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GENERAL BOUNDARY ELEMENT METHOD FOR NON-LINEAR 
PROBLEMS 

S. J. LIAO AND ALLEN T. CHWANG 

Department of Mechanical Engineering, The Universiiy of Hong Kong, Pokjidam Road, Hong Kong 

SUMMARY 

In this paper the well-known non-linear equationf” + if’ = 0 with boundary conditionsflo) = 0, f(0) = 0 
andf(o0) = 1 is used as an example to describe the basic ideas of a kind of general boundary element 
method for non-linear problems whose governing equations and boundary conditions may not contain 
any linear terms at all. 
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1. INTRODUCTION 

Many researchers are interested in applying the boundary element method’” (BEM) to solve non- 
linear boundary value problems governed by a non-linear differential operator A: 

where u is a dependent variable and g is a function of the position vector ?. If this non-linear operator 
A can be divided into two parts Lo and No, where Lo is linear, No is non-linear and A = Lo +No holds, 
then, traditionally, writing the original equation (1) as Lo(u) =& - No(u), we can obtain the 
following equation involving integral operators: 

4) = 8 0  (1) 

where wo is the fundamental solution of the adjoint operator of the linear differential operator LO, BO 
is the corresponding boundary operator and r denotes the boundary of domain R. The parameter ce) 
in (2) is a geometric factor with the following values, depending on the location of ;: 

where R“ denotes the exterior of domain R, excluding its boundary r, and 0 is the angle formed 
between the tangents to the boundary at point ;, approaching it from each side. For points at which 
the boundary is differentiable, 8 = n. 
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The basic idea of the above-mentioned traditional BEM is to move all non-linear terms of the 
original equation to the right-hand side of the equation and then to find the fundamental solution of 
the linear operator on the left-hand side. Therefore both the linear operator and the corresponding 
fundamental solution are very important and absolutely necessary for the traditional BEM. However, 
there obviously exists a special case in which nothing is left after moving all non-linear terms to the 
right-hand side of the equation. In this special case the traditional non-linear BEM does not work at 
all. Moreover, even if there exists a linear operator Lo, it may be either too simple so that not all 
boundary conditions can be satisfied (for example, Lo is a first-order differential operator but the 
original problem is a second-order non-linear differential equation) or too complex so that it is 
difficult to find the corresponding fundamental solution-the traditional BEM is of no use in the 
former case and is very difficult to apply in the latter case. Hence the traditional BEM seems to have 
the following restrictions. 

1. Many non-linear differential operators do not contain any linear terms at all, i.e. A =Lo + N o  
does not hold, so that the traditional BEM is of no use in this case. 

2. Even if the non-linear differential operator A contains such a linear operator Lo, Lo may be 
either so complex that its fundamental solution is unknown or so simple that it cannot satisfy all 
given boundary conditions. 

We can give such an example in fluid mechanics. Let us consider a well-known non-linear ordinary 
differential equation describing 2D laminar viscous flow over a flat plate:4 

with boundary conditions 

f = f ’ = O  when r ] = O ,  (4) 
f ’=  1 when r]  +. 00, 

where Aq) is related to the streamfunction Ic/ by 

and q is given by 

rl =Y@ 

Here U is the velocity at infinity, v is the kinematic viscosity 
independent co-ordinates. 

Defining h =f’ = d f/dq, we can transform equation (3) into 

( 5 )  

coefficient and x and y are the two 

f ($) +2($)*+2hf$) = 0 

with two boundary conditions 

h = 0 when f = 0, 
h =  1 when f -F 00. 
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Defining also 

Jf 
l + J f '  

r = -  

equation (6) becomes 

with two corresponding boundary conditions 

h = O  when r = O  
h =  1 when t =  1. 
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(9) 

If h(z) can be obtained by solving the non-linear second-order differential equation (10) with 
boundary conditions (1 1) and (12), the solution of the original equation (3) with boundary conditions 
(4) and ( 5 )  can be expressed as a function of the variable r E [0, 11: 

2tdt 
dr) = = 

0 (1 - t)3h(t) - 
Clearly 

f(r)=-=-- dh dh/dr (1 - r)3h(r) ,, 
dq dq/dr- 25 

so we have 

f"(0) = A  (%)'I . 
r=O 

2 dr 

However, it seems difficult to solve the non-linear equation (10) whose linear and non-linear 
differential operators are respectively 

Note that Lo is now a first-order differential operator which needs 
However, we have unfortunately two boundary conditions (1 1) and 

only one boundary condition. 
(12). Therefore the traditional 

BEM is certainly useless in this case. Thus it seems necessary to develop a kind of quite general BEM 
for non-linear problems which should give us great freedom to select a proper linear operator whose 
fundamental solution is familiar to us whether the linear operator Lo exists or not. 

