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It is well-known that the Camassa–Holm (CH) equation admits both of the peaked and
cusped solitary waves in shallow water. However, it was an open question whether or
not the exact wave equations can admit them in finite water depth. Besides, it was tradi-
tionally believed that cusped solitary waves, whose 1st-derivative tends to infinity at crest,
are essentially different from peaked solitary ones with finite 1st-derivative. Currently,
based on the symmetry and the exact water wave equations, Liao [1] proposed a unified
wave model (UWM) for progressive gravity waves in finite water depth. The UWM admits
not only all traditional smooth progressive waves but also the peaked solitary waves in
finite water depth: in other words, the peaked solitary progressive waves are consistent
with the traditional smooth ones. In this paper, in the frame of the linearized UWM, we
give, for the first time, some explicit expressions of cusped solitary waves in finite water
depth, and besides reveal a close relationship between the cusped and peaked solitary
waves: a cusped solitary wave is consist of an infinite number of peaked solitary ones with
the same phase speed, so that it can be regarded as a special peaked solitary wave. This also
well explains why and how a cuspon has an infinite 1st-derivative at crest. Besides, it is
found that, when wave height is small enough, the effect of nonlinearity is negligible for
the interaction of peaked waves so that these explicit expressions are good enough approx-
imations of peaked/cusped solitary waves in finite water depth. In addition, like peaked
solitary waves, the vertical velocity of a cusped solitary wave in finite water depth is also
discontinuous at crest (x ¼ 0), and especially its phase speed has nothing to do with wave
height, too. All of these would deepen and enrich our understandings about the cusped sol-
itary waves.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The smooth solitary surface wave was first reported by John Scott Russell [2] in 1844. Since then, various types of solitary
waves have been found. The mainstream models of shallow water waves, such as the Boussinesq equation [3], the KdV equa-
tion [4], the BBM equation [5] and so on [6,7], admit dispersive smooth periodic/solitary progressive waves with permanent
form: the wave elevation is infinitely differentiable everywhere. Especially, the phase speed of the smooth waves is highly
dependent upon wave height: the larger the wave height of a smooth progressive wave, the faster it propagates. The only
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exception is the limiting wave with the highest amplitude, which has a sharp crest, as pointed out by Stokes. However,
Stokes limiting wave has never been observed in practice. Nowadays, the smooth amplitude-dispersive periodic/solitary
waves are the mainstream of researches in water waves.

In 1993, Camassa and Holm [8] proposed the celebrated Camassa–Holm (CH) equation for shallow water waves, and first
reported the so-called peaked solitary wave, called peakon, which has a peaked crest with a discontinuous (but finite) 1st-
order derivative at crest. This is a breakthrough in water wave theories, since it opens a new field of research in the past
20 years. Physically, different from the KdV equation and Boussinesq equation, the CH equation can model phenomena of
not only soliton interaction but also wave breaking [9]. Mathematically, the CH equation is integrable and bi-Hamiltonian,
therefore possesses an infinite number of conservation laws in involution [8]. Besides, it is associated with the geodesic flow
on the infinite dimensional Hilbert manifold of diffeomorphisms of line [9]. Thus, the CH equation has lots of intriguing phys-
ical and mathematical properties. It is even believed that the CH equation ‘‘has the potential to become the new master equa-
tion for shallow water wave theory’’ [10]. In addition, Kraenkel and Zenchuk [11] reported the cusped solitary waves of the
CH equation, called cuspon. The so-called cuspon is a kind of solitary wave with the 1st derivative going to infinity at crest.
Note that, unlike a peakon that has a finite 1st derivative, a cuspon has an infinite 1st derivative at crest. Thus, it was tradi-
tionally believed that peakons and cuspons are completely different two kinds of solitary waves.

However, the CH equation is a simplified model of water waves in shallow water. It was an open question whether or not
the exact wave equations admit the peaked and cusped solitary waves in finite water depth. For example, the velocity dis-
tribution of peaked/cusped solitary waves in the vertical direction was unknown, since it can not be determined by a wave
model in shallow water (such as the CH equation). Currently, based on the symmetry and the exact wave equations, Liao
proposed a unified wave model (UWM) for progressive gravity waves in finite water depth with permanent form [1]. It
was found that the UWM admits not only all traditional smooth periodic/solitary waves but also the peaked solitary waves
in finite water depth, even including the famous peaked solitary waves of the CH equation as its special case. Therefore, the
UWM unifies both of the smooth and peaked solitary waves in finite water depth, for the first time. In other words, the pro-
gressive peaked solitary waves in finite water depth are consistent with the traditional smooth waves, and thus are as
acceptable and reasonable as the smooth ones.

