbation approximations [6], and
also a numerical method for strong non-linear
PDEs, namely `the general boundary element
methoda [7]. All of these verify the validity of the
homotopy analysis method. Noticing that the
laminar viscous #ow over a semi-in"nite #at plate
has a lot of the same physical characteristics as the
viscous #ow past a sphere in a uniform stream, we
further apply the homotopy analysis method to
attack this di$cult classical problem. We give in
this paper the 10th-order analytic approximation,
which is valid in the whole "eld of #ows. Our
10th-order drag formula agrees well with experi-
mental data in a considerably larger region of
Reynolds number than that of all the above-men-
tioned theoretical ones.

2. Mathematical derivations

Following Proudman and Pearson [11], we in-
troduce the transformation

�"cos �, 0)�)2�, (2.1)
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Then, due to (1.10) and (1.11), the linear operators
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The non-slip boundary conditions are
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and the uniform stream condition becomes
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where �3[!1, 1], r3[1,#R) and �
�
denotes the

"rst-order derivatives of � with respect to r.
De"ning a non-linear operator (Navier}Stokes

operator)
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we "rst of all construct a family of partial di!eren-
tial equations in an embedding parameter q3[0,1]
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and a non-zero auxiliary parameter � as follows:

(1!q)L[	(r,�, q)!�
�
(r, �)]"q�A	(r,�, q),

r*1, !1)�)1, 0)q)1, �O0, (2.9)

with the corresponding boundary conditions
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!1)�)1, 0)q)1, (2.11)

where the real function �
�
(r, �), which satis"es the

non-slip boundary conditions (2.6) and the uniform
stream condition (2.7), is an initial guess approxi-
mation of �(r,�); L is an auxiliary linear operator,
� a non-zero auxiliary parameter, 	 a real function
of four independent variables r,�, q and � (for the
sake of simplicity, we do not explicitly express the
relationship between 	 and �). It should be empha-
sized that we have great freedom to select the initial
guess approximation �

�
(r, �), the auxiliary linear

operatorL and the value of the non-zero auxiliary
parameter �. This kind of freedom is the corner-
stone of the validity of the homotopy analysis
method.

When q"0 and q"1, we have by (2.9)}(2.11)
that

	(r,�, 0)"�
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	(r,�, 1)"�(r,�), (2.13)

respectively. Thus, the process of q increasing from
zero to one is just the process of 	 varying from
�
�
(r,�) to �(r,�). This is exactly the idea of the

homotopy, and this kind of process is called defor-
mation in topology. So, (2.9)}(2.11) are called the
zeroth-order deformation equations. Obviously,
(2.12) and (2.13) give a relationship between the
initial guess �

�
(r, �) and the solution �(r,�). A nu-

merical technique, namely the continuation
method, is based on it. However, this kind of rela-
tionship is indirect and therefore is useless for our
analytic purpose. Thus, a direct relationship be-
tween �

�
(r,�) and �(r,�) must be given.

Assume that the deformation 	(r,�, q) is smooth
enough about q so that all of the so-called mth-
order deformation derivatives
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exist. Then, by the Taylor series, we have
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we have by (2.12) that
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Assuming that the initial guess approximation
�
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(r,�), the auxiliary linear operator L and the

auxiliary non-zero parameter � are so properly
selected that the above Taylor series is convergent
at q"1, we further have by (2.13) that
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The above expression gives a direct relationship
between the initial guess approximation �

�
(r, �)

and the solution �(r,�) of (2.5)}(2.7) through the
unknown terms �

�
(r,�) (m"1, 2, 3,2), whose

governing equations will be given below.
Di!erentiating the zeroth-order deformation

equations (2.9)}(2.11) m times with respect to q,
then setting q"0, and "nally dividing it by m!, we
obtain the so-called mth-order deformation equa-
tions
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and
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and the coe$cient 

�
is de"ned by
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0 when m)1,

1 when m*2.
(2.23)

It should be emphasized that all of the foregoing
mth-order deformation equations (2.19)}(2.21) are
linear partial di!erential equations. Thus, through
(2.18), our approach transfers the original non-lin-
ear equations (2.5)}(2.7) into an inxnite sequence of
linear sub-problems. Notice that perturbation tech-
niques use small parameters to ful"ll such a kind of
transformation. However, our approach does not
need the so-called small parameter assumption at
all. This is the essential reason why our results can
be valid for large Reynolds number.

The essence to give analytic approximations of
(2.5)}(2.7) is to express the solution �(r,�) by a com-
plete set of functions (base functions), which should
be consistent with boundary conditions (2.6) and
(2.7) and also with the physical natures of the prob-
lem. Besides, to ensure the validity of the proposed
approach, it is important to make the series (2.18)
convergent. Obviously, the convergence of the
series (2.18) depends upon the initial guess �

�
(r,�),

the auxiliary linear operator L and the auxiliary
non-zero parameter �. Fortunately, as mentioned
above, the homotopy analysis method provides us
with great freedom to select all of them. Thus, we
can select a proper set of base functions to express
the solution, and at the same time to ensure the
convergence of (2.18). It is also this kind of freedom

that provides us with the possibility to avoid the
Whitehead [17] paradox in a rather simple way.

