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The famous three-body problem can be traced back to Isaac Newton in the 1680s. In the 300 years since this “three-body problem”
was first recognized, only three families of periodic solutions had been found, until 2013 when Suvakov and Dmitraginovié¢ [Phys.
Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new
families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically
obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular
momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found
by Moore in 1993, the 11 families found by Suvakov and Dmitraginovi¢ in 2013, and more than 600 new families that have never
been reported, to the best of our knowledge. With the definition of the average period T = T/L;, where Ly is the length of the
so-called “free group element”, these 695 families suggest that there should exist the quasi Kepler’s third law T* ~ 2.433 + 0.075
for the considered case, where T* = T|EJ*/? is the scale-invariant average period and E is its total kinetic and potential energy,
respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the “shape sphere”
can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.
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1 Introduction

The famous three-body problem [1] can be traced back
to Isaac Newton in the 1680s. According to Poincaré
[2], a three-body system is not integrable in general. Be-
sides, orbits of three-body problem are often chaotic [3],
i.e., sensitive to initial conditions [2], although there ex-
ist periodic orbits in some special cases. In the 300 years
since this “three-body problem” [1] was first recognized,
only three families of periodic solutions had been found,
until 2013 when Suvakov and Dmitraginovié [4] made a
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breakthrough to find 13 new distinct periodic collisionless or-
bits belonging to 11 new families of Newtonian planar three-
body problem with equal mass and zero angular momentum.
Before their elegant work, only 3 families of periodic three-
body orbits were found: (1) the Lagrange-Euler family dis-
covered by Lagrange and Euler in the 18th century; (2) the
Broucke-Hadjidemetriou-Hénon family [5-9]; (3) the figure-
eight family, first discovered numerically by Moore [10] in
1993 and rediscovered by Chenciner and Montgomery [11]
in 2000, and then extended to the rotating case [12-15]. In
2014, Li and Liao [16] studied the stability of the periodic
orbits in ref. [4]. In 2015, Hudomal [17] reported 25 families
of periodic orbits, including the 11 families found in ref. [4].
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Some studies on topological dependence of Kepler’s third law
for three-body problem were currently reported [18, 19].

Recently, Suvakov and Dmitrasinovié¢ [20] specifically il-
lustrated their numerical strategies used in ref. [4] for their
11 families of periodic orbits with the periods 7 < 100. They
suggested that more new periodic solutions are expected to be
found when 7 > 100. In this paper, we used a different nu-
merical approach to solve the same problem, i.e. Newtonian
planar three-body problem with equal mass and zero angular
momentum, but gained 695 families of periodic orbits with-
out collision, i.e. 229 families within 7 < 100 and 466 fami-
lies within 100 < T < 200, including the well-known figure-
eight family found by Moore [10], the 11 families found by
Suvakov and Dmitra§inovié [4], the 25 families mentioned in
ref. [17], and especially more than 600 new families that have
been never reported, to the best of our knowledge.

2 Numerical approaches

The motions of Newtonian planar three-body system are gov-
erned by the Newton’s second law and gravitational law

3
,(r, ri)
Z A_,.j|3 ’ M

where r; and m; are the position vector and mass of the ith
body (i, j = 1,2,3), G is the Newtonian gravity coefficient,
and the dot denotes the derivative with respect to the time #,
respectively. Like Suvakov and Dmitrasinovié [4], we con-
sider a planar three-body system with zero angular momen-
tum in the case of G = 1, m; = my, = m3 = 1, and the initial
conditions in case of the isosceles collinear configurations:

ri(0) = (x1,x2) = =r2(0), r3(0) = (0,0), @)
11(0) = 72(0) = (vi,v2), #3(0) = =2#1(0),

which are specified by the 4 parameters (xy, X, vi, v2). Write
y() = (ri(6),7(t)). A periodic solution with the period T
is the root of the equation y(Ty) — y(0) = 0, where T is
unknown. Note that x; = —1 and x, = 0 correspond to the
normal case considered in ref. [4] that regards r;(0) = (-1, 0)
to be fixed. However, unlike Suvakov and Dmitra§inovi¢ 41,
we regard x; and x; as variables. So, mathematically speak-
ing, we search for the periodic orbits of the same three-body
problem using a larger degree of freedom than Suvakov and
Dmitrasinovic [4].

