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A GENERAL NUMERICAL METHOD FOR SOLUTION OF 

LINEAR GRAVITY WAVES 
GRAVITY WAVE PROBLEMS. PART 2: STEADY NON- 

S.  J. LIAO* 
Institute of Shipbuilding, University of Hamburg, Lnemmersieth 90, 0-2000 Hamburg 60, Germany 

SUMMARY 
A type of numerical scheme for 2D and 3D steady non-linear water wave problems is described. It is based 
on the finite process method and is insensitive to initial solutions. The relationship between the finite process 
method and iterative techniques is discussed. As a numerical example the flow past a submerged vortex is 
solved and the results are compared with those of other authors. 

KEY WORDS Steady non-linear water waves Potential flow Continuous mapping 

1. INTRODUCTION 

Steady potential flow with a free surface is a typical non-linear problem. In 1977 Dawson' gave 
a numerical scheme for ship wave problems which was based on the singularity distribution 
method developed by Hess and Smith' in 1962. He distributed the simple singularities on the 
surface of double-model ship and also on the limited region of the undisturbed free surface 
around the ship. Linear free surface conditions were used and a type of four-point upwind 
operator was applied to treat the radiation condition. Many researchers3-' have since expanded 
the basic idea of Dawson to study water wave problems with non-linear free surface conditions. 
In order to treat the non-linear free surface conditions, some of these used the perturbation 
expansion technique and neglected the non-linear terms of perturbation in the non-linear free 
surface conditions. In this way several iterative numerical schemes were given. However, as 
mentioned by Macarthur,' nearly all iterative formulae are sensitive not only to the initial 
solutions but also to the number of unknowns. 

In Reference 10 a type of general numerical method for non-linear problems, called the finite 
process method (FPM), is described. Since it is based on continuous mapping, the FPM can 
successfully avoid the use of iterative techniques and is insensitive not only to the initial solutions 
but also to the number of unknowns. However, more CPU time is needed. In Reference 10 
a numerical scheme for non-linear wave problems was derived and, as an example, the 2D 
non-linear progressive gravity wave in shallow water was solved by means of a finite Fourier 
series. The numerical results were in good agreement with those of other authors. 

The present work is a continuation of Reference 10. The basic ideas given in Reference 10 are 
expanded to give a type of numerical scheme for 2D and 3D steady potential flows with 
non-linear free surface conditions. Instead of using finite Fourier series, simple sources (l/r for 3D 
problems and In r for 2D problems) are used. The relationship between the FPM and iterative 
techniques is investigated. 
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2. MATHEMATICAL DESCRIPTION 

Steady water wave problems can be generally described by 

V24(x, y, z)=O in R, 

with the non-linear free surface conditions 

94z + +V4V(V4V4) = 0 on z = ax,  Y ), 

1 
( = - ( U 2 - V 4 V 4 )  on z=[(x, y )  

29 

and the boundary condition on body 8B 

where 4 ( x ,  y, z) is the velocity potential function, ((x, y) is the wave elevation, g is the gravi- 
tational acceleration and U is the velocity of the body. The co-ordinate system Oxyz with 
z positive upwards is moving at the same velocity U as the body. 

For simplicity we define 

W ( 4 )  =PA +3V4V(V4V4), (5)  

1 
6(+) =- (UZ - V4V4). 

29 

3. FINITE PROCESS METHOD 

One can find two continuous functionsfi(p) andfz(p) in p~[O,l] ,  called first- and second-type 
process functions respectively, which satisfy 

0 when p = O ,  
1 when p =  1, 

1 when p=O, 
0 when p =  1. 

(7) 

where c0(x, y )  is an initial wave elevation and Cb0(x, y, z) is an initial velocity potential function 
which satisfies 

V240(x, y, z)=O in sZo (13) 
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and the boundary condition 

If p = 0, then fi ( p )  = 0 and f 2  ( p )  = 1.  Hence from (9)-( 12) one has the initial equation 

V24(x, y, z; 0) = 0 in a(()), (15) 

with boundary conditions 

Let [(x, y; O)=[,(x, y); then (17) is satisfied. It is interesting that bo(x, y, z) determined by (13) 
and (14) is just the solution of initial equation (15), (16) and (18); therefore 

When p =  l , f i(p)= 1 andf2(p)=0. Hence from (9)-(12) one obtains theJinal equation 

Vz4(x, y, z; 1)=0 in 51(1), (22) 

B(4) = 0 on z = C(x, Y; I), (23) 

[(x, Y; 1)=2(4) on z=i(x, Y; I), (241 

with boundary conditions 

The final equations (22)-(25) are just the same as the original equations (1)-(4) respectively. 
Suppose the solutions of the original equations (1)-(4) are c$f(x, y, z) and if(x, y), called the final 
solutions. Then one has the relations 

4f(X,Y,z)=b(x,Y,Z; I), (26) 

(27) idx, Y) = i(x, y; 1). 