The initial guess �
�
(r, �) must satisfy (2.6) and

(2.7). The simplest one is the Stokes solution
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4�2r�!3r#
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Notice that (2.5) contains the linear operator D�.
So, it seems natural, although it might be not the
best, to use

L"H(r, �)D�"H(r,�)�
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as our auxiliary linear operator, where H(r,�) is
a non-zero real function. In this way, H(r,�) com-
pletely determines L so that its selection becomes
very important.

Considering the boundary conditions (2.6) and
(2.7), the form of the initial guess (2.24), and besides
the symmetry of the #ow, it is reasonable to assume
that �(r,�) can be expressed by trigonometric func-
tions (base functions) in such a form that

�(r,�)"(1!��)
��
�
	��

F
	
(r)�	, (2.26)

where F
	
(r) are unknown real functions and

�"cos �. To ensure this, we should select a proper
auxiliary function H(r,�) so that each solution
�
�
(r,�) of (2.19)}(2.21) exists and can be expressed

in the form

�
�
(r,�)"(1!��)
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f
��	

(r)�	, (2.27)

where N might be in"nity and f
��	

(r) are unknown
real functions.

The above-mentioned approach is valid, only if
both H(r, �) and � are so properly selected that

(a) there exist solutions for all of the mth-order
(m*1) deformation equations (2.19)}(2.21);

(b) the series (2.18) converges to the solution of
(2.5)}(2.7).

If (a) holds, one can get �
�
(r,�),�

�
(r,�),

�
�
(r,�),2, one after the other in order by solving
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(2.19)}(2.22) subsequently. Obviously, the simplest
form of H(r,�) is H(r,�)"1, corresponding to
L"D�. However, when H(r,�)"1, we gain by
solving the "rst-order (m"1) deformation equa-
tions (2.19) and (2.20) that

�
�
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3

32
�R

��2r�!3r#1!

1

r
#

1

r��
�(1!��)�, (2.28)

which, unfortunately, does not satisfy the boundary
condition (2.21) at in"nity. Notice that, when
�"!1, (2.28) becomes exactly Whitehead's
[17] second-order approximation, whose "rst-or-
der approximation is the same as our initial
approximation (2.24), i.e. Stokes solution. There-
fore, (2.19)}(2.21) have no solution if we select
H(r,�)"1. Fortunately, for the homotopy analysis
method, H(r,�)"1 is just one among an inxnite
number of possibilities, because we have great free-
dom to select or dexne other auxiliary linear oper-
ators L by setting a new H(r,�) better than
H(r,�)"1. For example, we can simply select or
dexne

H(r,�)"r�, (2.29)

where � is a real number. We "nd that, when �)0,
(2.19)}(2.20) have no solutions satisfying the uni-
form-stream condition (2.21) at in"nity. Thus, all
non-positive values of � will lead to the Whitehead
paradox. This might give a new kind of explanation
of the Whitehead paradox. However, it is very
interesting that, when �'0, there exists the solu-
tion �

�
(r, �) for all of the mth-order (m*1) defor-

mation equations (2.19)}(2.21), which can be simply
expressed by
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where f
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(r) (0)k)m) are unknown real func-
tions. Substituting the above model expression into
(2.19)}(2.21), we deduce the governing equations
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with the boundary conditions on the surface of the
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������	��
(r)

#

������	�
�

��������	�����

[ f 
��
(r)¹

������	��
(r)

!A
��
(r)S

������	��
(r)]� (2.35)

where

A
��	

(r)"f �
��	

(r)#
(k#1)(k#2)

r�

�[�
��	��

f
��	��

(r)!f
��	

(r)], (2.36)

B
��	

(r)"f ��
��	

(r)#
2(k#1)(k#2)

r�

�[�
��	��

f �
��	��

(r)!f �
��	

(r)]

!

4(k#1)(k#2)

r�

�[�
��	��

f 
��	��

(r)!f 
��	

(r)]

!

(k�!1)(k#2)(k#4)

r�
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�[�
��	��

f
��	��

(r)!f
��	

(r)]

#

(k#1)(k#2)(k#3)(k#4)

r�

�[�
��	��

f
��	��

(r)!�
��	��

f
��	��

(r)],

(2.37)

C
��	

(r)"2����	��

df
��	��

(r)

dr
#

S
��	

(r)

r �,
0)k)m#1, (2.38)

S
��	

(r)"(k#1)[�
��	��

f
��	��

(r)!�
��	��

f
��	��

(r)],

0)k)m#1, (2.39)

¹
��	

(r)"(k#1)[�
��	��

A
��	��

(r)

!�
��	��

A
��	��

(r)],

0)k)m#1, (2.40)

and the coe$cient �
��	

is de"ned by

�
��	

"�
1 0)k)m,

0 otherwise.
(2.41)