First, like Suvakov and Dmitraginovi¢ [4], we use the grid
search method to find candidates of the initial conditions
y(0) = (x1, x2,v1,v7) for periodic orbits. As is well known,
the grid search method suffers from the curse of dimensional-
ity. In order to reduce the dimension of the search space, we
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set the initial positions x; = —1 and x, = 0. Then, we search
for the initial conditions of periodic orbits in the two dimen-
sional plane: v; € [0, 1] and v, € [0, 1]. We set 1000 points
in each dimension and thus have one million grid points in
the square search plane. With these different 10° initial con-
ditions, the motion equations (1) subject to the initial condi-
tions (2) are integrated up to the time ¢t = 100 by means of the
ODE solver dop853 developed by Hairer et al. [21], which is
based on an explicit Runge-Kutta method of order 8(5,3) in
double precision with adaptive step size control. The corre-
sponding initial conditions and the period T are chosen as
the candidates when the return proximity function

4
[y(To) - y(O)| = J Z(yi(TO) - yi(0))? (3)
i=1

is less than 107",

Second, we modify these candidates of the initial condi-
tions by means of the Newton-Raphson method [22-24]. At
this stage, the motion equations are solved numerically by
means of the same ODE solver dop853 [21]. A periodic orbit
is found when the level of the return proximity function (3)
is less than 107°. Note that, different from the numerical ap-
proach in ref. [4], not only the initial velocity #;(0) = (v, v2)
but also the initial position r;(0) = (x;,x;) are also mod-
ified. In other words, our numerical approach also allows
r1(0) = (x1, xp) to deviate from its initial guess (-1, 0). With
such kind of larger degree of freedom, our approach gives 137
families of periodic orbits, including the well-known figure-
eight family [10], the 10 families found by Suvakov and Dmi-
trasinovi¢ [4], and lots of completely new families that have
never been reported.

However, one family reported in ref. [4] was not among
these 137 periodic orbits. So, at least one periodic orbit was
lost at this stage. This is not surprising, since three-body
problem is not integrable in general [2] and might be rather
sensitive to initial conditions, i.e., the butterfly-effect [3]. For
example, Hoover et al. [25] compared numerical simulations
of a chaotic Hamiltonian system given by five symplectic and
two Runge-Kutta integrators in double precision, and found
that “all numerical methods are susceptible”, “which severely
limits the maximum time for which chaotic solutions can be
accurate”, although “all of these integrators conserve energy
almost perfectly”. In fact, there exist many examples which
suggest that numerical noises have great influence on chaotic
systems. Currently, some numerical approaches were devel-
oped to gain reliable results of chaotic systems in a long (but
finite) interval of time. One of them is the so-called “clean
numerical simulation” (CNS) [26-31], which is based on the
arbitrary order of Taylor series method [32-35] in arbitrary
precision [36,37], and more importantly, a check of solution
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verification (in a given interval of time) by comparing two
simulations gained with different levels of numerical noise.

We checked the 137 periodic orbits by means of the high-
order Taylor series method in the 100-digit precision with
truncation errors less than 10779, and guaranteed that they are
indeed periodic orbits. Especially, we further found the ad-
ditional 27 families of periodic orbits (with the periods less
than 100) by means of the Newton-Raphson method [22-24]
for the modifications of initial conditions and using the high-
order Taylor series method (in 100-digit precision with trun-
cation errors less than 1077%) for the evolution of motion
equations (1), instead of the ODE solver dop853 [21] based
on the Runge-Kutta method in double precision. In addition,
we use the CNS with even smaller round-off error (in 120-
digit precision) and truncation error (less than 10~°°) to guar-
antee the reliability of these 27 families. It is found that one
of them belongs to the 11 families found by Suvakov and
DmitraSinovic [4].

Similarly, we found 165 families within the period 100 <
To < 200, including 119 families gained by the ODE solver
dop853 [21] in double precision and the additional 46 fami-
lies by the CNS in the multiple precision. Obviously, more
periodic orbits can be found within a larger period.