From the above analysis one can see that the continuous mapping determined by (9)-( 121 gives 
relations between the selected initial solutions 40(x, y, z) and C0(x, y) and the final solutions 
&(x, y, z) and if(x, y) which can be described in the form of integrals as 

4f(X, Y, z)=4(x, Y, z; 1) 
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where 

and 

are first-order partial derivatives of 4 ( x ,  y,  z; p )  and [(x, y;  p )  with respect to p respectively. 
For simplicity call equations (9)-( 12) the zero-order process equations, the continuous map- 

pings 4(x ,  y ,  z; p )  and ( ( x ,  y; p )  the zero-order processes of the velocity potential function and 
wave elevation respectively and c$['l(x, y,  z; p )  and ("](x,  y; p )  the first-order process derivatives of 
$(x,  y,  z; p )  and ( ( x ,  y; p )  respectively. 

The first-order process derivatives $['](x, y ,  z; p )  and ([lI(x,  y; p )  can be obtained in the 
following way. 

Deriving (9) and (12) with respect to p ,  one obtains 

Deriving equation (10) with respect to p, one has 

f; ( P M  (4) +fi (P) cg (4) - ( 4 0  )I + c f l  (PI +fz (P)l dB(') dp - -0 on z = [(x, y; p). (34) 

In the same way, deriving (11) with respect to p, one obtains 

"'I(x, Y ;  P ) = f l Y P ) w 4 + f l ( P ) d p  d2(4)+fi(P)io(x, Y )  on z=C(x, Y ;  P) .  (35) 

Because the wave elevation z=((x ,  y; p )  is also a function of p ,  one has 

Substituting (37) into (35), one obtains 
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Substituting (36) and (38) into (34), one obtains 

where 

and 

(43) 

(44) 

where 

The system consisting of equations (32), (33), (45) and (46) is linear with respect to +['](x, y, z; p )  
and C[ll(x, y; p) .  If 4(x, y, z; p )  and l ( x ,  y; p )  are known, then @'](x, y, z; p )  and (['I(X, y; p )  can be 
obtained by solving this system of linear equations. Thus 4(x, y, z; p + Ap) and l(x, y; p + Ap) can 
be obtained by using the Runge-Kutta method in the process domain pEC0, 11 as follows: 

#(x, (48) 

l ( x ,  v;p+Ap)=C(x, y;p)+~(ml+2m2+2m3+m4), (49) 

k l  =Ap4"][4(x, Y, z; PI, a x ,  Y;  p); PI, (50) 

m1 = A P W " ,  Y, z; PI, l ( x ,  y; PI; PI, (51) 

where 
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Note that the final results are obtained at p =  1. 

4. SIMPLE NUMERICAL EXAMPLES 

The 2D potential flow past a submerged vortex is a simple but typical non-linear problem.* As 
shown in Figure 1, the vortex is submerged at (0, - b) with circulation r. Upstream there exists 
a uniform stream with velocity U .  Downstream there exists a steady wave with wavelength A,. In 
the case of finite water depth, Salvesen and Kerczekl' solved this problem by an iterative finite 
difference technique and compared their numerical results with their perturbation solutions in 
deep water. Similarly to Salvesen and Kerczek," we select a uniform stream velocity U = 10 ft s-' 
and a vortex submergence b=4.5 ft,? but the water depth is infinite so that more rigorous 
comparison with perturbation solutions in deep water can be made. 

Similarly to Jensen et ~ l . , ~  we use the singularity distribution method to solve the correspond- 
ing equations (32), (33), (45) and (46). The simple sources In r are distributed continuously at 
a distance h, above the undisturbed water surface in the limited region G: x, < x  < x b  shown in 
Figure 1. We select h, > i,,, = U '/2g in order to let the simple sources on AB be always above the 
wave elevation. 