The detailed mathematical derivations are given in
Appendix A. Notice that f ��

��	
(r) in (2.31) denotes the

4th-order derivative of f
��	

(r) with respect to r.
Actually, (2.31) is a well-known ordinary di!erential
equation, called Euler equation, which is much
easier to solve than the partial di!erential equation
(2.19). The corresponding homogeneous Euler
equation

r�fM ��
��	

!(k#1)(k#2)[2r�fM �
��	

!4rfM 
��	

!(k!1)(k#4) fM
��	

]"0, (2.42)

has the general solution

fM
��	

(r)"C
�
r�	��#C

�
r�	��#C

�
r	��#C

�
r	��,

0)k)m, (2.43)

where C
�
,C

�
,C

�
,C

�
are integral coe$cients. The

general solution of (2.31) is

f
��	

(r)"C
�
r�	��#C

�
r�	��#C

�
r	��

#C
�
r	��#fH

��	
(r), (2.44)

where fH
��	

(r) is one of its special solutions. If

lim
����

r��fH
��	

(r)"0, m*1, 0)k)m, (2.45)

we have by (2.33) that C
�
"C

�
"0. By (2.32), we

further have

C
�
"!�

�
[ f H�

��	
(1)#(k#1) f H

��	
(1)], (2.46)

C
�
"�

�
[ f H�

��	
(1)#(k!1) f H

��	
(1)]. (2.47)

So, if (2.45) holds, the integral coe$cients
C

�
,C

�
,C

�
,C

�
can be uniquely determined so that

the solution of (2.31)}(2.33) exists. Thus, solving the
set of linear ordinary di!erential equations
(2.31)}(2.33) one after the other in order

f
���

(r), f
�����

(r), f
�����

(r),2, f
���

(r), f
���

(r), f
���

(r),

where m"1, 2, 3,2, we can obtain all of these
solutions, subsequently. Our symbolic computa-
tions verify that (2.45) indeed holds if �'0.

Although for any �'0 there exist solutions to
all of the mth-order deformation equations
(2.19)}(2.21), the validity of the current approach
still depends upon whether or not the series (2.18)
converges to the solution of (2.5)}(2.7). Currently,
Liao [5] proved for rather general non-linear
PDEs that any in"nite series given by the
homotopy analysis method is de"nitely one of the
solutions of the considered non-linear problems as
long as it is convergent. Analogously, we can prove
such a theorem that

Convergence Theorem. Let L"H(r,�)D� denote
the auxiliary linear operator, where D� is dexned by
(2.4) and H(r, �) is a non-zero real function. Assume
that H(r, �) is so properly selected that (2.31)}(2.33)
have solutions for all m*1. Then, if the correspond-
ing series (2.18) is convergent, it must converge to the
solution of the original equations (2.5)}(2.7).

Considering the length of this paper, we
do not repeat the proof here. For details, please
refer to Liao [5]. Due to this theorem, we only
need to focus on ensuring the convergence of
the series (2.18) by selecting proper values of �
and �.
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3. Drag coe7cient CD

Following Chester and Breach [1], we write the
drag in the form

D"2���a;
��

�

�
�!p cos �#

���
�r� ��

���

sin �d�,

(3.1)

where the pressure p is given by

p"!�
�

�

���
�r� �

���

d�
sin �

"!�
�

�

���
�r� �

���

d�
(1!��)

.

(3.2)

According to (1.12), the drag coe$cient is

C
�

"

4

R
�
�

��

��
�!p�#

���
�r� ��

���

d�. (3.3)

By (2.30), the mth-order approximation of � can be
rewritten as

�(r,�)+
�
�
	��

(1!��)
	
�
���

f
	��
(r)��

"(1!��)
�
�
���

��
�
�
	��

f
	��
(r). (3.4)

Substituting (3.4) into (3.2) gives

p"!

�
�
���

(1!����)

(i#1)

�
�
	��

f �
���

(1). (3.5)

Substituting (3.4) and (3.5) into (3.3), we have the
mth-order drag coe$cient

C
�

"

4

R
�

�
�
���

[1#(!1)�]

(i#1)(i#3)

�
�
	��

[2f �
	��
(1)!f �

	��
(1)]. (3.6)

Notice that (3.6) is valid for any H(r,�)"r� when
�'0.

4. High-order approximate solutions

The mathematical expressions and the conver-
gence theorem given in the above sections hold for
any �'0 and �O0. As pointed out in Section 2, in

case of

L"r��
��
�r�

#

(1!��)

r�
��
���� ,

(2.19)}(2.21) have solutions if and only if �'0. So,
the value of � is important for the solution of
(2.19)}(2.21). However, the convergence of (2.18) is
determined by both � and �. Thus, one can "rst
select a reasonable value �'0 to ensure that
(2.31)}(2.33) have solutions, and then "nd a proper
value of � to enforce (2.18) convergent.

For the sake of simplicity, we set �"1 in all the
following parts of this paper. Therefore, we vir-
tually use

L"r�
��
�r�

#

(1!��)

r�
��
����

�

as our auxiliary linear operator. Noticing that
Stokes solution (2.24) is used as our initial guess
approximation, we have by (2.30) that

f
���

(r)"�
�
(2r�!3r#1/r). (4.1)

Then, solving the set of ordinary di!erential equa-
tions (2.31)}(2.33) one after the other in order by
means of MATHEMATICA (version 3.0), we get
the corresponding solutions at 10th-order approxi-
mation

f
���

(r)"�R
��

3

16
r!

