
J. Fluid Mech. (2018), vol. 835, pp. 624–653. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.787

624

Finite amplitude steady-state wave groups with
multiple near resonances in deep water

Z. Liu1,2,3,†, D. L. Xu4 and S. J. Liao3,5,6

1School of Naval Architecture and Ocean Engineering, Huazhong University of Science
and Technology, Wuhan 430074, China

2Hubei Key Laboratory of Naval Architecture and Ocean Engineering Hydrodynamics,
Huazhong University of Science and Technology, Hubei 430074, China

3Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
4College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

5School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

6State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

(Received 17 January 2017; revised 10 July 2017; accepted 27 October 2017)

In this paper, finite amplitude steady-state wave groups with multiple nearly resonant
interactions in deep water are investigated theoretically. The nonlinear water wave
equations are solved by the homotopy analysis method (HAM), which imposes no
constraint on either the number or the amplitude of the wave components, to resolve
the small-divisor problems caused by near resonances. A new kind of auxiliary
linear operator in the framework of the HAM is proposed to transform the small
divisors associated with the non-trivial nearly resonant components to singularities
associated with the exactly resonant ones. Primary components, exactly resonant
components together with nearly resonant components are considered as the initial
non-trivial components, since all of them are homogeneous solutions to the auxiliary
linear operator. For wave groups with weak nonlinearity, the energy transfer between
nearby nearly resonant components is remarkable. As the nonlinearity increases, the
number of steady-state wave groups increases as more components join the near
resonance. This indicates that the probability of existence of steady-state resonant
waves increases with the nonlinearity of wave groups. The frequency band broadens
and spectral asymmetry becomes more and more pronounced. The amplitude of
each component may either increase or decrease with the nonlinearity of wave
groups, while the amplitude of the whole wave group increases continuously and
finite amplitude wave groups are obtained. This work shows the wide existence of
steady-state waves when multiple nearly resonant interactions are considered.
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Finite amplitude steady-state waves with multiple near resonances 625

1. Introduction
Work on wave resonance was started by Phillips (1960), who solved the nonlinear

water wave equations by a perturbation method and found that a secular term may
appear if the resonance criterion

2k1 − k2 = k0, 2ω1 −ω2 =ω0 (1.1a,b)

is exactly satisfied, where ki is the wavenumber and ωi denotes the related linear
angular frequency. In physics, the secular term indicates that the amplitude of a wave
component would increase linearly with time, so a continuing flux of wave energy
transfers from primary components to the resonant one. Later, Longuet-Higgins &
Smith (1966) and McGoldrick et al. (1966) confirmed the resonance criterion (1.1)
by experiments. In 1962, Benney (1962) proposed a model of exactly resonant waves
with time-dependent periodically varying amplitudes, i.e. a periodically changing wave
spectrum. Madsen & Fuhrman (2012) pointed out that, due to the singularities in the
transfer functions, perturbation theory breaks down for steady-state resonant waves.

The real ocean surface is composed of a spectrum of wave frequencies, which
participate in multiple resonances resulting in resonant waves which themselves
satisfy resonance conditions (Alam, Liu & Yue 2010). The dynamic spread of wave
energy among multiple components is analytically intractable over time, so Alam
et al. (2010) concluded that such a scenario is ideally suited to direct simulations
such as the high-order spectrum method (Dommermuth & Yue 1987). The generalized
Bragg scattering of surface waves by periodic bottom ripples was studied by Liu &
Yue (1998), and later the amplitude evolution of multiple Bragg resonances of class
III was considered by (Alam et al. 2010).

Recently, based on the homotopy analysis method (HAM) (Liao 1992, 2003, 2012;
Zhong & Liao 2018), Liao (2011) reconsidered the nonlinear interactions between
pairs of intersecting wave trains. When the resonance criterion (1.1) is exactly satisfied,
Liao (2011) found that the secular term could be removed mathematically and steady-
state waves with a time-independent spectrum were obtained. The existence of this
kind of steady-state resonant waves was investigated experimentally in a basin at the
State Key Laboratory of Ocean Engineering in Shanghai by Liu et al. (2015).

It should be noted that this is not the first time that a singularity problem
has appeared in the study of nonlinear water waves. More than one and a half
centuries ago, in the study of progressive periodic waves, Stokes (1847) found
that a perturbation-series approach would give rise to a spurious secular term, in
contradiction to the periodic behaviour of the waves. Stokes (1847) solved this
problem by expanding the dispersion relationship into a perturbation series, a method
now known as the Lindstedt–Poincaré method (Dingemans 1997). The method of
resolving the singularity is expected to bring a breakthrough in nonlinear water wave
theory.

For a steady-state wave system, the Stokes wave (Stokes 1847) has the simplest
spectrum as it contains only one non-trivial component. The next simplest spectrum
corresponds to short-crested waves (Roberts 1983; Hammack, Henderson & Segur
2005). It contains two non-trivial components propagating at an angle to each other
with equal wavelengths and amplitudes. When three or more non-trivial components
appear in the spectrum, resonance may appear, so the resonant interactions need to
be considered and steady-state resonant waves are obtained (Liao 2011; Liu et al.
2015). For a discrete spectrum, more components are desirable for a representation of
ocean waves. Compared with the Stokes wave and short-crested waves, steady-state
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626 Z. Liu, D. L. Xu and S. J. Liao

resonant waves contain more non-trivial components; thus, they provide a more
realistic description of real ocean waves and would serve as a general benchmark for
the study of nonlinear wave evolution.

Liao (2011) resolved the singularity caused by single exact resonance and
considered steady-state wave groups with three non-trivial components in deep water.
Xu et al. (2012) studied single exact resonance with three non-trivial components in
finite water depths. Liu & Liao (2014) extended the work of Liao (2011) from a single
quartet with three non-trivial components to coupled quartets with six non-trivial ones,
and studied the coupled interactions among one exactly resonant set and six nearly
resonant ones. To date, quite a few non-trivial components have been considered in
the theoretical work on steady-state resonant waves. It should be noted that a system
that admits one resonant set of waves often admits many resonant sets simultaneously
(Hammack & Henderson 1993). That is, waves often interact in coupled sets so that
multiple resonances need to be considered. The simulations of nonlinear random
water wave fields conducted by Annenkov & Shrira (2006) demonstrated the key
importance of near-resonant interactions: exact resonances can be excluded without a
noticeable effect on the field evolution, provided that near-resonant interactions are
retained. Besides, the exact resonance can be considered as a special case of the near
resonance, i.e. the frequency mismatch in near resonance is zero. Therefore, more
non-trivial components or, specifically, more nearly resonant components need to be
considered in steady-state waves with general multiple resonances. It should be noted
that more nearly resonant components imply that more small divisors, which are very
challenging to resolve if classical perturbation methods are applied, would appear.
Recently, Liao, Xu & Stiassnie (2016) applied the HAM to resolve a small divisor
caused by a single near resonance. However, the way in which to handle the small
divisors caused by multiple near resonances is currently unknown. It is also unknown
whether steady-state nearly resonant waves exist or not when more components join
the resonance.