In this paper we will use the non-linear equation (1 0) as an example to describe the basic ideas of a 
new, quite general boundary element method which can overcome the difficulties mentioned in the 
previous paragraph. 
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2. BASIC IDEAS OF THE PROPOSED BEM 

We use two kinds of linear operators, 

mode 1: 
d2h 
dt2 Ll(h) = - - B2h, 

d2h 
mode 2: L,(h) = dt2 + p2h, p > 0, 

and ho(z) is a freely selected initial solution that satisfies (1 1) and (12), p E [0, I] is an imbedding 
parameter and ti ( T ,  p) is a real function of both p E [0, 11 and T E [0, 11. We call equation (20) the 
zeroth-order deformation equation. Obviously the two expressions 

ti ( r ,  0) = ho(t) ,  (23) 
h(r,  1) = h ( t )  (24) 

hold, where h ( ~ )  is the solution of (lO)-(l2). This means that ho(T) and h(T) are homotopic. 

deformation derivatives 
Assume that the ‘continuous deformation’ A (z, p )  is smooth enough about p so that the mth-order 

exist. Then, according to the Taylor formula, we have from (23) that 

where hr l ( t )  is the value of A fm](t,p) at p = 0, which can be obtained in the way described later. For 
simplicity we call the above expression the Taylor homotopy series. The value of the convergence 
radius p of the above series is generally finite. Thus in the case p < 1 we have 

where 0 < A < p < 1. Note that the above-obtained A (t, A) is mostly a better approximation than the 
initial solution ho(z), so that expression (27) gives in fact a family of high-order iterative formulae 

where M (M = 1,2,3,  . . .) denotes the order of the iterative formula. 
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Differentiating the zeroth-order deformation equation (20) m times with respect to the imbedding 
parameter p and then setting p = 0, we obtain the mth-order deformation equations at p = 0 as 

L,(hrl) =g,(t), t E [0, 11, m 2 1, (Y = (1 ,2) ,  k = 0, 1,2, ..., (29) 

with two corresponding boundary conditions 

h r ] ( O ) = O ,  m z l ,  k = 0 , 1 , 2 , 3  ,..., 
h r l ( l ) = O ,  m > l ,  k = 0 , 1 , 2 , 3  ,..., 

where 

gl(t) = -A[h,(t)], t E [0,1] ,  k = 0, 1,2,  . . . , (32) 

t ~ [ O , l ] ,  m > l ,  a = ( l , 2 } ,  k = 0 , 1 , 2  ,.... (33) 

Note that gl(z) is the minus residual of the original equation (10) and is the same for any proper linear 
operators Lo. Substituting the definition of A" into (33), we have 

(34) 

Hence, according to (2), we obtain the corresponding boundary integral equation 

where 
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are fundamental solutions of mode 1 and mode 2 respectively. The two unknown coefficients C, and 
D, are determined by two boundary conditions hpJ(0) = 0 and 1) = 0, which means that a set of 
two linear algebraic equations 

holds in order to avoid the singularity of the corresponding matrix. 

3. NUMERICAL RESULTS 
We select ho(z) = T as the initial approximation for all subsequent discussion. For the domain integral 
we divide the domain [0, 11 into N equal subdomains, i.e. zk = k/N. Second-order accurate central 
difference approximations are applied to the first- and second-order derivatives appearing in the 
expressions of g,(z)(m = 1,2,3, . . .). For the computation of dh/dz at z = 0 we use respectively the 
second-order finite difference approximation 

and the third-order finite difference approximation 

In this paper the root-mean-square error is defined as 

3.1. Selection of numerical parameters 

The numerical parameters that we need to select are M (M 2 l), which denotes the order of iterative 
formula (28), a (a= 1 or 2), which is the subscript of the two linear operators L1 and L2, A (A > 0), 
which acts as a kind of iterative factor, and /3 (/3 > 0), which is a parameter of the linear operators L1 
and L2. In this subsection N =  100 is used. 