Figure 1. Co-ordinate system and grid for numerical computation 

* We have two reasons for selecting this problem as an example even though it seems too simple from the viewpoint of 
engineering. First, the main purpose of this paper is to examine the basic idea of a type of numerical method. Secondly, 
there exist detailed numerical results for this problem given by other authors so that comparisons can be made. 
t For ease of comparison with the results of Reference 11 we use the British system of units, where 1 ftEO.3048 m and 
1 lb G 0.454 kg. 
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The treatment of the radiation condition seems even more difficult than that of the non-linear 
free surface conditions. Several numerical techniques (or, more precisely, several numerical arts) 
have been used to treat the radiation condition. The method used in Reference 6 seems efficient 
and very simple, although its mathematical meaning is not very clear. In this paper we use the 
same technique as given in Reference 6 to treat the radiation condition, i.e. 

t i = x i - 6 ~  ( i=  1,2,3, . . . , N ) ,  

where (xi, cj) are co-ordinates of points on the wave elevation, (ti, h,) are co-ordinates of points 
on AB and 6x = \xi  - xi + 1 is a selected constant. 
- 

Using 

$o(x,z)=-~x+-tan- '  r ("zb) __ -- 2', tan-' r$) 
271 

as the initial velocity potential function and c0(x) = 0 as the initial wave elevation, the correspond- 
ing continuous mapping d(x, z; p )  can be described as 

where a m ( p ) = a ( t m ,  h,; p )  (m= 1,2, . . . , N ) .  Then the first-order process derivatives +['](x, z; p )  
can be expressed as 

Clearly, $[ll(x, z; p )  described above satisfies (32). 
From expression (60) one easily obtains 

Substituting (61)-(64) in (45), one obtains the set of linear algebraic equations of 
051 (m= 1,2, . . . , N )  as follows: 

E(P)o['I(P)=t(P). (65) 
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Here 

with 

where 

We solve the set of linear algebraic equations (65) by the Gauss-Jordan elimination method. 
After #l ] (x ,  z; p) is known, c['l(x; p )  can be easily obtained from expression (46). Note that 
+(x, z; p + Ap) and C(x; p + Ap) are obtained by the Runge-Kutta method, shown as expressions 
(48) -( 57). 

The final solution +&, z) is 

+f(% z)=+o(x, z)+ Of(C;, h,)lnIJC(x-5)2+(z-hs,zl) dC; 

(72) 

l: 
= - U x + + * ( x , z ) ,  

where 

Of(<, hs)= a['%, hs; p)dp s: 
or, more precisely, 

1 

or(<rn, hs)=I0  O[,'I(P)dP (m= . * . 7 N ) .  

Note that the o , ( p + A p )  (m= 1,2, . . . , N) are also obtained by the Runge-Kutta method. 

Let 

and 

(73) 

(74) 
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denote the maximum non-dimensional errors of the non-linear dynamic and kinematic free 
surface conditions respectively. 

The exact wave resistance formula for two-dimensional potential flow, neglecting surface 
tension, is ' 

where the plane x=xo may be taken at any distance behind the submerged vortex, i.e. xo < O .  Rw 
can be obtained by numerical integral. 

As a test computation let us consider the flow past the submerged vortex r/2n=2*20 ft2 s-', 
corresponding to a strong non-linear problem. 

Select h, = 1-6 ft, N = 80, x, = - 2%0 and x,, = 1.510, where lo = 27cU 2/g = 19-54 ft. The corres- 
ponding maximum initial errors are (ekO)max= 5.1 x and (edOlmax =0.1. The results obtained 
for different values of Ap are given in Table I. 

It is clear from Table I that the smaller Ap is, the more accurate the numerical results are. In the 
case Ap=O.l the numerical results appear to be accurate enough. This means that sufficiently 
accurate results can be obtained by the FPM if a small enough value of Ap is used. Thus no 
iterative techniques are needed, although more CPU time will be used. 

Using the FPM, reasonable and accurate numerical results can be obtained in the region 

For simplicity we have selected in this paper f l  ( p ) = p  and f 2 ( p ) =  1 - p .  Clearly, there exists 
- 6.49 4 l-12~ 4 2.5 ft2 S -  '. 
many other process functions, e.g. 

or 

f 1 (P) = P rn, f i (P)=(l-P)"* 
Using these process functions in our computer programme, we obtain a similar result, i.e. the 

smaller Ap is, the more accurate the numerical results are. 