It is interesting that more periodic orbits can be found by
means of finer search grids. Using 2000 x 2000 grids for the
candidates of initial conditions, we gained totally 498 peri-
odic orbits within 0 < Ty < 200 in the similar way, including
the 163 families within 0 < Ty < 100 by the ODE solver
dop853 [21] in double precision, the additional 33 families
within 0 < Ty < 100 by the CNS in the multiple preci-
sion, the 182 families within 100 < Ty < 200 by the ODE
solver dop853 in double precision, the additional 120 fam-
ilies within 100 < T, < 200 by the CNS in the multiple
precision, respectively.

Similarly, using 4000 x 4000 grids, we totally gained 695
periodic orbits within 0 < Ty < 200, including the 192
families within 0 < Ty < 100 by the ODE solver dop853
[21] in double precision, the additional 37 families within
0 < Ty < 100 by the CNS in the multiple precision, the 260
families within 100 < T < 200 by the ODE solver dop853
in double precision, and the additional 206 families within
100 < Ty < 200 by the CNS in the multiple precision, re-
spectively. Thus, the finer the search grid, the more periodic
orbits can be found. It is indeed a surprise that there exist
much more families of periodic orbits of three-body problem
than we had thought a few years ago!

It should be emphasized that, in case of the search grid
4000 x 4000, we found 243 more periodic orbits by means of
the CNS [26-31] in multiple precision than the ODE solver
dop853 [21] in double precision. It indicates that the nu-
merical noises might lead to great loss of periodic orbits of
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three-body system.

3 Periodic orbits of the three-body system

The Montgomery’s topological identification and classifica-
tion method [38] is used here to identify these periodic orbits.
The positions 7y, r, and r3 of the three-body correspond to a
unit vector n in the so-called “shape sphere” with the Carte-
sian components

2p-A 2(pxA)-e;
WETR W T TR BT TR
where p = %(rl -r),d= %(rl + r — 2r3) and the hyper-
radius R = +/p? + A2. A periodic orbit of three-body sys-
tem gives a closed curve on the shape sphere, which can be
characterized by its topology with three punctures (two-body
collision points). With one of the punctures as the “north
pole”, the sphere can be mapped onto a plane by a stereo-
graphic projection. And a closed curve can be mapped onto
a plane with two punctures and its topology can be described
by the so-called “free group element” (word) with letters a
(a clockwise around right-hand side puncture), b (a counter-
clockwise around left-hand side puncture) and their inverses
a' = Aand b™! = B. For details, please refer to refs. [20,38].
The periodic orbits can be divided into different classes
according to their geometric and algebraic symmetries [4].
There are two types of geometric symmetries in the shape

/12_'02

space:

(I the reflection symmetries of two orthogonal axes —
the equator and the zeroth meridian passing through
the “far” collision point;

(IT) acentral reflection symmetry about one point — the in-
tersection of the equator and the aforementioned zeroth
meridian.

Besides, Suvakov and Dmitraginovié [4] mentioned three
types of algebraic exchange symmetries for the free group
elements:

(A) free group elements are symmetric with a < A and
b < B;

(B) free group elements are symmetric with a < b and
A & B;

(C) free group elements are not symmetric under either (A)
or (B).

The 695 families of the periodic collisionless orbits can be
divided into five classes: I.A, II.A, I.B, II.B and I1.C, as listed
in Table S. III-XXX in ref. [39]. Note that the class II.A was
not included in ref. [4]. Here, we regard all periodic orbits
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(and its satellites) with the same free group element as one
family, so the “moth I orbit and its satellite “yarn” orbit in
ref. [4] belong to one family in this paper. These 695 fam-
ilies include the figure-eight family [10, 11], the 11 families
found by Suvakov and Dmitraginovi¢ [4] (see Table al) and
the 25 families reported in ref. [17] (11 among them were
given in ref. [4], see Table a2). In Tables al and a2, the su-
perscript i.c. indicates the case of the initial conditions with
isosceles collinear configuration, due to the fact that there ex-
ist periodic orbits in many other cases. Note that Rose [40]
currently reported 90 periodic planar collisionless orbits in
the same case of the isosceles collinear configurations (2),
which include the figure-eight family [10, 11] and many fam-
ilies reported in refs. [4, 17]. Even considering these, more
than 600 families among our 695 ones are new.