The study of steady-state resonant waves started with the weakly nonlinear cases
in deep water considered by Liao (2011). Xu et al. (2012), Liu & Liao (2014) and
Liao et al. (2016) extended the existing domain of steady-state resonant waves from
different aspects, but still focused on weakly nonlinear wave groups. Finite amplitude
wave groups have only been considered by Liu et al. (2015), where steady-state
resonant waves were superimposed by several copropagating short-crested wave trains.
No more finite amplitude steady-state exactly/nearly resonant wave groups have ever
been reported. It should be noted that Liu & Liao (2014) found that small-amplitude
steady-state resonant waves indeed form a continuum in the parameter space. Finite
amplitude steady-state resonant wave groups need further investigation.

The objective of this paper is to investigate the finite amplitude steady-state
wave groups with near resonances superimposed by multiple non-trivial components.
The auxiliary linear operator and the initial guess in the framework of the HAM
are further modified, so that small-divisor problems associated with the nearly
resonant components are resolved, and theoretically no limit is set on the number of
components considered in the resonant sets (§ 2.3). Weakly nonlinear wave systems
are considered first (§ 3.1). As the nonlinearity increases, different initial guesses
and auxiliary linear operators are considered in the HAM to search for possible
steady-state waves (§ 3.2). The dependence of the number of solutions on the number
of components comprising the resonance is analysed. Finally, the nonlinearity of wave
groups is further increased so that finite amplitude wave groups are obtained (§ 3.3).
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Finite amplitude steady-state waves with multiple near resonances 627

2. Mathematical formulae
2.1. Governing equation

We assume that the fluid is inviscid and incompressible, the flow is irrotational and the
surface tension is neglected. Here, (x, y, z) represents the usual Cartesian coordinate
system, in which (x, y) defines a horizontal plane located at the mean water level and
z is measured vertically upwards. The governing equations for deep-water waves read

∇
2ϕ = 0, −∞< z<η(x, y, t), (2.1)

∂2ϕ

∂t2
+ g

∂ϕ

∂z
+
∂|∇ϕ|2

∂t
+∇ϕ · ∇

(
1
2
|∇ϕ|2

)
= 0, on z= η(x, y, t), (2.2)

gη+
∂ϕ

∂t
+

1
2
|∇ϕ|2 = 0, on z= η(x, y, t), (2.3)

∂ϕ

∂z
= 0, as z→−∞, (2.4)

where ϕ denotes the velocity potential, η is the free-surface elevation, g is the gravity
acceleration and t is the time. We consider a wave system that consists of two primary
progressive waves. Let ki denote the wavenumber and σi the actual angular frequency.
For steady-state wave systems, all wave amplitudes ai, wavenumbers ki and actual
angular frequencies σi are constant, i.e. independent of time. We write

ξi = ki · r− σit, i= 1, 2, (2.5)

where r = xi + yj. Therefore, in the new coordinate system (ξ1, ξ2, z), the original
initial/boundary-value problem (2.1)–(2.4) can be transformed into a boundary-value
problem governed by

2∑
i=1

2∑
j=1

ki · kj
∂2ϕ

∂ξi∂ξj
+
∂2ϕ

∂z2
= 0, −∞< z<η(ξ1, ξ2) (2.6)

subject to the two boundary conditions on the unknown free surface z= η(ξ1, ξ2)

N1[ϕ] =

2∑
i=1

2∑
j=1

σiσj
∂2ϕ

∂ξi∂ξj
+ g

∂ϕ

∂z
− 2

2∑
i=1

σi
∂f
∂ξi
+

2∑
i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂f
∂ξj

+
∂ϕ

∂z
∂f
∂z
= 0, (2.7)

N2[η, ϕ] = η−
1
g

(
2∑

i=1

σi
∂ϕ

∂ξi
− f

)
= 0 (2.8)

and also the bottom condition

∂ϕ

∂z
= 0, as z→−∞, (2.9)

where N1 and N2 are the nonlinear differential operators and

f =
1
2

[
2∑

i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂ϕ

∂ξj
+

(
∂ϕ

∂z

)2
]
. (2.10)
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628 Z. Liu, D. L. Xu and S. J. Liao

The wave elevation η and velocity potential ϕ can be expressed in the form

η(ξ1, ξ2)=

+∞∑
m=−∞

+∞∑
n=−∞

Cη
m,n cos(mξ1 + nξ2), (2.11)

ϕ(ξ1, ξ2, z)=
+∞∑

m=−∞

+∞∑
n=−∞

Cϕ
m,nΨm,n(ξ1, ξ2, z), (2.12)

with the definition

Ψm,n(ξ1, ξ2, z)= sin(mξ1 + nξ2) exp(|mk1 + nk2|z), (2.13)

where Cη
m,n and Cϕ

m,n are constants to be determined. The constant Cη
m,n denotes the

amplitude of the wave component cos(mξ1 + nξ2). It should be noted that ϕ(ξ1, ξ2, z)
automatically satisfies the governing equation (2.6) and the bottom condition (2.9).

2.2. Solution procedure
The steady-state waves were obtained by means of the HAM for exact resonance
(Liao 2011) and near resonance (Liao et al. 2016) in deep water, and extended by
others for more complicated cases of exact resonance (Xu et al. 2012; Liu & Liao
2014). Detailed mathematical derivations can be found in these articles. For the sake
of simplicity, we just give the most important formulae here. In the HAM-based
approach, the solutions for the wave elevation η and the velocity potential ϕ are
approximated by the following two series:

η(ξ1, ξ2)=

+∞∑
m=1

ηm(ξ1, ξ2), (2.14)

ϕ(ξ1, ξ2, z)= ϕ0(ξ1, ξ2, z)+
+∞∑
m=1

ϕm(ξ1, ξ2, z), (2.15)

which are governed by the high-order deformation equations

ηm(ξ1, ξ2)= c0∆
η

m−1(ξ1, ξ2)+ χmηm−1(ξ1, ξ2), (2.16)

L[ϕm(ξ1, ξ2, z)] = c0∆
ϕ
m−1(ξ1, ξ2)− S̄m(ξ1, ξ2)+ χmSm−1(ξ1, ξ2), (2.17)

with the definition χ1 = 0 and χm = 1 for m > 1, where ϕ0 is an initial guess of
the velocity potential ϕ, L is an auxiliary linear operator and c0 is a convergence-
control parameter. We choose the initial guess η0= 0 mainly because it is the simplest
one and is also used by most traditional analytical methods. Up to the mth order
of approximation, all terms ∆η

m−1, ∆ϕ
m−1, S̄m and Sm−1 on the right-hand side of the

high-order deformation equations (2.16) and (2.17) are already known and determined
by ηj and ϕj, with j= 0, 1, 2, . . . ,m− 1 and m> 1. The detailed expressions for ∆η

m−1
and ∆ϕ

m−1 are shown in appendix A. It should be emphasized that, in the framework
of the HAM, we have great freedom to choose the auxiliary linear operator L and the
initial guess ϕ0. The expressions for S̄m and Sm−1 which depend on the choice of the
auxiliary linear operator L are given in the next subsection.
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Finite amplitude steady-state waves with multiple near resonances 629

2.3. Choice of auxiliary linear operator and initial potential
The key to the HAM approach is the choice of the auxiliary linear operator and the
initial guess. The choices for single exact and near resonances are reviewed in § 2.3.1
and § 2.3.2 respectively. Then, the auxiliary linear operator and the initial guess for
multiple near resonances are considered in § 2.3.3.