5. RELATIONSHIP BETWEEN FINITE PROCESS METHOD AND ITERATION 

Consider the zero-order process equations (9)-( 12). Clearly, the initial solutions q50(x, z)  and c0(x) 
can be freely selected. If &(x, z) and c0(x) are just the true solutions of the original problem, then 
according to the first-order process equations (32), (33), (45) and (46), 4[11(x, z; p ) = O  and 

Table I. Numerical results for different values of Ap 

1 09342 -07201 18'35 12 9.434 1 1.6 x lo-* 8.1 x 

115 0.9329 
112 0.9314 - 0.7289 18.36 13 95473 2 5  x 1.6 x 10-3 

-0.7301 18.3651 9.5787 5.5 x 10-4 1.5 x 10-4 
1/10 0.9334 -0.7301 18.3644 9.5789 75  x 10-5 1.2 x 10-5 
1/20 0.9334 -0.7301 18.3644 9.5778 1.1 x 10-5 74  10-7 

1/100 0-9334 -0.7301 18.3644 95774 3 5  x 10 - 8  7.7 x 10-9 
1/50 09334 -0.7301 18.3644 95774 4.8 x 10-7 2-6 x 
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ltll(x; p ) = O .  However, at the beginning of the computation the solutions are unknown and we 
must select initial solutions which may be far from the accurate solutions. The general form of the 
initial solution 40(x, z )  can be written as 

$o(x,z)=-Ux+-tan-l (l:b) __ -- 2', tan-' r+) 
2.n 

The corresponding final solution 4f(x, z )  is now 

@f(x, z ) =  - Ux+- 2.n r tan-' (":") __ -- L t a n - l r q )  

where 

or, more clearly, 

At the beginning of the computation select go((, h,)=O and iO(x)=O to make a computation 
under a selected Ap. If Ap is small enough, the results are sufficiently accurate, which can be used 
as the solution of the original problem. If Ap is not small enough, then crude results a:(<, h,) and 
C:(x) are obtained. Although a:(t, h,) and Cf*(x) are not accurate enough, they are clearly much 
better than the selected initial solutions ao({, h,) = O  and c0(x) =O. Clearly, better numerical 
results will be obtained if of*(( ,  h,) and (f*(x) are used as new initial solutions to make a new 
computation. This is in fact just the idea of iteration. From the view point of this, expressions 

Table 11. Iterations for different values of Ap 

1 
1 2 

3 
4 
1 

0.2 2 
3 
4 
1 

0.1 2 
3 
4 

0.9341 
0.9334 
0.9334 
0.9334 
0.9329 
0.9334 
0.9334 
0.9334 
0.9334 
0.9334 
0.9334 
0.9334 

-07201 
-07301 
-0.7301 
-0.7301 
- 0.7301 
-07301 
-07301 
-07301 
-07301 
-07301 
-07301 
-07301 

18.3512 
18.3644 
18.3644 
183644 
18.3651 
18.3644 
18.3644 
18.3644 
18.3644 
18.3644 
18.3644 
18.3644 

9.4341 
9.5174 
95774 
9.5774 
9-5787 
95774 
95774 
95774 
95774 
9.5774 
9.5714 
95774 

1.6 x 
3.6 x 
2.7 x 10- l3 

8-1 x 
5-5 10-4 
4.1 x 
1.2 x 10-'5 
8.3 x 

1.1 x 10-12 
9.3 x 10- l6 

9.3 x 10-16 

7.5 x 10- 5 

8.1 x 10-3  

2.2 10-13 

1.5 x 10-4 

4.3 x 10-6 

2 2  x 10-16 

9 9  x 10-12 
4.7 x 10- l6 

2.9 x 
1.2x 10-5 
6.0 x 10-13 
4.5 x 10- l6 

4.5 x 10-16 
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given by the FPM for different values of Ap will give different iterative formulae. The smaller Ap 
is, the more complex the corresponding iterative formulae are. Clearly, the formulae in the case 
Ap = 1 are the simplest of them. 

We use the same example described in the previous section to show this point. At the beginning 
of the computation let ao((, h,)=O and co(x)=O. The new results obtained are used as initial 
solutions to make the next computation. Different values of Ap (Ap=l ,  0.2 and 0.1) are 
considered. The results are given in Table 11. 

From Table I1 it seems that the iterations for each value of Ap will converge. The more complex 
the iterative formulae are (i.e. the smaller Ap is), the faster the iteratation converges, but clearly 
more CPU time is needed. 

It is interesting that if Ap is small enough, the numerical results will be accurate enough and no 
iteration is needed. Thus we can regard iterations as special cases of the FPM for large Ap. 

There exist some other iterative formulae for non-linear water wave problems. The formulae 
given by Jensen et a1.6 are as follows: 

gqL + )V@(V@V@) + V@V(V@Vg, - V@V@) 

[3(u’-2v@v4+v@v@)-gg,] =o, ( a p z )  [ gQz + 3V@V(V@VQ)] 
g + V@V@, 

+ 
+( u - 2WV4 + V@V@) -gco 

g + V@V@, 5 = i 0 +  7 

where @ and lo are old values and 4 and c are new values. 
Let us compare the above iterative formulae with the simplest ones given by  the FPM in the 

case Ap = 1. It is well known that iterations are generally sensitive to the initial solutions and will 
diverge in some cases of strong non-linearity. The convergence region, the numerical maximum 
wave elevation (far downstream) and the maximum slope obtained by the different formulae are 
given in Table 111. 