Note that the initial positions r; = (xy, x;) in Tables S.III-
XVI in ref. [39] depart from (—1,0) a little. However, it is
well-known that, if r;(¢) (i = 1,2, 3) denotes a periodic orbit
with the period T of a three-body system, then

ri(t') = ar(o), viii') =vit)/Va, 1 =a?1 ©)

is also a periodic orbit with the period T’ = /> T for ar-
bitrary @ > 0. Thus, through coordinate transformation and
then the scaling of the spatial and temporal coordinates, we
can always enforce (—1,0), (1,0) and (0,0) as the initial posi-
tions of the body 1, 2 and 3, respectively, with the initial ve-
locities #1(0) = #,(0) and #3(0) = —2#(0), corresponding to
zero angular momentum. This is the reason why we choose
—1 and O as the initial guesses of x; and x; for our search
approaches. The corresponding initial velocities of the 695
periodic orbits are listed in Tables S.XVII-XXX in ref. [39].
The scatterplot of the initial velocities of the 695 periodic
orbits are shown in Figure 1. Note that two very close ini-
tial conditions can give completely different periodic orbits.
This well explains why more periodic orbits can be found by
means of finer search grids.

The so-called “free group elements” of these 695 fam-
ilies are listed in Tables S.XXXI-LIV in ref. [39]. Due
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to the limited length, only six newly-found ones are listed
in Table 1, and their real space orbits are shown in Fig-
ure 2. In addition, the real space orbits of a few fami-
lies are shown in Figure al. The movies of these 695 pe-
riodic orbits in the real space and the corresponding close
curves on the shape sphere can be found via the website:
http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.
For a two-body system, there exists the so-called Kepler’s
third law r, o« T2/3, where T is the period and r, is the
semi-major axis of periodic orbit. For a three-body system,
Suvakov and Dmitra§inovi¢ [4] mentioned that there should
exist the relation T%/3|E| = constant, where E denotes the to-
tal kinetic and potential energy of the three-body system. But,
they pointed out that “the constant on the right-hand side of
this equation is not universal”, which may depend on “both
of the family of the three-body orbit and its angular momen-
tum” [4]. However, with the definition of the average period
T = T/L;, where L¢ is the length of free group element of
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Figure 1 (Color online) The scatterplot of the initial velocities of the 695
periodic orbits. Circle: the orbits gained by ODE solver dop853 in double
precision; triangle: the orbits gained by the CNS in the multiple precision.

Table 1 The initial velocities and periods 7 of some newly-found periodic orbits of the three-body system with equal mass and zero angular momentum in
the case of the isosceles collinear configurations: r1(0) = (=1,0) = —r2(0), #1(0) = (vi,v2) = #2(0) and r3(0) = (0,0), #3(0) = (—2vy,—2v2) when G = 1 and
my =my =m3 = 1, where T* = T|E[>/? is its scale-invariant period, L¢ is the length of the free group element. Here, the superscript i.c. indicates the case of
the initial conditions with isosceles collinear configuration, due to the fact that there exist periodic orbits in many other cases

Class and number Vi Vv T T* Ly
I.A;g' 0.4159559963 0.2988672319 114.5882843578 256.902 104
I.Ail*g'o 0.0670760777 0.5889627892 163.9101889958 284.971 124
I.Ail“l’5 0.3369172422 0.2901238678 139.2379425543 366.661 148
I.Bil'(j'2 0.4784306757 0.3771895698 199.5148149879 325.727 134
LBI¢, 0.3310536467 0.1351316515 192.5759642513 592.936 238

155

IIC“'

< 0.3231926176

0.3279135713

145.3798952880 369.993 150
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Figure 2

(Color online) Brief overview of the six newly-found families of periodic three-body orbits in case of equal mass, zero angular momentum and

initial conditions with isosceles collinear configuration. Blue line, orbit of Body-1; red line, orbit of Body-2; black line, orbit of Body-3.