2.3.1. Single exact resonance
For a steady-state exact resonance,

m∗k1 + n∗k2 = k0, m∗ω1 + n∗ω2 =ω0, (2.18a,b)

Liao (2011) chose the auxiliary linear operator

La[ϕ] =ω
2
1
∂2ϕ

∂ξ 2
1
+ 2ω1ω2

∂2ϕ

∂ξ1∂ξ2
+ω2

2
∂2ϕ

∂ξ 2
2
+ g

∂ϕ

∂z
, (2.19)

with the property

L−1
a [CΨm,n(ξ1, ξ2, z)] =

C
λa

m,n

Ψm,n(ξ1, ξ2, z), (2.20)

where Ψm,n defined by (2.13) is the eigenfunction,

λa
m,n = g|mk1 + nk2| − (mω1 + nω2)

2 (2.21)

is the eigenvalue and C is a constant related to the amplitude of the component
cos(mξ1 + nξ2). Based on the auxiliary linear operator (2.19), S̄m and Sm are defined
as

S̄m(ξ1, ξ2)=

m−1∑
n=1

(ω2
1β

m−n,n
2,0 + 2ω1ω2β

m−n,n
1,1 +ω2

2β
m−n,n
0,2 + gγ m−n,n

0,0 ), (2.22)

Sm(ξ1, ξ2)=
(
ω2

1β
m,0
2,0 + 2ω1ω2β

m,0
1,1 +ω

2
2β

m,0
0,2 + gγ m,0

0,0

)
+ S̄m. (2.23)

Detailed expressions for βm,n
2,0 , βm,n

1,1 , βm,n
0,2 and γ m,n

0,0 are given in (A 10) and (A 11).
Due to the linear dispersion relation, it holds that λa

1,0 ≡ λ
a
0,1 ≡ 0. When the exact

resonance criterion (2.18) is satisfied, we obtain λa
m∗,n∗ = 0. Thus, the auxiliary

linear operator (2.19) has three eigenvalues equal to zero. It should be noted
that the traditional perturbation approach breaks down (Madsen & Fuhrman 2012)
as singularity appears when the inverse linear operator in (2.20) is applied on
the resonant component Ψm∗,n∗ . In the HAM approach (Liao 2011), two primary
components Ψ1,0, Ψ0,1 together with the exactly resonant one Ψm∗,n∗ are considered
as homogeneous solutions to the auxiliary linear operator (2.19). The solution of the
mth-order approximation ϕm(ξ1, ξ2, z) reads

ϕm(ξ1, ξ2, z)= ϕ∗m(ξ1, ξ2, z)+ Am,1Ψ1,0 + Am,2Ψ0,1 + Am,3Ψm∗,n∗, (2.24)

where

ϕ∗m(ξ1, ξ2, z)=L−1
a [c0∆

ϕ
m−1(ξ1, ξ2)− S̄m(ξ1, ξ2)+ χmSm−1(ξ1, ξ2)] (2.25)

is the particular solution of ϕm(ξ1, ξ2, z), and the unknown constants Am,1, Am,2 and
Am,3 are determined by avoiding the secular terms sin(ξ1), sin(ξ2) and sin(m∗ξ1+ n∗ξ2)
appearing on the right-hand side of the (m + 1)th-order deformation equation (2.17)
for ϕm+1(ξ1, ξ2, z) (m= 1, 2, . . .). When m= 0, we get the initial guess of the velocity
potential which contains three initial non-trivial components

ϕ0(ξ1, ξ2, z)= A0,1Ψ1,0 + A0,2Ψ0,1 + A0,3Ψm∗,n∗ . (2.26)
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630 Z. Liu, D. L. Xu and S. J. Liao

2.3.2. Single near resonance
For near resonance, frequency detuning is introduced into the resonance criteria

m∗k1 + n∗k2 = k0, m∗ω1 + n∗ω2 =ω0 + dω, (2.27a,b)

with dω denoting the angular frequency mismatch. It should be emphasized that
unlike perturbation techniques, the HAM provides us with great freedom to choose
the auxiliary linear operator. In order to seek the steady-state nearly resonant waves,
Liao et al. (2016) chose a generalized linear operator

Lb[ϕ] =ω
2
1
∂2ϕ

∂ξ 2
1
+µ1ω1ω2

∂2ϕ

∂ξ1∂ξ2
+ω2

2
∂2ϕ

∂ξ 2
2
+ g

∂ϕ

∂z
(2.28)

with the property

L−1
b [Ψm,n(ξ1, ξ2, z)] =

Ψm,n(ξ1, ξ2, z)
λb

m,n

, (2.29)

where

µ1 =
g|m∗k1 + n∗k2| − (m2

∗
ω2

1 + n2
∗
ω2

2)

m∗n∗ω1ω2
(2.30)

is a constant and

λb
m,n = g|mk1 + nk2| − (m2ω2

1 +µ1mnω1ω2 + n2ω2
2) (2.31)

is the corresponding eigenvalue. Based on the generalized linear operator (2.28), S̄m

and Sm are defined as

S̄m(ξ1, ξ2)=

m−1∑
n=1

(ω2
1β

m−n,n
2,0 +µ1ω1ω2β

m−n,n
1,1 +ω2

2β
m−n,n
0,2 + gγ m−n,n

0,0 ), (2.32)

Sm(ξ1, ξ2)= (ω
2
1β

m,0
2,0 +µ1ω1ω2β

m,0
1,1 +ω

2
2β

m,0
0,2 + gγ m,0

0,0 )+ S̄m. (2.33)

It should be noted that, if the original linear operator (2.19) is used for the near
resonance (2.27), we will get a small eigenfunction λa

m∗,n∗ = −(2
√

g|m∗k1 + n∗k2| +

dω) dω in the denominator of (2.20). This small divisor is hard to deal with especially
for a nearly resonant component with a small angular frequency mismatch dω.
The constant µ1 in (2.28) is defined to enforce λb

m∗,n∗ = 0, so the nearly resonant
component Ψm∗,ι,n∗,ι can be considered as a homogeneous solution to the generalized
linear operator (2.28). Three zero eigenvalues λb