According to Table 111, the iterative formulae given by the FPM in the case Ap= 1 have 
a greater region of convergence than the iterative formulae (82) and (83). Note that A p = l  
corresponds to the simplest case. In fact, the smaller Ap is, the more insensitive the corresponding 
iterative formulae are to the initial solutions. 

Clearly, it is easy to use the basic ideas of the FPM to derive a family of iterative formulae for 
any reasonable non-linear problem, among which the simplest is in the case Ap= 1 and more 
complex formulae correspond to smaller Ap. If Ap is small enough, then the numerical results are 
accurate enough and no iteration is needed, although more CPU time is required. 

In fact, the iterative formulae (82) and (83) can also be obtained from expressions (45) and (46). 

Table 111. Convergence regions for different iterative formulae 

Convergence region c,,, Max. slope 
Iterative model (ft2 s-  1) (ft) (ded 

FPM (Ap= 1) - 6-49 < r / 2 ~  < 2.45 1.206 23.0 
Reference 6 - 5.88 G r/2n G 2.13 1.066 19.8 



1184 S. J. LIAO 

In (45) and (46) let p =  1 and substitute &, and 4 by Q; then one has 

Table IV. Maximum and minimum wave elevation (far downstream) for U = 10 ft s-'  and b = 4.5 ft 

r /2x 
(ft2 s - 1) 

- 3.20 
- 2.70 
-2.10 
- 1.70 
- 1.40 
- 1.15 
- 0.90 

0.90 
1.15 
1.40 
1.70 
2.20 
270 
3.20 

Numerical results 
Third-order 

perturbation 11 Reference 11 Present method 

lmax (ft) i m i n  (ft) imax (ft) i m i n  (ft) i m a x  (ft) l m i n  (ft) 

0544 -0.511 064 -0.58 0.558 - 0.438 
0495 -0.339 060 - 0.54 0.553 -0.436 
0-440 -0'335 050 - 0.47 0.497 - 0.40 1 
0390 - 0.326 043 - 0.40 0.466 -0.382 
0341 - 0.298 037 -0.35 0.369 -0'317 
0293 - 0.263 030 - 0.29 0.312 - 0.275 
0239 - 0220 025 - 0.24 0.250 - 0.226 
0308 - 0.28 1 0 29 - 0.28 0.305 - 0.280 
0409 -0.361 038 -0.36 0.406 -0.362 
0517 - 0.440 0.47 - 0.44 0.514 - 0-445 
0655 -0.534 059 - 0.54 0.659 - 0,548 
0.908 - 0685 084 - 0.72 0.959 - 0.729 
1.187 - 0.848 1.24 -093 t t 
1.495 - 1.082 t t t t 

t No convergence. 

Table V. Wavelength (ft) (far downstream) for U = 10 ft s- ' 
and b = 4.5 ft 

Third-order Numerical results 
r/2n perturbation 
(ftZ s - ' ) method' ' Reference 11 Present method 

- 3.20 
- 2.70 
- 2.10 
- 1.70 
- 1.40 
- 1.15 
- 0.90 

0.90 
1.15 
1 40 
1.70 
220 
270 
3.20 

17.73 
18-24 
18-75 
19.02 
19.18 
19.30 
19.39 
19.39 
19.30 
19.18 
19.02 
18.67 
18.24 
17.73 

19.2 
19.3 
19.4 
19.5 
19.5 
19-5 
19.6 
19.6 
19.5 
19.5 
19.1 
18.8 
18.0 
t 

18.82 
18-83 
18.96 
19.11 
19.23 
19.32 
19.40 
19.40 
19.29 
19.14 
18.89 
18.26 

t 
t 

t No convergence. 
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From the above expressions, substituting q5[" by q5-m and ([I] by ( - l o  respectively, one can 
obtain the same formulae as (82) and (83). 

6. COMPARISON WITH OTHER RESULTS 

In the case U = 10 ft s-  ' and b =4.5 ft the 2D deep waves past a submerged vortex are researched 
by the numerical scheme described above. The numerical parameters used are x , / l o  = - 3.5, 
xb/;lo = 1.5, h, = 1.6 ft and N = 200. 