9

40�ln r#
19

28�
!

1

280�9 ln r#
39

4 �
1

r��, (4.2)

f
���

(r)"0, (4.3)

f
���

(r)"��R�
���

411

4480
#

3 ln r

32 �!

3

80
r

#

3

512

1

r�
#

1

1792

1

r�

#�
873,401

131,712,000
!

1931 ln r

329,280

!

3 ln� r

392 �
1

r�
!�

8,862,851

131,712,000

!

32,643 ln r

392,000
!

243 ln� r

2800 �
1

r�, (4.4)
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f
���

(r)"�R
��

3

16
r!

9

40�ln r#
19

28�
!

1

280�9 ln r#
39

4 �
1

r��, (4.5)

f
���

(r)"��R�
���

69

4480
!

3 ln r

160 �
!�

5,784,539

164,640,000
!

3 ln r

80 �r

#�
15,997,487

658,560,000
#

603 ln r

19,600

#

27 ln�r

1120 �
1

r
!

29

3584

1

r�

#�
2,343,919

658,560,000
#

3517 ln r

823,200

#

3 ln� r

1960 �
1

r�
!

1

37,632

1

r��, (4.6)

and so on. All of them are valid in the whole "eld of
#ow. Unfortunately, unlike our previous publica-
tions [4,5], we fail to give higher-order approxima-
tions, because, due to the non-linearity of Q

��	
in

(2.31), the terms of f
��	

(r) increase almost exponenti-
ally. Thus, when solving the 11th-order approxima-
tion, the symbolic computational software
MATHEMATICA (version 3.0) exits because of
`out of memorya.

Notice that, due to (4.2)}(4.6),

�
�
(r,�)"(1!��)[��f

���
(r)#�f

���
(r)#f

���
(r)]

"sin� �[ f
���

(r) cos� �#f
���

(r) cos �

#f
���

(r)]

contains both the "rst-order term O(R
�
) and the

second-order term O(R�
�
), if we consider R

�
as

a small parameter. In general, all solutions of
�
�
(r,�) (m*2) have such a nature. This clearly

indicates that the approximations given by the pro-
posed homotopy analysis method are in essence
rather di!erent from perturbation ones. Therefore,
our approach indeed contains something essential-
ly di!erent.

By (3.6), we obtain
the 1st-order drag formula:

C
�

"

24

R
�

, (4.7)

the 2nd-order drag formula:

C
�

"

24

R
�
�1#

2,307,989

493,920,000
(�R

�
)��, (4.8)

the 3rd-order drag formula:

C
�
"

24

R
�
�1#�

2,307,989

164,640,000
#

10,781

7,840,000
��(�R

�
)��,
(4.9)

the 4th-order drag formula:

C
�

"

24

R
�
�1#�

2,307,989

82,320,000
#

10,781

1,960,000
�

#

20,569,489

52,157,952,000
���(�R

�
)�.

!

33,257,111,326,660,589,843

921,907,325,892,833,280,000,000
(�R

�
)��,
(4.10)

the 5th-order drag formula:

C
�

"

24

R
�

[1#(4.6727992387�10��

#1.37512755102�10���

#1.9718459229�10����

#5.0611744367�10����)(�R
�
)�

!(1.8037122817�10��

#1.8263042456�10���)(�R
�
)�], (4.11)

the 6th-order drag formula:

C
�

"

24

R
�

[1#(7.0091988581�10��

#2.7502551020�10���

#5.9155377688�10����

#3.0367046620�10����

!7.6656497427�10����)(�R
�
)�
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!(5.4111368452�10��

#1.0957825474�10���

!2.9697166816�10����)(�R
�
)�

#3.4592786538�10��(�R
�
)�], (4.12)

the 7th-order drag formula:

C
�

"

24

R
�

[1#(9.8128784014�10��

#4.8129464286�10���

#1.3802921461�10����

#1.0628466317�10����

!5.3659548199�10����

!1.2116889029�10����)(�R
�
)�

!(1.2625985972�10��

#3.8352389157�10���

!2.0788016771�10����

!2.2155334561�10����)(�R
�
)�

#(2.4214950576�10��

!1.3363946031�10���)(�R
�
)�], (4.13)

the 8th-order drag formula:

C
�

"

24

R
�

[1#(1.3083837868�10��

#7.7007142857�10���

#2.7605842921�10����

#2.8342576846�10����

!2.1463819280�10����

!9.6935112232�10����

!1.3201756733�10����)(�R
�
)�

!(2.5251971944�10��

#1.0227303775�10���

!8.3152067084�10����

#1.7724267649�10����

!8.4707438362�10����)(�R
�
)�

#(9.6859802306�10��

!1.0691156825�10���

#1.0050877501�10����)(�R
�
)�

!2.902542179�10��(�R
�
)�], (4.14)

the 9th-order drag formula:

C
�

"