At first we simply select f i  = 1, A = 0.75 and observe the corresponding iteration procedures under 
various orders of iterative formula (28) (M= 1, 2, 3). The histories of errors during the iterative 
process using different formulae (M= 1, 2, 3) for two different linear operators (a = 1 or 2) are 
shown in Figures 1 and 2 respectively. We note from Figures 1 and 2 that higher-order iterative 
formulae accelerate the iteration. In fact, this is true for all other values of X < 1 for both cases a = 1 
and 2. This is mainly because the higher-order formulae, which are based on the Taylor series, 
can give a more accurate approximation than the lower-order ones if I is less than the convergence 
radius p. 
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0.01 
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Figure 1. History of errors during iterative process for different order formulae (a = 1): horizontal axis, iterative times; vertical 
axis, RMS; numerical parameters, ,9 = 1, I =0.75, N =  100; curve 1, first-order formula; 2, second-order formula; 3, third-order 

formula 

0.1 

‘ 3  
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Secondly, in the case f l  = 1, M =  3 we observe the iteration procedure under various values of A 
(A = 0.25, 0.5, 0.75, 1) for both a = 1 and 2. The corresponding histories of errors during the iterative 
process are shown in Figures 3 and 4 respectively, which obviously indicate that larger values of A 
(0 < il < 1) accelerate the iteration. This can be easily understood, because A (7, p) at p = 1 is equal 
to h(7). It implies that the convergence radius p of the corresponding Taylor homotopy series (26) 
must be equal to or greater than unity. According to our experience, this seems to be the case. 

According to (40), we have 

1 - exp(-2B) 
# 0, 

4B2 
E,(B) = (44) 

from which we obtain B # 0 for the first linear operator (a= 1) and B #  & (k = 0, 1,2,3, . . .) for the 
second one (a = 2). However, they are only necessary conditions for the selection of f l .  

For the first linear operator (a = 1) we select A = 0-75, M =  3 and inspect the histories of errors of 
the iterative process for various values of fl (B = 0.01, 1,3,5, 10,25,50, 100) as shown in Figure 5 .  It 
is interesting to note from Figure 5 that for a large range of B (lo-* < fi < lo2) the corresponding 
iterations converge and the proposed BEM is valid, although the iteration for j = 100 converges very 
slowly. For the second linear operator (a = 2) the range of B making the corresponding iteration 
convergent is 0 < B < n, which is much smaller than that for the first linear operator (a = l), as shown 
in Figure 6. We note from Figure 6 that for all values of f i  > n except B # &, such as /I = 3.2,4,25, 
50, the corresponding iterations diverge. 

0.1 

0.01 

0.00 1 

0.0001 

0.00001 

0.000001 

1 

10 100 1000 1 

Figure 3. History of errors during iterative process for different values of I (a= 1): horizontal axis, iterative times; vertical 
axis, RMS; numerical parameters, b= 1, M = 3 ,  N= 100; curve 1 ,  1=0.25; 2, 1=0.5; 3, 1=0.75; 4, I =  1; 5, I =  1.25; 6, 

1=2;  7, 1=2 .5 ;  8, 1=2.75; 9, 1=3 
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Figure 4. History of errors during iterative process for different values of I (a = 2): horizontal axis, iterative times; vertical 
axis, RMS; numerical parameters, B = 1 ,  M = 3 ,  N=100; curve 1 ,  I=0.25;  2, I = 0 . 5 ;  3, I=0.75; 4, 1=1;  5, I=1.25; 

6, I = 2; 7, I = 2.5; 8, I = 2.15; 9, 1 = 3 

0.00 1 I I I 
1 10 100 1000 

Figure 5. History of errors during iterative process for different linear operators (a = 1): horizontal axis, iterative times; vertical 
axis,RMS;numericalparameters,I=0.75,M=3,N=100;curve l,fi=O.l;2,B=1;3,B=3;4,B=5;5,B=10;6,B=25; 

7,8=50; 8, f i =  100 
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0.1 
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0.01 f I 1 " 1  
1 10 100 1000 

Figure 6. History of emors during iterative process for different linear operators (a =2): horizontal axis, iterative times; vertical 
axis, RMS; numerical parameters, 1=0-75, M = 3 ,  N= 100; curve 1, p=O.Ol; 2, 8=3; 3, 8=3.1; 4, 8=3.2; 5, j = 4 ;  6, 