Table VI. Wave resistance (lb ft-') of 2D waves past a submerged vortex for U =  10 ft s- ' and b =4.5 ft 

Perturbation results' ' Numerical results 
r/2n 
(ft2 s - 1) First-order Second-order Third-order Reference 11 Present method 

- 3.20 13.92 10.40 4.04 5.53 3.6 16 
- 2.70 9.9 1 7.00 2.61 4.9 1 3.597 
-2.10 5.99 4.13 2.26 3.54 3.01 1 
- 1.70 3.93 2.67 1.94 2.55 2.367 
- 1.40 2-66 1 -94 1.55 1.91 1.809 
- 1.15 1.80 1.37 1.19 1.36 1.333 
- 090 1-10 0.88 0-8 1 0.88 0884 

0.90 1.10 1.41 1.33 1.22 1,321 
1.15 1.80 2.48 2.23 2.08 2.251 
1.40 2.66 3.95 3.40 3.15 3.476 
1.70 3.93 6.34 5.10 4.84 5.351 
1.90 4.9 1 8.38 6.40 6.19 6494 
2.20 6.58 12.23 8.57 8.73 9642 
250 8.49 17.17 1096 11.76 t 
2.70 9.9 1 21.15 1266 14.04 t 
3.20 13.92 33.97 16.97 t t 

t No convergence. 

Table VII. 2D wave (far downstream) past a submerged vortex for U =  10 fts-' and b=4.5 ft 

- 6.49 
- 6 4  
- 6 0  
- 5.0 
- 4.7 
- 3.7 

2.30 
2.40 
2.45 
2.50 

~~ 

- ' I  rmax (ft) 

0.199 
0.163 
0.004 
0.268 
0.346 
0.523 
1.039 
1.144 
1.206 
1.316 

~ ~~ 

l m i n  (ft) 

-0.172 
-0.140 
- 0.002 
-0'217 
- 0'278 
-0412 
- 0.767 
- 0.792 
-0825 
- 0.848 

~ ~~~~ ~~ ~~ ~ 

Max. slope (deg) A v  (ft) 

3.6 19.64 
2.8 19.70 
0.5 t 
46 19.17 
59 19.12 
9.0 18.88 

192 18.07 
21.5 17-68 
23.0 17.64 
25.8 1737 

~~ 

R ,  (lb ft - I )  