24

R
�

[1#(1.6822077259�10��

#1.1551071429�10���

#4.9690517258�10����

#6.3770797902�10����

!6.4391457839�10����

!4.3620800504�10����

!1.1881581060�10����

!1.2897570146�10����)(�R
�
)�

!(4.5453549500�10��

#2.3011433494�10���

!2.4945620125�10����

!7.9759204420�10����

!7.6236694526�10����

#1.9439178298�10����)(�R
�
)�

#(2.9057940692�10��

!4.8110205711�10���

!9.0457897508�10����

!3.472100933�10����)(�R
�
)�

!(2.6122879611�10��

!3.6188982494�10���)(�R
�
)�]. (4.15)

In fact, all of our drag formulae can be expressed in
a general form

C
�

"

24

R
�
�1#

�����
�
���

�
�

���

���
�

R��
�

��, (4.16)

where ���
�

are constant coe$cients and the integer
function �(m, n) is de"ned as `taking the integer
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Fig. 2. Comparison of the 10th-order HAM drag formula in
case �"!1 (dashed line), �"!1/2 (dash}dot line) and
�"!1/3 (dash}dot}dot line) with experimental data (sym-
bols).

part of (m!n)/2a. The numerical values (in the 32
decimal accuracy) of the coe$cients ���

�
of the

10th-order drag approximation are listed in Ap-
pendix B.

Similar to Liao's [3,4] previous results for
Blasius' and Falkner}Skan's viscous #ow, the con-
vergence region of the series (3.6) depends on �. It is
interesting that there always exists a region of �, in
which a series given by the homotopy analysis
method is convergent, as reported by Liao [3}5].
For Blasius' #ow, Liao's [3] solution is convergent
in a region !5.69)�)#5.69 ��2�����!1,
where �1#��(1. This region tends to in"nity as
� (�(0) tends to zero. For Falkner}Skan's #ow,
Liao's [4] 50th-order approximation converges in
the whole "eld of #ow when !1)�(0. All of
our previous publications verify that such a region
of � can be found as long as approximations at high
enough order can be gained. However, in this paper
we fail to get approximations higher than 10th-
order. Therefore, we cannot exactly determine such
a region of � for our drag coe$cient series (3.6).
What we can do is to attempt some values of � and
then to compare them with experimental data. First
of all, we set �"!1 and "nd that the 10th-order
drag formula is invalid when R

�
'5. Then, recall-

ing our previous experience in Blasius and Fal-
kner}Skan #ows, we attempt some negative values
of � closer to zero. In case of �"!1/2, the valid
region of the 10th-order drag formula increases to
R

�
(9, and in case of �"!1/3, it further in-

creases to R
�
(20, as shown in Fig. 2. Thus, the

convergence region of our drag formulae seems to
increase as �(�(0) approaches zero. In our pre-
vious applications of the homotopy analysis
method, we have gained the same qualitative result,
but in more rigorous mathematical meanings, by
giving approximations at the 50th or even higher
order. Notice that, when �"!1/3, our 10th-order
drag formula is better, in the region R

�
(20, than

all previous theoretical ones, as shown in Fig. 5.
This indicates that our approach is rather promis-
ing.

In all of our previous applications of the
homotopy analysis method, we regarded � as a con-
stant. However, this is unnecessary. Fig. 2 clearly
indicates that the value of ���, where �(0, should
be decreased as the Reynolds number R

�
increases.

Thus, one can select � as a function ofR
�
. Certainly,

there exist many such kinds of functions. In this
paper, we only consider the following two cases:

�"!�
�
exp(!R

�
/30), (4.17)

and

�"!

1

1#R
�
/4
. (4.18)

In both cases, our 10th-order drag formula agrees
well with experimental data in the region R

�
(30,

as shown in Figs. 3 and 4. The curves of drag
coe$cients at lower order of approximations are
also plotted in Figs. 3 and 4, which clearly indicate
that, the higher the order of approximation, the
better the agreement between our drag formula and
experimental data. Thus, our drag formula seems to
be convergent in a large region of Reynolds number
R

�
, although we cannot prove it rigorously right

now. This kind of tendency of convergence is very
important, especially when a rigorous mathemat-
ical proof of convergence cannot be given. Com-
parison of our 10th-order drag formula in case of
�"!1/3, �"!�

�
exp(!R

�
/30) and �"!(1#

R
�
/4)�� with the previous theoretical ones is shown
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Fig. 3. Comparison of the HAM drag formulas in case
�"!�

�
exp(!R

�
/30) at the 4th (dash line), 6th (dash}dot line),

8th (dash}dot}dot line) and 10th-order (solid line) of approxi-
mations with experimental data (symbols).

Fig. 4. Comparison of the HAM drag formulas in case
�"!(1#R

�
/4)�� at the 4th (dash line), 6th (dash}dot line),

8th (dash}dot}dot line) and 10th-order (solid line) of approxi-
mations with experimental data (symbols).

Fig. 5. Comparison of the 10th-order HAM drag formulas in
case �"!1/3 (dash}dot}dot line), �"!�

�
exp(!R

�
/30)

(dash}dot line) and �"!(1#R
�
/4)�� (dash line) with the

previous theoretical drag expressions (solid line) and experi-
mental data (symbols).

in Fig. 5. In all cases, our 10th-order drag formula
agrees well with experimental data in the region
R

�
(30, which is much larger than all previous

theoretical ones. It seems that our approach might

give a drag formula valid even at R
�
"100, if we

could get high enough approximations in case of
�"!(1#R

�
/4)��. Therefore, it seems promising

that our approach can give a much better analytic
drag formula.