8=25; 7, 8=50 

According to the above test computations, many values of B, i.e. 4 f i  < lo2 for the first linear 
operator L1 and 0 < B <  7t for the second linear operator L2, can make the proposed BEM valid. Note 
that L1 and Lz are the simplest second-order linear differential operators that have nearly no relation 
with the non-linear equation (10). In Section 1 we pointed out that the linear operator LO has special 
meaning for the traditional BEM-it is very important and absolutely necessary. Moreover, the 
traditional BEM is invalid for the considered problem, because equation (10) only contains a linear 
operator L,(h) = t!(ah/at) which certainly cannot satisfy two boundary conditions. However, for the 
proposed new BEM the linear operator is not so important because we have much greater freedom to 
select a familiar linear operator! This kind of freedom is especially important for applying the 
proposed BEM to solve those non-linear problems whose governing equations and boundary 
conditions do not even contain any linear terms at all. For the proposed general BEM the linear 
operator Lo is not special at all--it is only a common one among many proper linear operators. 

3.2. A new kind of iteration procedure 

We know that for the two linear operators L1 and L2, large values of 1 in the region 0 < 1 < p < 1 
can accelerate the convergence process. However, what are the iteration procedures in the case 1 l? 

In Figures 3 and 4 we show also the histories of errors during the iterative process for 1 = 1.25, 2, 
2.5, 2-75, 3 for B = 1, M =  3. It is interesting to note that for both linear operators L1 and L2 a large 
value of 1, especially 1 = 2.5 and 2.75, accelerates greatly the convergence process, except for 1 = 3 
under which the iteration diverges. The histories of errors during the iterative process at J.=2.5 
(/I = 1) for various orders of formula (M= 1, 2, 3) are shown in Figures 7 and 8 for a = 1 and 2 
respectively. For 1 = 2-5 we obtain a similar result to that for 1 = 0.75, i.e. a higher-order iterative 
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Figure 7. History of errors during iterative process for different order formulae (a = 1): horizontal axis, iterative times; vertical 
axis, RMS; numerical parameters, j= l , I=2.5,  N= 100; curve 1, first-order formula; 2, second-order formula; 3, third-order 

formula 
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0.0001 
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Figure 8. History of errors during iterative process for different order formulae (OT = 2): horizontal axis, iterative times; vertical 
axis, RMS; numerical parameters, j = 1, L = 2.5, N =  100; curve 1, first-order formula; 2, second-order formula; 3, third-order 

formula 



478 S. J. LIAO AND A. T. CHWANG 

formula accelerates convergence. However, this is a little strange. We only know the relation 
h ( t )  = A ( t ,  1) but do not know anything about h ( t , p )  forp > 1 except its continuity. Therefore, in 
the case 1 > 1 , 1  has to be considered as a kind of iterative parameter similar to the relaxation factor 
in the successive overrelaxation (SOR) method. However, 3, seems to be different from the classical 
relaxation factor in the SOR method. The corresponding iteration procedure seems to be different 
from the traditional iteration procedures such as Seidel iteration, GaussSeidel iteration and so on. 
We call this new kind of iteration the Taylor homotopy iteration. 

The divergence at 1 = 3 ,  as shown in Figures 3 and 4, means that there should exist a region of I in 
which the iteration converges and a best value of 1 exists for the fastest convergence. It is interesting 
to note that this range of 1 seems to be the same for the two different linear operators L1 and L2 as 
given in the examples, but we do not know why. Perhaps it is only a coincidence. 

3.3. Numerical results 

In this subsection we use 

as the convergence criterion. For various values of N (N=200, 400, 750, 1000, 1250) we use the 
third-order formula (M= 3 , 1 =  2.5, f l=  1 ,  a = 1) to obtain the convergence results given in Tables I- 
IV. Obviously, h(Tk)  tends to a fixed value for any fixed value of Tk (k  = 0, 1,2 ,3 ,  . . . , N )  as the 
value of N increases, as shown in Table I. As a result,f(q) andf(q) also tend to their corresponding 
fixed values as the value of N increases, as shown in Table I1 and Table I11 respectively. These results 
agree very well with those given by Howarth; as shown in Figures 9 and 10 and Tables I1 and 111. 
The value off”(0) given by Howarth’ is 0.33206. We obtain the same valuef’(0) = 0.33206 when 
large enough N is used, as shown in Table IV. It is interesting to note that the numerical result of 
equation ( 3 )  with boundary conditionsf(0) = 0, f ( 0 )  = 0 andf”(0) = 0-33206 given by the Rung+ 
Kutta (RK) method (Aq = is even closer to our results, as shown in Tables I1 and 111. It seems 
that the present results are better than those given by Howarth.’ Note that 