1,0 = λ
b
0,1 = λ

b
m∗,n∗ = 0 can be obtained

and the near resonance (2.27) can then be handled in exactly the same way as the
exact resonance (2.18) by means of the generalized linear operator (2.28). It should
be noted that the mismatch dω does not occur in (2.30) and (2.31) so that we can
transform the small divisor associated with the nearly resonant component 1/λa

m∗,n∗
to the singularity associated with the exactly resonant one 1/λb

m∗,n∗ . The generalized
linear operator (2.28) works for the exact resonance (2.18) as well, since an exact
resonance can be considered as a special near resonance when dω= 0 in (2.27). The
solution of the mth-order approximation ϕm(ξ1, ξ2, z) reads

ϕm(ξ1, ξ2, z)= ϕ∗m(ξ1, ξ2, z)+ Am,1Ψ1,0 + Am,2Ψ0,1 + Am,3Ψm∗,n∗, (2.34)
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Finite amplitude steady-state waves with multiple near resonances 631

where ϕ∗m(ξ1, ξ2, z) is the particular solution of ϕm(ξ1, ξ2, z) defined as

ϕ∗m(ξ1, ξ2, z)=L−1
b [c0∆

ϕ
m−1(ξ1, ξ2)− S̄m(ξ1, ξ2)+ χmSm−1(ξ1, ξ2)], (2.35)

and the unknown constants Am,1, Am,2 and Am,3 are determined so that the coefficients
of the terms sin(ξ1), sin(ξ2) and sin(m∗ξ1 + n∗ξ2) on the right-hand side of the (m+
1)th-order deformation equation (2.17) for ϕm+1(ξ1, ξ2, z) (m= 1, 2, . . .) are equal to
zero. When m = 0, we get the initial guess of the velocity potential which contains
three initial non-trivial components,

ϕ0(ξ1, ξ2, z)= A0,1Ψ1,0 + A0,2Ψ0,1 + A0,3Ψm∗,n∗ . (2.36)

2.3.3. Multiple near resonances
Let us consider a wave system with l nearly resonant components (k0,1, k0,2, . . . ,k0,l)

that are generated by two primary components (k1 and k2). It satisfies the near
resonance criteria

m∗,ιk1 + n∗,ιk2 = k0,ι, m∗,ιω1 + n∗,ιω2 =ω0,ι + dωι, ι= 1, 2, . . . , l, (2.37a,b)

where dωι is a small real number that represents the angular frequency mismatch of
the ιth resonant component. The two primary components together with the l nearly
resonant ones are defined as the initial non-trivial components.

For multiple near resonances (2.37), the generalized linear operator (2.28) for a
single near resonance breaks down as the small divisor appears for every nearly
resonant component. Fortunately, the freedom in the choice of the auxiliary linear
operator and the initial guess in the framework of the HAM provides an opportunity
to completely resolve the small divisors caused by the abovementioned multiple near
resonances. In this paper, we consider the following auxiliary linear operator:

Lc[ϕ] =ω
2
1
∂2ϕ

∂ξ 2
1
+µ2(m, n)ω1ω2

∂2ϕ

∂ξ1∂ξ2
+ω2

2
∂2ϕ

∂ξ 2
2
+ g

∂ϕ

∂z
, (2.38)

with the property

L−1
c [Ψm,n(ξ1, ξ2, z)] =

Ψm,n(ξ1, ξ2, z)
λc

m,n

, (2.39)

where

µ2(m, n)=

g|mk1 + nk2| − (m2ω2
1 + n2ω2

2)

mnω1ω2
, m=m∗,ι, n= n∗,ι,

2, else
(2.40)

is a piecewise function depending on m and n in ϕ(ξ1, ξ2, z) (2.12) and

λc
m,n = g|mk1 + nk2| − (m2ω2

1 +µ2(m, n)mnω1ω2 + n2ω2
2) (2.41)

is the corresponding eigenvalue. Based on the generalized linear operator (2.38), S̄m
and Sm are defined as

S̄m(ξ1, ξ2)=

m−1∑
n=1

(ω2
1β

m−n,n
2,0 +µ2(m, n)ω1ω2β

m−n,n
1,1 +ω2

2β
m−n,n
0,2 + gγ m−n,n

0,0 ), (2.42)

Sm(ξ1, ξ2)= (ω
2
1β

m,0
2,0 +µ2(m, n)ω1ω2β

m,0
1,1 +ω

2
2β

m,0
0,2 + gγ m,0

0,0 )+ S̄m. (2.43)
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632 Z. Liu, D. L. Xu and S. J. Liao

If the auxiliary linear operator (2.19) is still applied for multiple near resonances
(2.37), we will get small eigenvalues λa

m∗,ι,n∗,ι proportional to the angular frequency
mismatch dωι in the denominator of (2.20). A large-amplitude related constant C
together with a small eigenvalue λa

m∗,ι,n∗,ι turns out to be a large coefficient C/λa
m∗,ι,n∗,ι

without physical meaning for the nearly resonant component Ψm∗,ι,n∗,ι(ξ1, ξ2, z) in
(2.20). The piecewise function µ2(m, n) in (2.40) is determined to enforce the related
eigenvalue λc

m∗,ι,n∗,ι = 0, so the initial non-trivial nearly resonant components Ψm∗,ι,n∗,ι
can be considered as homogeneous solutions to the auxiliary linear operator (2.38)
since λ1,0 = λ0,1 = λ

c
m∗,ι,n∗,ι = 0. Every near resonance in (2.37) can then be handled

exactly in the same way as the exact resonance (2.18) by the auxiliary linear operator
(2.38). That is, the piecewise function µ2(m, n) in the auxiliary linear operator (2.38)
transforms the small divisors associated with non-trivial nearly resonant components
1/λa

m∗,n∗ to the singularities associated with exactly resonant ones 1/λc
m∗,n∗ . It should

be noted that the new auxiliary linear operator (2.38) is a further generalization of
the generalized auxiliary linear operator (2.28) proposed by Liao (2011). Besides,
multiple exact resonances can be considered as a special case of the multiple near
resonances with dωi = 0 in (2.37).

The solution of the mth-order approximation ϕm(ξ1, ξ2, z) reads

ϕm(ξ1, ξ2, z)= ϕ∗m(ξ1, ξ2, z)+ Am,1Ψ1,0 + Am,2Ψ0,1 +

l∑
ι=1

Am,2+ιΨm∗,ι,n∗,ι, (2.44)

where

ϕ∗m(ξ1, ξ2, z)=L−1
c [c0∆

ϕ
m−1(ξ1, ξ2)− S̄m(ξ1, ξ2)+ χmSm−1(ξ1, ξ2)] (2.45)

is the particular solution of ϕm(ξ1, ξ2, z), and the unknown constant Am,i is determined
by removing the secular terms sin(ξ1), sin(ξ2) and sin(m∗,ιξ1 + n∗,ιξ2) on the right-
hand side of the (m+ 1)th-order deformation equation (2.17) for ϕm+1(ξ1, ξ2, z) (m=
1, 2, . . .).