5. Conclusions and discussions

In this paper we considered the analytic approxi-
mations of the steady-state viscous #ow past
a sphere, an unsolved classical problem in #uid
mechanics. As mentioned in Section 1, neither
Whitehead's (1889) direct perturbation method nor
Oseen's (1910) linear equation nor Proudman and
Pearson's (1957) matching perturbation technique
can give satisfactory drag formulae for large
Reynolds number. None of the previous theoretical
drag formulae are valid for R

�
'5, as shown in

Fig. 1. Thus, it is valuable and bene"cial to make
some new attempts to attack this famous problem.

Inspired by our previous successful applications,
we apply a new analytic method, namely the
homotopy analysis method, to this classical
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problem. By selecting a proper auxiliary linear op-
erator, we successfully transfer the exact
Navier}Stokes equations into an in"nite sequence
of linear ordinary di!erential equations, which can
be solved one after the other in order. Due to the
complexity of the considered problem and the lim-
itations of the current symbolic calculation soft-
ware MATHEMATICA (version 3.0), we gain only
10th-order approximations, which is, however, not
high enough to determine the convergence region
of our drag formula. However, when the auxiliary
parameter � is adequately selected, for example,
�"!�

�
exp(!R

�
/30) or �"!(1#R

�
/4)��, our

10th-order drag formula agrees well with experi-
mental data in R

�
(30, a region much larger than

that (R
�
(5) of all previous theoretical ones. Be-

sides, as shown in Figs. 3 and 4, the higher the order
of approximation, the better the agreement be-
tween our drag formulae and experimental data.
This strongly suggests the convergence of our ap-
proximations in a large region of Reynolds number.
Therefore, the proposed new approach seems
rather promising.

The cornerstone of our approach is the freedom
in selecting the auxiliary linear operator L, the
initial guess �

�
(r,�) and the non-zero auxiliary

parameter �. In this paper we select a special type of
auxiliary linear operator

L"r��
��
�r�

#

(1!��)

r�
��
����

�
. (5.1)

When �)0, we meet Whitehead's paradox and
fail to solve the whole set of the related PDEs.
Fortunately, thanks to the freedom of selecting
�, Whitehead's paradox can be very easily avoided
by simply setting �'0. For the sake of simpli-
city, we select �"1 in this paper. Notice that (5.1)
is only one special operator among an inxnite num-
ber of possibilities, and there might exist some
better ones. At least, there are two other possibili-
ties. One is to use the #ow in the in"nity, i.e.
�"�

�
r�(1!��), to linearize the Navier}Stokes

operator (2.8). This gives such an auxiliary linear
operator

L
�
�"D��!

R
�

r �(1!��)
�
��

#r�
�
�r�D��. (5.2)

The other is to use Stokes solution (2.24) to lin-
earize (2.8), say,

L
�
�"D��!

R
�

r �
��

�
�r

�
��

!

��
�

��
�
�r

#

3

2
��1!

1

r���D��, (5.3)

where �
�
is given by (2.24). It might be interesting

to study if better drag formulae can be gained by
using the above operators as the auxiliary linear
operator L. Secondly, in all of our previous ap-
plications, � was regarded as a constant. In this
paper, by means of setting � as a function of the
Reynolds number, such as �"!�

�
exp(!R

�
/30) or

�"!(1#R
�
/4)��, our 10th-order drag formula is

greatly improved. It is possible that some other
de"nitions of � can give even better results. Finally,
in this paper we simply use Stokes solution (2.24) as
our initial guess. This is however unnecessary, too.
One can attempt some other functions as the initial
guess �

�
(r, �), as long as they satisfy both (2.6) and

(2.7). All of these are based on the freedom of
selecting the auxiliary linear operator, the initial
guess and the auxiliary non-zero parameter �, pro-
vided by our approach. This kind of freedom pro-
vides us not only with large #exibility to apply the
homotopy analysis method to many unsolved non-
linear problems but also with great potential to
improve the method itself. However, on the other
hand, it also brings us a lot of uncertainty, because
the freedom is so large that it seems di$cult to "nd
out a better one or the best one from all of these
possibilities. How to select a better auxiliary linear
operatorL and an auxiliary parameter � for a given
problem? Is a selected initial guess the best one?
Indeed, our approach puts forward new possibilities,
together with new challenges at the same time, like
any new method or technique at its beginning.

We do not worry about the validity of this ap-
proach, which has been proved in our previous
publications [3}5]. What we are not sure about in
this paper is the convergence of our approxima-
tions, which is strongly dependent upon how to
select or dexne the initial guess �

�
(r, �), the auxili-

ary linear operator L, the value of the non-zero
parameter �. More precisely speaking, we do not
know whether or not all of them are properly
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selected or dexned in this paper. Fortunately, even if
someday one can get approximations of high
enough order to prove that our approximations are
divergent, it is still possible to attempt another better
initial guess �

�
(r, �), and/or another better auxiliary

linear operator L, and/or another better value of �,
to ensure the approximate series convergent.