2t 2 
lim 

Table I. Numerical results of h(z) =f’(q) 

(47) 

? N = 200 N = 400 N =  750 N =  1000 N =  1250 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0~00000 
0.09054 
0.20347 
0.34702 
0.53036 
0.75233 
0.95 169 
0.99996 
1~00000 
1~00000 
1.00000 

0~00000 
0.09054 
0.20347 
0.34702 
0.53036 
0.75233 
0.95 165 
0.99995 
1 .OoOoo 
1 .OoOoo 
1 ~00000 

0~00000 
0.09054 
0.20347 
0.34702 
0.53036 
0.75233 
0.95164 
0.99995 
1~00000 
1~00000 
1~00000 

0*00000 
0.09054 
0.20347 
0.34702 
0.53036 
0.75233 
0.95164 
0.99995 
1 .00000 
1 ~OoO00 
1~00000 

0~00000 
0.09054 
0.20347 
0.34702 
0,53036 
0.75233 
0.95 164 
0.99995 
1 ~00OOo 
1~00000 
1~00000 
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Table 11. Comparisons o f f ( q )  with results given by Howarth’ 
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f(s) 
given by 
Howarth 

0.0 
0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 
3.6 
4.0 
4.4 
5.0 
6.0 
7.0 
8.0 

0.0 
0.02657 
0.10619 
0.23804 
0.42048 
0-65024 
0.9223 1 
1.23 1 33 
1.5695 1 
1.92984 
2.30624 
2.69282 
3.28394 
4.28037 
5.28003 
6.28001 

~~ ~~ 

f (tl) f (s) 
given by 

N=200 N=400 N=750 N=lOOO N=1250 Mmethod 

0~00000 0~00000 0~00000 0.00000 0~00000 o*ooooo 
0.02656 0.02656 0.02656 0.02656 0.02656 0.02656 
0.10612 0.10611 0.10611 0.10611 0.1061 1 0.10611 
0.23798 0.23796 0.23795 0.23795 0.23795 0.23795 
0.42036 0.42033 0.42032 0.42032 0.42032 0.42032 
0.65001 0.65004 0-65003 0.65003 0.65003 0.65003 
0.92230 0.92229 0.92229 0.92229 0.92229 0.92230 
1.23 104 1.23100 1.23098 1.23098 1.23098 1.23099 

15691 1 13691 7 1.56912 1.56910 1.56910 1.56910 
1.92963 1.92956 1.92953 1.92953 1.92953 1.92954 
2.30588 2.30577 2.30575 2.30575 2.30575 2.30576 
2.69249 2.69240 2.69237 2.69237 2,69237 2.69238 
3.28342 3.2833 1 3.28329 3.28328 3.28328 3.28330 
4.27981 4.26967 4.27963 4.27963 4.27963 4.27965 
5.27944 5.27929 5.27925 5.27924 5.27924 5,27927 
6.27941 6.27926 6.27923 6.27922 6.27922 6.27925 

Table 111. Comparisons off’(q) with the the results given by Howarth’ 

tl 

0.0 
0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 
3.6 
4.0 
4.4 
5.0 
6.0 
7.0 
8.0 

f ( v )  
given by 
Howarth 

0~00000 
0.13277 
0.2647 1 
0.39377 
0.5 1672 
0.62970 
0.72900 
0.81138 
0.87594 
0.92336 
0.95547 
0.97600 
0.991 54 
0.99902 
0.99994 
0.99999 

N =  200 

0~00000 
0.13277 
0.26471 
0.39377 
0.5 1675 
0.62975 
0.72899 
0.81 150 
0437607 
0.92331 
0.95549 
0.97587 
0.99158 
0.99899 
0.99993 
0.99997 

N = 400 

0~00000 
0.13276 
0.2647 1 
0.39378 
0.51676 
0.62976 
0.72898 
0.81150 
0.87607 
0.92332 
0.95552 
0.97587 
0.991 55 
0.99898 
0-99992 
0,99997 