0526 
0.329 
0.0 10 
0.863 
1.425 
3.180 

10.690 
11.728 
12388 
12.942 

- ~~~~~ ~ ~~~ ~~~ ~~~ 

t No numerical value of wavelength because of the too small wave height downstream. 
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The maximum and minimum wave elevation, wavelength (downstream) and wave resistance 
for different values of the vortex circulation r /2n are given in Tables JV-VI respectively. The 
perturbation solutions is the third-order approximation for deep waves and the numerical results 
in finite water depth given in Reference 11 are also listed for comparison. The converged results 
for r/2n < - 3.2 ft2 s-  ' and r/2z > 2.2 ft2 s- are given in Table VII. 

From Tables IV-VII it seems that for Ir/2n1<1-7 ft2s-' the results given by the FPM, 
especially for the wavelength, are in better agreement with the perturbation solutions in he 
third-order approximation than with the numerical results given in Reference 11. For 
[ r/2n( > 1.7 ft2 s - l  we obtain results which are considerably different not only from the perturba- 
tion solutions in the third-order approximation but also from the numerical results given in 

Table VIII. Maximum and minimum wave elevation and maximum slope of first crest 

r /2z  (ft' s - 1) 
imax (ft) 
i m i n  (ft) 
Max. slope (deg) 

r / 2 ~  (ft2 SKI) 

i m a x  (ft) 
i m i n  (ft) 
Max. slope (deg) 

-6.49 -6.4 
1459 1.441 

-0.147 -0115 
29.7 25.8 

-2.1 -1.9 
0.633 0579 

9.8 8.9 
-0.394 -0.376 

- 6.0 
1.372 
O.Oo0 

21.7 

- 1.7 
0.523 

8.1 
-0.353 

- 5.0 
1.230 

-0'160 
17.5 

- 1.4 
0.436 

-0'313 
6 9  

- 4.7 

- 0.229 
1.184 

16.6 

- 1.15 

- 0.272 
0362 

5.8 

- 3.7 

- 0.385 
1.006 

14.3 

- 0.9 
0-285 

4.6 
- 0.224 

- 3.2 
0.90 1 

-0.419 
13.1 

0.9 
0.302 

- 0.299 
5.5 

- 2.7 
0.786 

- 0424 
11.7 

1.15 
0401 

7.2 
-0385 

r/2n (ft* s-1) 1.40 1.70 1.90 2.20 230 2.40 2.45 250 
1.029 1.191 1.291 {max (ft) 0.509 0.652 0.759 0.881 0,950 

i m i n  (ft) -0.472 -0578 -0.650 -0.724 -0762 -0.799 -0.857 -0878 
Max. slope (deg) 9.2 11.7 13.7 16.1 17-4 19.17 22.7 25.1 

0 '  X 
, I  I I I I I I I I I 1 - 
-3 50 -2 50 - 1  50 -0  50 0 50 1 50 1, 

WAVE-LENGTH DIRECTION 
Figure 2. Wave elevation of 2D waves past positive circulations for U = 10 ft sC1, b = 4.5 ft and infinite water depth. 

i,,, increases with increasing T/2n = 090, 1.70, 2.10, 2.30 and 2.45 ftz s - l  
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Reference 11. It seems that perturbation solutions to a higher order of approximation should be 
given for flows with stronger non-linearity. Also, it seems that the water depth has a great 
influence on 2D waves past a submerged vortex, especially on their wavelength. 

The maximum and minimum wave elevation and the maximum slope of the first crest are given 
in Table VIII. In the case of positive circulations the height of the first crest is nearly the same as 
those far downstream, but in the case of negative circulations the first crest is always higher. 

Figures 2 and 3 show the wave elevation for different values of circulation. For positive 
circulations the elevation height of the first crest is nearly the same as those far downstream and 
all of them increase with increasing vortex circulation until the limit status is reached. For 
negative circulations the wave height of the first crest is always greater than those far downstream 
and increases with decreasing vortex circulation, whereas i,,, far downstream has a crest value 
near r / 2 n  = - 3.2 ft2 s-' and a trough value at r / 2 n  = -6  ft2 sK1 as shown in Figure 3. At 
r/271= - 6 ft2 s-'  the height of the wave elevation far downstream is so small that it is nearly an 
isolated wave. In the case of negative circulations the maximum wave slope and maximum wave 

A 
l- 

1 
3.7000 z;;= - 

Figure 3. Wave elevation of 2D waves past negative circulations for U = 10 ft s-I, b = 4.5 ft and infinite water depth. 
From bottom to top the corresponding circulations are r / 2 n  = - 1.4, - 3.7, - 5.2, - 6.0 and - 645 ft2 s-' 
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elevation far downstream are much less than the theoretical limits. It is clear from Figure 3 that 
wave breaking will occur when the first crest is too high. According to the experiment of 
Salvensen,13 wave breaking occurs at the first crest. Our numerical results support his experi- 
ment. 

Stokes14, l5  showed that the limiting form of steady irrotational gravity waves possesses sharp 
crests containing an angle of 120", i.e. a maximum slope of 30". The limit of free surface elevation 
is 

i.e. for U = 10 ft s-  ', Clim = 1.54 ft. 
i l i m =  u 212g, 

Table IX. Steepest elevation (far downstream) of 2D deep gravity waves 

Numerical results 

Theory Experiment' Reference 11 Present method 

l l i m  u 212s 0.82U2/2g O*87U2/2g 0.85U '12s 
Max.. slope (deg) 30 25 24.4 25.8 
~ ~ w l ~ v / ) m a x  0.141-0.145 0.1 1 0.12 0.125 

0 - - -  n u m e r i c a l  r e s u l t s  b y  FPM 
A - - -  t h i r d - o r d e r  p e r t u r b a t i o n  r e s u l t s  

+ - - -  n u m e r i c a l  r e s u l t s  g i v e n  i n  [ I l l  
0 
0 

-'1 +J 

2n 
00 

v o r t e x  

Figure 4. Wave resistance of 2D waves past a submerged vortex for U = 10 ft s-l and b = 4 5  ft 
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The maximum ratio of wave height to length, Hw/Aw, is given by Michelll6 as 0.142, by 
Thomas'' as 0.145 and by Schwartz's as 0.141-0.142. The experiment by Sal~ensen'~ gives the 
maximum Hw/Aw = 0.1 1 for downstream waves, while the numerical maximum value given in 
Reference 11 is Hw/Aw=0.12. 

In the case U = 10 ft s- ' and b = 4 5  ft the limit wave elevation is obtained at F/2n = 2 5  ft s- l, 