Despite having the above-mentioned shortcom-
ings, our 10th-order drag formula agrees well with
experimental data in a much larger region of
Reynolds number than all previous theoretical
drag expressions. Besides, the great freedom and
#exibility of the proposed approach in selecting the
auxiliary linear operator, the initial guess and the
auxiliary non-zero parameter � imply huge possi-
bility and potential to make further improvements
of this approach. Thus, it puts forward a new prom-
ising way to attack this famous unsolved problem.
Although about 150 yr have passed since Stokes
[13] considered this problem, it is still worth at-
tempting some new mathematical methods and
new calculation tools to gain an elegant but accu-
rate enough drag formula valid in a large enough
region of Reynolds number.
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Appendix A. Derivation of formulae related to
model expression (2.30)

We prove that mode expression (2.30) holds for
all non-negative integers m*0.

Proof.
(I) Due to the initial guess (2.24), mode expression

(2.30) holds when m"0.
(II) We can prove that if mode expression (2.30)

holds for 0)l)m!1 (m*1), say,

�

(r,�)"(1!��)


�
	��

f
�	
(r)�	,

0)l)m!1, m*1, (A.1)

then it also holds for l"m. For 0)l)m!1, we
have by (2.3), (2.4) and (A.1) that

D��

"(1!��)�


�
	��

[f �
�	
(r)

!(k#1)(k#2)
f
�	
(r)

r� ��	

#

��
�
	��
�(k#1)(k#2)

f
�	��

(r)

r� ��	� (A.2)

and

D��


"(1!��)�

�
	��

�f ���	
!(k#1)(k#2)�

2f �
�	

r�

!

4f 
�	

r�
!(k!1)(k#4)

f
�	
r� ���	

#

��
�
	��

(k#1)(k#2)�
f �
�	��
r�

!

4f 
�	��
r�

!(k!1)(k#4)
f
�	��
r� ��	

#

��
�
	��

(k#1)(k#2)�
f �
�	��
r�

!(k#3)(k#4)
f
�	��
r� ��	

#

��
�
	��

(k#1)(k#2)(k#3)(k#4)�
f
�	��
r� ��	�.

(A.3)

De"ning

�
�	

"�
1, 0)k)l,

0 otherwise,
(A.4)

S.-J. Liao / International Journal of Non-Linear Mechanics 37 (2002) 1}18 15



we have for 0)l)m!1 that

D��

"(1!��)


�
	��

A
�	
(r)�	, (A.5)

D��

"(1!��)


�
	��

B
�	
(r)�	, (A.6)

respectively, where A
�	
(r) and B

�	
(r) (0)k)l) are

de"ned by

A
�	
(r)"f �

�	
(r)#

(k#1)(k#2)

r�

�[�
�	��

f
�	��

(r)!f
�	
(r)], (A.7)

B
�	
(r)"f ��

�	
(r)#

2(k#1)(k#2)

r�

�[�
�	��

f �
�	��

(r)!f �
�	
(r)]

!

4(k#1)(k#2)

r�

�[�
�	��

f 
�	��

(r)!f 
�	
(r)]

!

(k�!1)(k#2)(k#4)

r�

�[�
�	��

f
�	��

(r)!f
�	
(r)]

#

(k#1)(k#2)(k#3)(k#4)

r�

�[�
�	��

f
�	��

(r)!�
�	��

f
�	��

(r)]. (A.8)

According to (A.1) and (A.5), we have for
0)l)m!1 that

��

(r,�)
�r

"(1!��)

�
	��

f 
�	
(r)�	, (A.9)

�
�r
(D��


)"(1!��)


�
	��

A
�	
(r)�	, (A.10)

��

(r,�)
��

"

��
�
	��

S
�	
(r)�	, (A.11)

�
��

(D��

)"

��
�
	��

¹
�	
(r)�	, (A.12)

where

S
�	
(r)"(k#1)[�

�	��
f
�	��

(r)!�
�	��

f
�	��

(r)],

0)k)l#1, (A.13)

¹
�	
(r)"(k#1)[�

�	��
A

�	��
(r)!�

�	��
A

�	��
(r)],

0)k)l#1. (A.14)

By (A.1), we have for 0)l)m!1 that

2�
(1!��)

��


�r
#

2

r

��


��
"

��
�
	��

C
�	
(r)�	 (A.15)

where

C
�	
(r)"2���	��

df
�	��

(r)

dr
#

S
�	
(r)

r �,
0)k)l#1. (A.16)

Thus, by (A.15) and (A.5), it holds for
0)k)m!1 that

�
2�

(1!��)

��
	

�r
#

2

r

��
	

�� �D��
����	

" (1!��)
	��
�
���

����	
�
���

C
	��
(r)A

����	��
(r)����

" (1!��)
�
�
���

���
����	�����

�
����������	�����

C
	��
(r)A

����	����
(r)�. (A.17)

So, according to (A.9), (A.10), (A.11) and (A.12), we
have for 0)k)m!1 that

��
	

�r

�
��

(D��
����	

)!
��

	
��

�
�r
(D��

����	
)

"(1!��)
	
�
���

��	
�
���

[ f 
	��
(r)¹

����	��
(r)

!A
	��
(r)S

����	��
(r)]����

"(1!��)
�
�
���

���
����	���

�
����������	���

[ f 
	��
(r)¹

����	����
(r)

!A
	��
(r)S

����	����
(r)]�. (A.18)
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By (A.17) and (A.18), it holds that

���
�
	��

�
��

	
�r

�
��

!