N = 750 

o*ooooo 
0- 13276 
0.26471 
0.39378 
0.5 1676 
0.62977 
0-72898 
0.81 151 
0.87608 
0.92333 
0.95552 
0.98587 
0.99154 
0.99897 
0.99992 
1~00000 

N =  1000 

0~00000 
0.13276 
0.2647 1 
0.3 93 78 
0.5 1676 
0.62977 
0.72898 
0.81151 
0.87608 
0.92333 
0.95552 
0.97587 
0.991 54 
0.99897 
0.99992 
1 .oOOoo 

N= 1250 

0~00000 
0.13276 
0.2647 1 
0.39378 
0.51676 
0.6 2 9 7 7 
0.72898 
0.81151 
0.87608 
0.92333 
0.95552 
0.97587 
0.99 154 
0.99897 
0.99992 
1~00000 

f(tl) 
given by 
RK method 

0~00000 
0.13277 
0.2647 1 
0.39378 
0.5 1676 
0.62977 
0.72899 
0.81152 
0.87609 
0.92334 
0.95552 
0.97588 
0.99155 
0.99898 
0.99993 
1 -00000 

Table IV. Numerical results off’(0) 

N= 1250 Order N = 200 N = 400 N =  750 N= 1000 

Second 0.332064 0.332061 0.332060 0.332060 0.332060 
Third 0.332101 0.332071 0.332064 0.332064 0.3 3 2064 
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Figure 9. Comparison of numerical results with those given by Howarth:’ horizontal axis, q; vertical axis,forf; curve 1 ,f(q); 
2, f (q);  x , results given by How* -, present results 

therefore the integral (15) is not singular at t =  0, so we can simply use Simpson’s method for the 
numerical integral. 

Besides the traditional BEM mentioned earlier in this paper, there exist a few other methods, such 
as the one described in Reference 6, in which a simple non-linear equation u, = au2 (x E [0, 11) with 
two boundary conditions u(0) = 1 and u(1) = 0.25 is used as an example to show the basic ideas of the 
method. The domain x E [0, 11 is first divided into N equal subdomains and then the non-linear 
equation is linearized in each subdomain. As a result, a set of 2N algebraic equations has to be solved, 

Figure 10. Comparison of numerical results with those given by horizontal axis, r = Jf /( 1 + Jn; vertical axis, 
f ( 7 ) ;  x , results given by How* -, present results 
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which requires much CPU storage if N is large, say N= 1000 as used in this paper. However, the 
proposed general BEM needs to solve only a set of two linear algebraic equations for the same 
problem. Therefore less CPU storage is needed for each iteration. 

The proposed BEM can also be applied to solve more realistic non-linear problems and the higher- 
order formulae can increase the stability and convergence of the computational scheme. For instance, 
the basic ideas of the proposed BEM have been successhlly used to solve the 2D NavierStokes 
equations and it has been found that the corresponding second-order formulae are still stable even for 
Reynolds numbers up to 10,000, as described in References 7 and 8. It should be noted that Navier- 
Stokes equations contain proper linear operators. In this paper we generalize the basic ideas described 
in References 7 and 8 and consider the cases where no proper linear operators exist. 

4. DISCUSSION AND CONCLUSIONS 

In this paper a well-known non-linear problem in fluid mechanics is used as an example to illustrate 
the basic ideas of a kind of general BEM for non-linear differential problems. This new BEM is based 
on the homotopy technique of topology and therefore has a good mathematical base. The proposed 
BEM can give us great freedom to select a proper linear operator L, whose fundamental solution is 
familiar to us, to construct a family of high-order iterative formulae. This kind of freedom is very 
important, especially for non-linear differential equations which do not contain any linear terms at all, 
or whose linear operator is so complex that its corresponding fundamental solution is either unknown 
or difficult to obtain, or whose linear operator is useless because it cannot satisfy all the boundary 
conditions. It should be emphasized that the non-linear operator 2 in the zeroth-order deformation 
equation (20) may be quite general and may even not contain any linear operators. Therefore the 
proposed BEM can be applied to solve quite general non-linear problems, even including those whose 
governing equations and boundary conditions do not contain any linear terms at all. 