The initial guess of the velocity potential reads

ϕ0(ξ1, ξ2, z)= A0,1Ψ1,0 + A0,2Ψ0,1 +

l∑
ι=1

A0,2+ιΨm∗,ι,n∗,ι, (2.46)

where the coefficient A0,i is determined by avoiding the secular terms or small divisors
in the first-order approximation ϕ1(ξ1, ξ2, z). For non-resonant waves, the initial
guess (2.46) just contains the two primary waves, i.e. l = 0. For small-amplitude
exact or near resonance waves, one non-trivial resonant component is considered
in the initial guess (2.46) (l = 1). As the nonlinearity increases, an additional wave
component would join the exact or near resonance due to the nonlinear interactions.
The wave energy distribution among the more resonant components suggests that
more non-trivial resonant components need to be considered in the initial guess
(2.46), which will be shown later in this paper.

For simplicity, resonant waves with only two primary components have been
considered in this paper. The choice of the auxiliary linear operator, the initial guess
and the related solution procedures can easily be extended for more general cases
with multiple primary components.
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FIGURE 1. (Colour online) (a) The linear resonance curves of (2.18) for seven adjacent
resonant sets in the wavevector space (τ , α). The filled circle corresponds to the
exact resonance considered by Liao (2011). (b) The angular frequency detuning of
seven adjacent resonant components with increased wavenumber ratio τ when the angle
α =π/36.

3. Results and analysis
Let α denote the angle between primary components k1 and k2, let τ = k2/k1 be

the wavenumber ratio and let ε = σ1/ω1 = σ2/ω2 be the dimensionless frequency to
quantify the nonlinearity of the wave system. Figure 1(a) shows the linear resonance
curves of seven adjacent resonant sets (2.18) in the wavevector space (τ , α). The filled
circle corresponds to the exact resonance considered by Liao (2011). The resonance
curves around the filled circle stay quite close to each other, which indicates that
different wave components may interact with one another so that multiple resonances
may occur. For a given angle α=π/36, figure 1(b) shows the frequency detuning of
the same seven adjacent resonant components. As the wavenumber ratio τ increases,
the component with the smallest frequency detuning changes from one to the next.
For each resonant component, the interval of τ with angular frequency mismatch
log10(|dωi|/ω1) <−2 overlaps with the intervals of nearby ones. Nearby components
need to be considered for possible multiple near resonances.

3.1. Weakly nonlinear wave groups
For weakly nonlinear wave systems, Liao et al. (2016) considered the single nearly
resonant set

2k1 − k2 = k0, 2ω1 −ω2 =ω0 + dω (3.1a,b)

in the case of

α =π/36, 0.89 6 τ 6 0.895, ε = 1.0003, (3.2a−c)

with the generalized linear operator (2.28). Multiple solutions were obtained and the
energy distribution was verified by Zakharov’s equation.

To investigate further whether nearby resonant components interact with one another
at the end of the solution domain considered by Liao et al. (2016), we consider two
nearly resonant components in the auxiliary linear operator (2.38) and initial potential
(2.46). We take the two groups of solutions found by Liao et al. (2016) at τ = 0.89
as an example; the calculations are carried out beyond the domain 0.89 6 τ 6 0.895
until one or more components have lost their energy and leave the resonance with one
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FIGURE 2. (Colour online) The wave energy distribution of the six largest components
|Cη

i,j|
2/Π of the resonant system (2.37) in the case of dimensionless frequency ε= 1.0003

and angle α = π/36 with various wavenumber ratios τ : line with circles, |Cη

1,0|
2/Π ; line

with triangles, |Cη

0,1|
2/Π ; line with squares, |Cη

2,−1|
2/Π ; line with pentagrams, |Cη

3,−2|
2/Π ;

line with hexagrams, |Cη

4,−3|
2/Π ; line with diamonds, |Cη

−1,2|
2/Π .

or two components. Specifically, we consider the components Ψ2,−1 and Ψ1,−2 in the
initial potential (2.46) for τ < 0.89 in group 1, and the components Ψ2,−1 and Ψ3,−2 in
the initial potential (2.46) for τ >0.895 in group 2. The piecewise function µ2(m,n) in
the auxiliary linear operator (2.38) changes accordingly with the two nearly resonant
components.

Figure 2 shows the wave energy distribution of the six largest components
(two primary components together with four nearly resonant ones) |Cη

i,j|
2/Π for

the resonant system (2.37) in the case of dimensionless frequency ε = 1.0003
and angle α = π/36 with various wavenumber ratios τ . The total wave energy
Π =

∑
+∞

m=0

∑
+∞

n=−∞(C
η
m,n)

2 is mainly contained by three components belonging to one
resonant set. Energy transfer due to resonant interaction among different components
is obvious, but no coupled resonances can be identified. In group 1, the energy
contained by the component cos(ξ1 − 2ξ2) (|Cη

1,−2|
2/Π ) decreases from 17.2 % at

τ = 0.87075 to 0 % at τ = 0.895; meanwhile, the energy contained by the component
cos(2ξ1 − ξ2) (|Cη

2,−1|
2/Π ) increases from 0 % to 88.6 %. In group 2, the energy

contained by the component cos(2ξ1 − ξ2) (|Cη

2,−1|
2/Π ) decreases from 26.1 % at

τ = 0.89 to 0.6 % at τ = 0.89669; meanwhile, the energy contained by the component
cos(3ξ1 − 2ξ2) (|Cη

3,−2|
2/Π ) increases from 0.2 % to 56.2 %. This transfer of energy

between nearby nearly resonant components for weakly nonlinear wave groups
indicates that coupled resonances among multiple nearly resonant components may
occur for finite amplitude wave groups.

More calculations were carried out in the wavevector space (τ , α) for weakly
nonlinear cases (ε = 1.0003). The related energy distribution analyses confirm
the continuum of steady-state resonances in the wavevector space (τ , α) and the
phenomenon of energy transfer among nearby nearly resonant components.