with c,,,= 1-316 ft, maximum Hw/Aw =0.125 and maximum slope 25.8". In comparison with 
Reference 11 we obtain a little steeper wave elevation as shown as Table IX. The limiting form of 
wave elevation for negative circulation is obtained in the case of r/2.n= -6.49 ft2 s-', with the 
first crest c,,, = 1-459 ft and maximum slope 29*7", while the wave elevation far downstream is 
much more even. It is interesting that the limiting form of wave elevation for negative circulation 
is very different from that for positive circulation, as shown in Figures 2 and 3. 

Figure 4 shows the wave resistance in the case U =  10 ft s-' and b=45 ft. For r>O the wave 
resistance increases with increasing vortex circulation, but for r c0 the curve of wave resistance is 
very different; there exist a crest and also a trough in the region of negative circulation. At 
r/2n= -6 ft2 s - '  the wave resistance is nearly zero, while the corresponding wave elevation is 
nearly an isolated wave. For r/2n c -6 ft2 s -  the wave resistance increases until the first crest of 
wave elevation is too high and then numerical wave breaking occurs. These very interesting 
results have not been reported in Reference 11. 

Similarly to the wave resistance, the wavelengths in the case of negative circulations are also 
considerably different from those in the case of positive circulations, as shown in Figure 5. For 

a- - -  n u m e r i c a l  r e s u l t s  b y  FPM 
A--- 3 t h - o r d e r  p e r t u r b a t i o n  r e s u l t s  
+ - - -  n u m e r i c a l  r e s u l t s  g ~ v e n  i n  [Ill 

0 
=t 

v o r t e x  

Figure 5. Wavelength of 2D waves past a submerged vortex for U = 10 ft s - l  and b = 4.5 ft 
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positive circulation the wavelength always decreases with increasing vortex circulation. For 
negative circulation the wavelength decreases at first but begins to increase later. This result is 
interesting. 

The wave resistance is nearly zero in the case r/2n = - 6 ft2 s-I. Perhaps more attention should 
be paid to this interesting result, which can be obtained by the FPM but not by the iterative 
formulae (82) and (83). We know that a 2D submerged wing or streamlined foil can be substituted 
approximately by a submerged vortex. Thus it seems that the wave resistance of a submerged 2D 
wing or streamlined foil might be zero in some cases. Are there any applications of this result in 
engineering if it also holds true for a 3D wing or streamlined foil? Could we use submerged wings 
or streamlined foils in the fore of a ship to reduce its wave resistance? Clearly a submerged vortex 
is too crude a model for a submerged 3D wing or streamlined foil. 3D models close to practical 
problems should be used in order to obtain more accurate results with practical meaning, and 
naturally experiments should be done. It seems valuable to investigate this problem thoroughly. 

7. DISCUSSION AND CONCLUSION 

The basic idea of the finite process method is to discretize an original non-linear problem into 
a finite number of linear problems in a continuous mapping domain p E [0, 11. The finer this 
discretization is, i.e. the smaller Ap is, the more accurate the numerical results are. If Ap is small 
enough, then the numerical results are accurate enough, but clearly more CPU time is needed. In 
this way we can avoid the use of iterative techniques to solve non-linear problems. 

On the other hand, the formulae of the FPM at any definite values of Ap = l/n, can also be used 
as iterative formulae. This gives a family of iterative models. The smaller Ap is, the more complex 
but more insensitive to initial solutions the corresponding iterative formulae are. If Ap is small 
enough, then the results are accurate enough and no iteration is needed. Thus we can regard 
iterative formulae as special cases of the FPM for large Ap. 

Every method has its good and bad points: simpler iterative formulae are more sensitive to 
initial solutions; on the other hand, more complex formulae need more CPU time. For weak 
non-linear problems, simpler formulae with large Ap, e.g. Ap = 1 or 0 5 ,  can be used. However, for 
more strongly non-linear problems, formulae with smaller Ap seem be needed in order to obtain 
converged results, and naturally more CPU time is needed in these cases. It seems that we must 
make more effort for strongly non-linear problems. 
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APPENDIX. NOMENCLATURE 

(ed h a x  

(ek L a x  

fl (PI 
f2(P) 
9 gravitational acceleration 
S C 4 ( X ,  Y ,  41 
H w  wave height 

maximum non-dimensional error of dynamic condition of free surface 
maximum non-dimensional error of kinematic condition of free surface 
first-type process function defined by expression (7) 
second-type process function defined by expression (8) 

auxiliary function defined by expression (6) 
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process-independent variable 
auxiliary function defined by expression (5)  
wave resistance given by expression (77) 
auxiliary function defined by expression (40) 
auxiliary function defined by expression (41) 
velocity of body 

velocity potential function 
initial velocity potential function 
final velocity potential function 
mapping of $(x, y, z), called zero-order process of 4(x, y, z) 
first-order process derivatives of 4(x, y, z; p )  
wave elevation 
initial wave elevation 
final wave elevation 
mapping of [(x, y), called zero-order process of [(x, y) 
first-order process derivatives of c(x, y; p )  
fluid domain 
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