��
	

��
�
�r

#

2�
(1!��)

��
	

�r

#

2

r

��
	

�� �D��
����	

"(1!��)
�
�
���

��
���
�
	��

�
����	�����

�
����������	�����

C
	��
(r)A

����	����
(r)

#

����	���
�

����������	���

[ f 
	��
(r)¹

����	����
(r)

!A
	��
(r)S

����	����
(r)]�. (A.19)

Substituting (A.6), (A.19) into (2.22), we have by
(2.25) and (2.29) that

G
�
(r,�)"(1!��)

�
�
���

E
���

(r)��, (A.20)

where E
���

(r) (0)n)m) is de"ned by

E
���

(r)"(�#

�
r�)�

�����
B

�����
(r)

!

�R
�

r�
���
�
	��

�
����	�����

�
����������	�����

C
	��
(r)A

����	����
(r)

#

����	���
�

����������	���

[ f 
	��
(r)¹

����	����
(r)

!A
	��
(r)S

����	����
(r)]�. (A.21)

By (2.25), (2.29), (A.6) and (A.20), Eq. (2.19) has the
solution �

�
, which can be expressed by the same

mode expression as (A.1). Thus, (A.1) and therefore
also (A.3) hold when l"m. Therefore, substituting
(A.21) and (A.3) into (2.19), and then equating the
term of power of �, we have

f ��
��	

(r)!(k#1)(k#2)�
2f �

��	
(r)

r�
!

4f 
��	

(r)

r�

!(k!1)(k#4)
f
��	

(r)

r� �"QI
��	

(r) (A.22)

with the boundary conditions

f
��	

(1)"f 
��	

(1)"0, k"m,m!1,m!2,2,1,0,

(A.23)

lim
����

r��f
��	

(r)"0, k"m,m!1,m!2,2,1,0,

(A.24)

where

QI
��	

(r)"
E
��	

(r)

r�
!2�

��	��
(k#1)(k#2)

�
f �
��	��

(r)

r�
!2

f 
��	��

(r)

r� �
!

(k#1)(k#2)(k#4)

r�

�[(k#3)�
��	��

f
��	��

(r)

!2(k#1)�
��	��

f
��	��

(r)]. (A.25)

Multiplying (A.22) with r� gives

r�f ��
��	

(r)!(k#1)(k#2)[2r�f �
��	

(r)!4rf 
��	

(r)

!(k!1)(k#4) f
��	

(r)]

"Q
��	

(r), r*1,m*1, 0)k)m, (A.26)

where

Q
��	

(r)"r���E
��	

(r)!2�
��	��

(k#1)(k#2)

�[r�f �
��	��

(r)!2rf 
��	��

(r)]

!(k#1)(k#2)(k#4)

�[(k#3)�
��	��

f
��	��

(r)

!2(k#1)�
��	��

f
��	��

(r)]. (A.27)

They correspond to (2.31) and (2.34), respectively.
(III) Due to (I) and (II), mode expression (2.30)

holds for every non-negative integer m*0. This
completes the proof.

Appendix B. Coe7cients of drag formula (4.16) at
the 10th-order of approximation

����
��

"

#2.10275965743440233236151603498542�10��,

����
��

"

#1.65015306122448979591836734693877�10��,

S.-J. Liao / International Journal of Non-Linear Mechanics 37 (2002) 1}18 17



����
��

"

#8.28175287633992991135848278705421�10��,
����
��

"

#1.27541595804988662131519274376417�10��,

����
��

"

!1.60978644596745246095895446544797�10��,

����
��

"

!1.45402668347937364634952761112315�10��,

����
��

"

!5.94079052979917740157500397260637�10��,

����
��

"

!1.28975701460415407182925379015003�10��,

�����
��

"

!1.20493476112305812017864671093794�10��,

����
��

"

!7.57559158328087216986690689253066�10��,

����
��

"

!4.60228669886345597288031997315746�10��,

����
��

"

#6.23640503128525754943326369793554�10��,

����
��

"

#2.65864014732527457122217858746688�10��,

����
��

"

#3.81183472631096529130647825367727�10��,

����
��

"

!1.94391782979322473676523332118315�10��,

�����
��

"

!8.45486363709556871202852275731427�10��,

����
��

"

#7.26448517293094858491661420554110�10��,

����
��

"

!1.603673523698458579441396270695772�10��,

����
��

"

!4.522894875407173964248023050023655�10��,

����
��

"

!3.472100933021244010342463349552593�10��,

�����
��

"

#3.520447326364544418584542885918161�10��,

����
��

"

!1.306143980555087323748540480213095�10��,
����
��

"

#3.618898249371221593726053215299252�10��,
�����
��

"

#1.357326379566928867943184330394571�10��,
�����
��

"

#1.273522802178936877036399058701315�10���
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