3.2. Wave groups with increased components
More nearly resonant components are considered in wave groups with increased
nonlinearity to further check the existence of steady-state multiple near resonances.
Without loss of generality, we consider the near resonance case

α =π/36, τ = 0.89, (3.3a,b)
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Resonant components considered in the initial guess (2.46)
ε l= 1 l= 2 l= 3 l= 4

Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1

Ψ3,−2 Ψ−1,2 Ψ3,−2 Ψ3,−2 Ψ−1,2 Ψ3,−2

Ψ4,−3 Ψ−1,2 Ψ2,−3 Ψ4,−3

Ψ−1,2

1.0003 2 1 2 1 1 2 1
1.0005 4 2 2 2 2 2 2
1.0008 4 4 4 4 4 4 4
1.001 4 4 4 4 4 4 4
1.003 4 9 10 7 16 6 12
1.005 4 11 10 17 22 9 32

TABLE 1. The number of real solutions for the initial guess coefficients A0,i in (2.46),
for angle α =π/36 and wavenumber ratio τ = 0.89.

with dimensionless frequency ε increased from 1.0003 to 1.005. Different combinations
of the four largest nearly resonant components at ε = 1.0003 are considered as
non-trivial components in the initial guess (2.46) to search for possible steady-state
solutions. As shown in table 1, the number of nearly resonant components l increases
step by step from one to four. The term µ2(m,n) in the auxiliary linear operator (2.38)
changes accordingly. When three or fewer resonant components are considered as
initial non-trivial ones, the coupled nonlinear algebraic equations for the coefficients
A0,i are solved globally in the calculation of the first-order approximation. For four
initial non-trivial nearly resonant components, the resulting algebraic equations are
too complicated and time consuming to solve globally. Instead, a root searching
procedure based on the partial solver ‘FindRoot’ in Mathematica is applied. Table 1
shows that the number of real solutions for the coefficients A0,i increases with the
dimensionless frequency ε, especially when three or four nearly resonant components
(l = 3, 4) are considered. For example, for four nearly resonant components, the
number of algebraic solutions increases from 1 at dimensionless frequency ε= 1.0003
to 32 at ε = 1.005. The increased number of algebraic solutions for larger values of
the dimensionless frequency ε indicates that more steady-state nearly resonant waves
may exist when the nonlinearity increases, if more non-trivial resonant components
are considered in the solution procedure.

Table 2 shows the number of convergent solutions based on the initial guesses listed
in table 1. When three or fewer initial non-trivial resonant components are considered,
the number of convergent solutions first increases and then decreases with respect
to the dimensionless frequency ε. When four initial non-trivial resonant components
are considered, the number of convergent solutions increases with ε up to 1.005.
It should be noted that at ε = 1.005, no convergent solution is obtained for l = 1
(corresponding to only one resonant component) and the number of solutions increases
for l= 2, 3, 4 (corresponding to two, three and four resonant ones). Steady-state waves
with multiple near resonances indeed exist, and more nearly resonant components
need to be considered as initial non-trivial ones in the solution procedure when the
nonlinearity increases. The last column in table 2 shows that the total number of
convergent solutions increases from 2 at ε = 1.0003 to 17 at ε = 1.005, i.e. the
number of steady-state wave groups increases with respect to the nonlinearity of
wave groups when more components join the near resonance. This indicates that the
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Resonant components considered in the initial guess (2.46) Sum
ε l= 1 l= 2 l= 3 l= 4

Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1

Ψ3,−2 Ψ−1,2 Ψ3,−2 Ψ3,−2 Ψ−1,2 Ψ3,−2

Ψ4,−3 Ψ−1,2 Ψ2,−3 Ψ4,−3

Ψ−1,2

1.0003 2 1 2 1 1 2 1 2
1.0005 4 2 2 2 2 2 2 4
1.0008 4 4 4 4 4 4 4 4
1.001 4 4 4 4 4 4 4 4
1.003 1 4 6 4 10 4 8 12
1.005 0 2 5 2 10 1 13 17

TABLE 2. The number of convergent solutions for resonant wave systems (2.37), for
angle α =π/36 and wavenumber ratio τ = 0.89.

probability of existence of steady-state resonant waves increases with the nonlinearity
of wave groups.

Figures 3 and 4 show the amplitude spectra of steady-state waves for dimensionless
frequencies of ε = 1.003 and 1.005 respectively. The wave spectra are ordered
based on the maximum dimensionless amplitude |Cη

i,jki,j|, from smallest to largest.
Moreover, within each spectrum, the dominant frequency fi,j that is surrounded
by other smaller peaks is indicated ( fi,j denotes the frequency of the component
cos(iξ1 + jξ2)). The spectral shape, especially the dominant frequency fi,j together
with the related amplitude |Cη

i,jki,j|, changes among different groups. The evidence
of multiple resonances in steady-state waves is clearly shown. Compared with the
spectra at ε = 1.003, two additional dominant frequencies f0,1 and f4,−3 appear in the
spectra at ε = 1.005. This suggests that more components indeed join the resonance.
Besides, the maximum amplitudes |Cη

i,jki,j| increase and five more time-independent
spectra are obtained at ε = 1.005. Spectral analysis confirms that both the number of
components comprising the resonance and the number of steady-state waves increase
with the nonlinearity of the wave groups.

3.3. Finite amplitude wave groups
The dimensionless frequency ε is further increased to search for finite amplitude
steady-state nearly resonant wave groups.

When the wavevectors of the primary components are given, the eigenvalue λa
m∗,ι,n∗,ι

of every nearly resonant component is known and is determined by the resonance
criterion (2.37), while the amplitude related constant C is unknown and can only be
determined during the calculations. It is hard to predetermine which nearly resonant
component should be considered as the initial non-trivial one in the solution procedure
that determines the initial guess (2.46) and the auxiliary linear operator (2.38). To
guide the choice of the initial guess and the auxiliary linear operator, the magnitude of
the angular frequency mismatch dωι is analysed. Table 3 shows the 10 nearly resonant
components with the smallest angular frequency mismatch log10(|dωι|/ω1) in the case
of angle α = π/36 and wavenumber ratio τ = 0.89. Results based on combinations
of the first four components in § 3.2 show that the number of initial non-trivial
components increases with the dimensionless frequency when ε ∈ [1.0003, 1.005].
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FIGURE 3. (Colour online) The amplitude spectrum |Cη
i,jki,j| of wave groups in the case

of dimensionless frequency ε = 1.003, angle α = π/36 and wavenumber ratio τ = 0.89.
Here, fi,j denotes the dominant frequency.

m∗,ι n∗,ι log10(|dωι|/ω1) m∗,ι n∗,ι log10(|dωι|/ω1)

2 −1 −3.82 5 −4 −2.14
3 −2 −2.92 6 −5 −1.90
−1 2 −2.90 −3 4 −1.72

4 −3 −2.45 7 −6 −1.72
−2 3 −2.20 −14 16 −1.59

TABLE 3. The 10 near-resonant components with the smallest angular frequency
mismatch log10(|dωι|/ω1) in the case of angle α =π/36 and wavenumber ratio τ = 0.89.

As the dimensionless frequency ε further increases, more nearly resonant components
are suggested to be considered as the initial non-trivial ones. The remaining six
components in table 3 could be provided as the possible non-trivial ones in the initial
guess (2.46).

Taking the first two groups of solutions (at ε = 1.0003) in table 2 as an example
(groups 5 and 6), the number of resonant components l considered for different
dimensionless frequencies ε is shown in table 4. Within each group, the number of
resonant components l increases, so that three significant digits can be obtained for
the unknown constants Cη

m,n and Cϕ
m,n in (2.11) and (2.12). It should be noted that in

group 5, the number of resonant components l increases up to 12 when ε > 1.008.
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FIGURE 4. (Colour online) The same as figure 3, except that ε = 1.005.