periodic orbit of a three-body system, the 695 families of pe-
riodic planar collisionless orbits approximately satisfy such
a generalised Kepler’s third law R o« |E|™' = 0.56 T?/3, as
shown in Figure 3, where R is the mean of hyper-radius of
the three-body system. In other words, the scale-invariant av-
erage period T* = T|E*’*> should be approximately equal to
auniversal constant,i.e. T* ~ 2.433+0.075, for the three-
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04

1 2 3 4 5 6
TIL,

Figure 3 (Color online) The inverse of total energy 1/|E| and average pe-
riod T'/L¢ approximately fall in with a power law with exponent 2/3, where
Ly is the length of free group element. Symbols: the 695 families of periodic
orbits; dashed line: 1/|E| = 0.56 - (T/L¢)*>.

body system with equal mass and zero angular momentum in
the case of initial conditions with isosceles collinear configu-
rations (2). Note that the scale-invariant period T* = T|EJ>/?
and L (the length of free group element) are invariable under
the scaling (4) of the spatial and temporal coordinates for ar-
bitrary @ > 0. So, they are two characteristics with important
physical meanings for each family that contains an infinite
number of periodic orbits corresponding to different scaling
parameters @ > 0 in eq. (4).

4 Conclusions

In this paper, we gain 695 families of periodic orbits of the
three-body system with equal mass, zero angular momentum
and initial conditions in the isosceles collinear configuration
ri = (-1,0),r, = (+1,0),r3 = (0,0). These 695 families
include the figure-eight family [10,11], the 11 families found
by Suvakov and Dmitraginovié [4] (see Table al) and the 25
families reported in ref. [17] (11 among them were given
in ref. [4], see Table a2). Especially, more than six hun-
dreds among them are completely new and have been never
reported, to the best of our knowledge. It should be empha-
sized that 243 more periodic orbits are found by means of
the CNS [26-31] in multiple precision than the ODE solver
dop853 [21] in double precision. This indicates the great po-
tential of the CNS for complicated nonlinear dynamic sys-
tems.
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It should be emphasized that, in the considered initial con-
ditions with isosceles collinear configuration, more and more
periodic planar three-body orbits could be found by means of
finer search grids within a larger period. Similarly, a large
number of periodic orbits can be gained in other cases of
three-body systems. Thereafter, a data base for periodic or-
bits of three-body problem could be built, which is of ben-
efit to better understandings of three-body systems, a very
famous problem that can be traced back to Isaac Newton in
the 1680s.
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LB moth I baBABabABA LBie
LB butterfly ITT (ab)*(ABA)(ba)*(BAB) LB5*
LB moth II (abAB)?A(baBAY*B LBL®
LB moth IIT ABabaBABabaBAbabABAbab LBi®
LB goggles (ab)>ABBA(ba)*BAAB LBL
LB butterfly IV (ba*(AB)PA((ba)*(BAY)°B LBiS
LB dragonfly b*(ABabAB)a*(BAbaBA) LB
ILC yin-yang I (a) and (b) (ab)2ABAba(BAB) ILCj

I1.C yin-yang II (a) and (b)

(abaBAB)?abaBAbab(ABAbab)’ (AB)?
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Table a2 The 14 among 25 families reported in ref. [17] and their names defined in this paper. The other 11 families was the same as listed in Table al

Class and name in ref. [17] Class and number in this paper Class and name in ref. [17] Class and number in this paper
I5.A LALe IVa.8.A LBiS
I8.A LALS IVb.11.A LBiS
L12.A LALS IVb.15.A LBLS:
IL.6.A LBL IVb.19.A LBLS:
11.8.A II.C;’B' IVc.12.AB II.CE;'
1IL.15.A8 ILCL IVe.17.A LBLS
IVa.6.A LBE™ IVc.19.A LBLS
(b) LAKS (© LAK
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Figure al  (Color online) Periodic orbits of the three-body system in the case of the isosceles collinear configurations: r;(0) = (-1,0) = —r2(0), #1(0) =

(v1,v2) = i2(0) and r3(0) = (0,0), 3(0) = (—2v;, —2v,), where G = | and m; = my = m3 = 1. Blue line, orbit of Body-1; red line, orbit of Body-2; black line,
orbit of Body-3.
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