Moreover, the simple example given in the present paper illustrates that a large value of A (A < p,  
the convergence radius) and a high-order iterative formula may accelerate the convergence of 
iteration. This can be easily understood, because the proposed BEM is based on the Taylor series and 
the homotopy technique which give the relation h(T) = A  (T, l), so that a high-order formula with 
large A (A Q p Q 1) gives accurate approximations at every iteration. It should be emphasized that for 
the given example the iteration can also be accelerated greatly by using large values of 1 (A > l), 
which in fact gives a kind of new iteration procedure that seems to be different from the traditional 
iteration procedure such as Seidel iteration, Gausdeidel iteration, the Gausdeidel iteration and so 
on. 

It is true that linear and non-linear differential equations are quite different. However, they can be 
linked closely by constructing a homotopy similar to equation (20). The homotopy method 
emphasizes relationships and continuous transformation between quite different things. Note that the 
mth-order deformation equation (29) with boundary conditions (30) and (3 1) is linear for any m 3 1. 
This is a vely important property of a homotopy by which we can transfer any non-linear problems 
into an infinite number of linear problems, as mentioned in other Obviously, linear 
problems can be solved by the boundary element method. Thus the propsed BEM can be seen as a 
successful application of a non-linear analysis technique called the homotopy analysis method74 
which is proposed to overcome some limitations and restrictions of perturbation techniques. 

Similarly to the traditional BEM for non-linear problems, the proposed general BEM also needs 
the integral over the internal domain 0. In this paper we discretize the internal domain and use the 
Gauss numerical integral formula. This decreases greatly the effectiveness of the BEM. However, a 
boundary element technique called the dual reciprocity boundary element has been 
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developed to overcome the disadvantage of the traditional BEM for non-linear problems by means of 
transforming the domain integral to the surface. Thus the proposed general BEM might become more 
effective if it were combined with the dual reciprocity boundary element method. 

In this paper we use two different linear operators Ll(u) = u, - f12u and L2(u) = u, + 8% to 
construct homotopy (20) and obtain successfully in each case the convergent results of the original 
non-linear equation (3) with boundary conditions (4) and (5).  Thus we would like to emphasize that 
the linear operator Lo of a non-linear problem, which is very important and absolutely necessary for 
the traditional BEM, has no special meaning at all-it is merely one of the many proper linear 
operators suited to the proposed BEM, since we now have great freedom to select a familiar linear 
operator. Certainly, the greater freedom is for the better. This is the reason why the proposed BEM 
seems to be superior to the traditional one. However, how can we use this kind of freedom? That is to 
say, how do we know that a selected linear operator is proper and even better than another one? 
Indeed, for any non-linear problem there may exist many proper linear operators suited to the 
proposed BEM. All these linear operators may construct a mathematical space S in which there exists 
a best linear operator, but how can we determine the best one? Unfortunately, we know very little 
about these interesting questions which need further research. We also note that the proposed BEM is 
based on the assumption that the solution of the so-called zero-order deformation equation exists and 
is smooth enough for p E [0, 11. This assumption is also the basis of the continuation method.” For 
the problem under consideration the assumption seems to hold. However, the types of general non- 
linear problems are so complex that there does not exist a rigorous mathematical proof of the 
assumption, although the basic ideas of the proposed BEM have been applied successfully to solve 
some highly non-linear problems such as the 2D Navier-Stokes equations at high Reynolds number 
(Re= 10,000).* Fortunately, it has been proved that the solution of the zero-order deformation 
equation exists near p = 0, so the assumption holds as long as the parameter I is small enough. Thus 
pure mathematical research in this direction is necessary, since this assumption is crucial to the 
development of the method. Moreover, although the given example has indeed illustrated the 
effectiveness of the proposed BEM, it seems to be a little simple. The proposed BEM deserves fiuther 
research and wide applications to solve more complex 2D and 3D non-linear problems in 

APPENDIX: NOMENCLATURE 

non-linear differential operator 
differential operator on boundary r 
geometric factor 
real function 
real function of position vector 
real function of z 
mth-order deformation derivatives at p = 0 
homotopy defined by equations (20)-(22) 
mth-order deformation derivatives 
linear differential operators 
order of high-order iterative formula (28) 
total number of subdomains 
imbedding parameter 
position vector 
velocity at infinity of 2D laminar viscous flow over flat plate 
Cartesian co-ordinates 
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Greek letters 

A 
V 

P * 
0 

R 

subscript of linear operators L,  and L2 
parameter of linear operators L ,  and L2 
boundary of domain R 
iterative factor 
kinematic viscosity coefficient 
radius of convergence 
streamfunction 
hdamental solution 
domain 
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