For each dimensionless frequency ε, the corresponding coupled nonlinear algebraic
equations for A0,i in the initial guess (2.46) are solved by the partial root solver
described in § 3.2, with the solution of A0,i at a slightly smaller value of ε serving
as the initial solution. Detailed components together with related coefficients in the
initial potential (2.46) for groups 5 and 6 are shown in tables 5 and 6 in appendix B.
The convergence of the related high-order approximations obtained by the HAM for
multiple nearly resonant wave groups is shown in appendix C.

Figure 5 shows the amplitude spectra of groups 5 and 6 when the dimensionless
frequency ε increases from 1.0003 to 1.010. More components indeed join the
near resonances and the frequency bands broaden with respect to the increased
dimensionless frequency ε. The wave group energy is mainly contained by components
near the first-order primary ones, with some by second-order bound ones. No spectral
symmetry is found for all values of ε considered. The dimensionless amplitudes of
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Finite amplitude steady-state waves with multiple near resonances 639

Dimensionless frequency ε Number of resonant components
Group 5 Group 6 Group 7 l in initial guess (2.46)

1.0003–1.0008 1.0003–1.0008 — 1
1.001 1.001–1.002 — 2
1.002 1.003–1.004 1.003–1.008 4
1.003 1.005–1.006 1.009 6
1.004 1.007–1.009 1.010 8
1.005–1.007 1.010 1.011–1.014 10
1.008–1.010 — — 12

TABLE 4. The number of resonant components in the initial guess (2.46) with increased
dimensionless frequency ε for groups 5, 6 and 7 in the case of angle α = π/36 and
wavenumber ratio τ = 0.89.

components with |Cη
i,jki,j|> 0.01 in groups 5 and 6 are shown in tables 9 and 10 in

appendix D.
Within each group, the amplitude of each component may either increase or

decrease with the dimensionless frequency ε, whereas the amplitude of the whole
wave group increases continuously. We define the wave steepness as

Hsteepness = kd
max[η(ξ1, ξ2)] −min[η(ξ1, ξ2)]

2
, ξi ∈ [0, 2π], (3.4)

where kd is the wavenumber corresponding to the dominant frequency. It is found
that, at ε = 1.010, the wave steepness Hsteepness reaches 0.22 and 0.21 in groups 5
and 6 respectively. For wave groups with discrete spectra, the large-amplitude case
with Hsteepness= 0.21 was investigated by Shemer et al. (2001) for the evolution of the
nonlinear wave field along a tank. Therefore, it is reasonable to conclude that finite
amplitude steady-state nearly resonant wave groups are obtained in groups 5 and 6 at
ε = 1.010.

More calculations have been carried out for other groups in table 2. In most groups,
the spectrum broadens and the asymmetry is more pronounced when the dimensionless
frequency ε increases. Only in a few groups does the energy shrink to one or two
components. Taking the first group in figure 3 (group 7) as an example, the amplitude
spectra in figure 6 show that the number of components joining the near resonance
increases considerably with ε. At ε = 1.014, the wave steepness reaches Hsteepness =

0.26. The wave energy is mainly contained by the components between the first-order
primary components and the second-order bound ones. No spectral symmetry is found.
The components together with the related coefficients in the initial potential (2.46) are
shown in table 7 in appendix B, and the dimensionless amplitudes of the components
with |Cη

i,jki,j|> 0.01 are shown in table 11 in appendix D.
The spectra in figures 5 and 6 illustrate that the auxiliary linear operator (2.38) and

the initial guess (2.46) proposed in (§ 2.3) work well for multiple near resonances.
Small divisors are indeed resolved when more components join the resonance.
Theoretically, no limit is set on the number of components joining the near resonance,
and it is reasonable to predict the existence of larger-amplitude steady-state wave
groups until the waves break.
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FIGURE 5. (Colour online) The amplitude spectra |Cη
i,jki,j| in the case of angle α=π/36

and wavenumber ratio τ = 0.89 with increased dimensionless frequency ε.

4. Concluding remarks

Exactly nonlinear water wave equations are solved in the framework of the HAM to
gain finite amplitude wave groups with time-independent spectra when the resonance
criterion is nearly satisfied.

The HAM-based approach does not depend on small physical parameters, so no
assumption is made about the number or the amplitude of the wave components.
For that reason, the present work yields convergent high-order approximation
solutions when the nonlinearity of the wave group increases. A piecewise parameter
is introduced into the linear operator to transform the small divisors associated
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FIGURE 6. (Colour online) The same as figure 5.

with non-trivial nearly resonant components to the singularities associated with
exactly resonant ones. Primary exactly resonant and nearly resonant components
are considered as initial non-trivial components since all of them are homogeneous
solutions to the linear operator. Up to 14 non-trivial components are considered in
the initial guess for finite amplitude wave groups.

Small-amplitude wave groups are considered first. The continuum of steady-state
resonance in wavevector space is confirmed and the energy transfer between nearby
nearly resonant components is identified. As the nonlinearity increases, more
components join the near resonance so the frequency broadening and spectral
asymmetry are more pronounced. The increased number of solutions with respect
to the nonlinearity reveals that the probability of wave components with constant
amplitudes and frequencies forming a time-independent spectrum is higher than ever
thought. The amplitude of each component may increase or decrease, whereas the
amplitude of the whole wave group increases continuously with the nonlinearity.
Finite amplitude wave groups with steepnesses of no less than 0.21 are obtained.
The wave energy is mainly contained by components near the first-order primary
components, with some by second-order bound ones.

This paper confirms the existence of steady-state wave groups with multiple near
resonances. The finite amplitude steady-state wave groups obtained would serve
as a benchmark for long-time nonlinear wave evolution, e.g. using fully nonlinear
solutions methods that exist and are currently in use. It is difficult to generate all of
the components in a steady-state resonant wave group experimentally, but we would
capture the time-independent spectrum if the small-amplitude components ignored
have little impact on the spectral evolution. Taking the steady-state resonant wave
groups that are formed by several short-crested waves as an example, the existence of
steady-state resonant waves has been confirmed by laboratory experiments in a deep
wave basin (Liu et al. 2015). To investigate the long-time propagation of steady-state
resonant wave groups, experimental work on collinear steady-state resonant wave
groups propagating in a towing tank is underway.
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Traditionally, it is widely believed that nearly resonant wave interactions are
unsteady. This is true in general cases. However, this work indicates that, in some
special cases, the interactions of nearly resonant waves can be steady state, i.e. the
spectrum can remain unchanged with time. This is the same as the interactions of
exactly resonant waves, which can be steady-state in some special cases, as indicated
by the theoretical and experimental work of Xu et al. (2012), Liu & Liao (2014),
Liu et al. (2015) and Liao et al. (2016). We note that in real oceanic conditions, the
spectral evolution in infinite depth depends not only on nonlinear interactions, but
also on wind input and dissipation due to breaking, which are not considered here.
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Appendix A. Definitions of ∆ηm and ∆
ϕ
m in (2.16) and (2.17)

The definitions of ∆η
m and ∆ϕ

m in (2.16) and (2.17) are given by

∆η
m = ηm −

1
g
(σ1ϕ̄

1,0
m + σ2ϕ̄

0,1
m − Γm,0), (A 1)

∆ϕ
m = σ

2
1 ϕ̄

2,0
m + 2σ1σ2ϕ̄

1,1
m + σ

2
2 ϕ̄

0,2
m + gϕ̄0,0

z,m − 2(σ1Γm,1 + σ2Γm,2)+Λm, (A 2)

where

Γm,0 =
k2

1

2

m∑
n=0

ϕ̄1,0
n ϕ̄1,0

m−n + k1 · k2

m∑
n=0

ϕ̄1,0
n ϕ̄0,1

m−n +
k2

2

2

m∑
n=0

ϕ̄0,1
n ϕ̄0,1

m−n

+
1
2

m∑
n=0

ϕ̄0,0
z,n ϕ̄

0,0
z,m−n, (A 3)

Γm,1 =

m∑
n=0

(k2
1ϕ̄

1,0
n ϕ̄2,0

m−n + k2
2ϕ̄

0,1
n ϕ̄1,1

m−n + ϕ̄
0,0
z,n ϕ̄

1,0
z,m−n)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n ϕ̄1,1

m−n + ϕ̄
2,0
n ϕ̄0,1

m−n), (A 4)

Γm,2 =

m∑
n=0

(k2
1ϕ̄

1,0
n ϕ̄1,1

m−n + k2
2ϕ̄

0,1
n ϕ̄0,2

m−n + ϕ̄
0,0
z,n ϕ̄

0,1
z,m−n)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n ϕ̄0,2

m−n + ϕ̄
0,1
n ϕ̄1,1

m−n), (A 5)
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Γm,3 =

m∑
n=0

(k2
1ϕ̄

1,0
n ϕ̄1,0

z,m−n + k2
2ϕ̄

0,1
n ϕ̄0,1

z,m−n + ϕ̄
0,0
z,n ϕ̄

0,0
zz,m−n)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n ϕ̄0,1

z,m−n + ϕ̄
0,1
n ϕ̄1,0

z,m−n), (A 6)

Λm =

m∑
n=0

(k2
1ϕ̄

1,0
n Γm−n,1 + k2

2ϕ̄
0,1
n Γm−n,2 + ϕ̄

0,0
z,nΓm−n,3)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n Γm−n,2 + ϕ̄

0,1
n Γm−n,1), (A 7)

with the definitions

µm,n =


ηn, m= 1, n > 1,

n−1∑
i=m−1

µm−1,iηn−i, m > 2, n > m,
(A 8)

ψn,m
i,j =

∂ i+j

∂ξ i
1∂ξ

j
2

(
1
m!

∂mϕn

∂zm

∣∣∣∣
z=0

)
, (A 9)

βn,m
i,j =


ψ

n,0
i,j , m= 0,

m∑
s=1

ψn,s
i,j µs,m, m > 1,

(A 10)

γ n,m
i,j =


ψ

n,1
i,j , m= 0,

m∑
s=1

(s+ 1)ψn,s+1
i,j µs,m, m > 1,

(A 11)

δn,m
i,j =


2ψn,2

i,j , m= 0,
m∑

s=1

(s+ 1)(s+ 2)ψn,s+2
i,j µs,m, m > 1,

(A 12)

ϕ̄i,j
n =

n∑
m=0

βn−m,m
i,j , (A 13)

ϕ̄i,j
z,n =

n∑
m=0

γ n−m,m
i,j , (A 14)

ϕ̄i,j
zz,n =

n∑
m=0

δn−m,m
i,j . (A 15)

A detailed derivation can be found in appendix A in Liao (2011).

Appendix B. Initial potentials for groups 5, 6 and 7
Detailed components together with the related coefficients in the initial guess (2.46)

for different dimensionless frequencies ε in groups 5, 6 and 7 are shown in tables 7,
5 and 6 respectively. Here, the angle α = π/36, the wavenumber ratio τ = 0.89 and
k2 =π/5.
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FIGURE 7. (Colour online) Residual squares of log10 ε
η
m and log10 ε

ϕ
m versus c0 for

ε = 1.010 in group 5, for angle α = π/36, wavenumber ratio τ = 0.89 and k2 = π/5:
solid line, second-order approximation; dashed line, third-order approximation; dotted line,
fourth-order approximation; dash–dot line, fifth-order approximation.

Appendix C. Convergence of series solutions obtained by the HAM for multiple
near-resonant wave groups

We define the averaged residual squares εηm and εϕm,

εηm =
π2

M2

M∑
i=0

M∑
j=0

[
m−1∑
n=0

∆η
n(i1ξ1, j1ξ2)

]2

, (C 1)

εϕm =
π2

M2

M∑
i=0

M∑
j=0

[
m−1∑
n=0

∆ϕ
n (i1ξ1, j1ξ2)

]2

, (C 2)

where ∆η
n and ∆ϕ

n are given in appendix A, M is the number of discrete points and
1ξ1 =1ξ2 =π/M. Here, M = 5 is used.

Taking the solutions obtained by the HAM for ε= 1.010 in group 5 as an example,
the averaged residual squares εηm and εϕm at different orders of approximation are shown
in figure 7. Here, the angle α = π/36, the wavenumber ratio τ = 0.89 and k2 = π/5.
We choose the convergence-control parameter c0 = −0.6. Figure 8 shows that the
two averaged residual squares decrease continuously when the order of approximation
increases. The corresponding high-order approximation of unknown constants Cη

m,n in
(2.11) converges quickly, as shown in table 8. Once the convergence of series solutions
is guaranteed, we then use the Padé approximation to accelerate the convergence of
the unknown amplitude Cη

m,n after the HAM calculations are finished.

Appendix D. Surface elevations in groups 5, 6 and 7

The dimensionless amplitudes of components with |Cη
i,jki,j| > 0.01 in steady-state

nearly resonant waves for different dimensionless frequencies ε in groups 5, 6 and 7
are shown in tables 9–11 respectively. Here, the angle α=π/36 and the wavenumber
ratio τ = 0.89.
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FIGURE 8. (Colour online) Residual squares of log10 ε
η
m and log10 ε

ϕ
m versus the

approximation order m when c0 = −0.6 for ε = 1.010 in group 5, for angle α = π/36,
wavenumber ratio τ = 0.89 and k2 =π/5: solid line, log10 ε

η
m; dotted line, log10 ε

ϕ
m.
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