In this article, we first give an closed-form expression of cusped solitary waves in finite water depth by means of the lin-
earized UWM. Then, we show that, when wave height is small, the effect of nonlinearity is small and only near the crest so
that it is negligible. Thus, a cusped solitary wave might be regarded as an infinite number of peaked solitary ones. This
reveals, for the first time to the best of my knowledge, a simple but elegant relationship between the peaked and cusped
solitary waves in finite water depth.

2. Cusped solitary waves in finite water depth

Let us first describe ‘‘the unified wave model’’ (UWM) [1] briefly. Consider a progressive gravity wave propagating on a
horizontal bottom in a finite water depth D, with a constant phase speed c and a permanent form. For simplicity, the problem
is solved in the frame moving with the phase speed c. Let x; z denote the horizontal and vertical dimensionless co-ordinates
(using the water depth D as the characteristic length), with x ¼ 0 corresponding to the wave crest, z ¼ �1 to the bottom, and
the z axis upward, respectively. Assume that the wave elevation gðxÞ has a symmetry about the crest, the fluid in the interval
x > 0 (and x < 0) is inviscid and incompressible, the flow in x > 0 (and x < 0) is irrotational, and surface tension is neglected.
Here, it should be emphasized that, different from all traditional wave models, the flow at x ¼ 0 is not absolutely necessary to
be irrotational. Let /ðx; zÞ denote the velocity potential. All of them are dimensionless using D and

ffiffiffiffiffiffi
gD

p
as the characteristic

scales of length and velocity, where g is the acceleration due to gravity. In the frame of the UWM, the velocity potential
/ðx; zÞ and the wave elevation gðxÞ are first determined by the exact wave equations (i.e. the Laplace equation r2/ ¼ 0,
the two nonlinear boundary conditions on the unknown free surface g, the bed condition and so on) only in the interval
x 2 ð0;þ1Þ, and then extended to the whole interval ð�1;þ1Þ by means of the symmetry
gð�xÞ ¼ gðxÞ; uð�x; zÞ ¼ uðx; zÞ; vð�x; zÞ ¼ �vðx; zÞ;
which enforces the additional restriction condition vð0; zÞ ¼ 0. It should be emphasized that, in the frame of the UWM, the
flow at x ¼ 0 is not necessarily irrotational, so that the UWM is more general: this is the reason why the UWM can admit both
of the smooth and peaked solitary waves. For details, please refer to Liao [1].

When wave height is small enough, the effect of nonlinearity is small and besides only near the crest, so that the
nonlinearity is negligible, as shown in Section 3. Therefore, we first consider the linearized UWM in this section.

In the interval ð0;þ1Þ, the governing equation r2/ðx; zÞ ¼ 0 with the bed condition /zðx;�1Þ ¼ 0 has two kinds of
general solutions [12], where the subscript denotes the differentiation with respect to z. One is
cosh½nkð1þ zÞ� sinðnkxÞ;
corresponding to the smooth periodic waves with the dispersive relation
a2 ¼ tanhðkÞ
k

6 1; ð1Þ
where a ¼ c=
ffiffiffiffiffiffi
gD

p
is the dimensionless phase speed, k is wave number and n is an integer, respectively. The other is
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cos½nkðzþ 1Þ� expð�nkxÞ;
corresponding to the peaked solitary waves in finite water depth [1], with the relation
a2 ¼ tanðkÞ
k

P 1; ð2Þ
where k has nothing to do with wave number. Here, the linear boundary conditions on free surface are used. Given a 6 1 for
the smooth periodic waves, the transcendental Eq. (1) has a unique solution, as mentioned in the textbook [12]. However,
given a P 1 for the peaked solitary waves, the transcendental Eq. (2) has an infinite number of solutions:
a2 ¼ tan kn

kn
; np 6 kn 6 npþ p

2
; n P 0; ð3Þ
corresponding to an infinite number of peaked solitary waves [1]
gnðxÞ ¼ An expð�kn jxjÞ ð4Þ
in the frame of the linear UWM, where An denotes its wave height. For example, when a2 ¼ 2
ffiffiffi
3
p

=p, the transcendental Eq. (2)
has an infinite number of solutions k0 ¼ p=6; k1 ¼ 4:51413; k2 ¼ 7:73730; k3 ¼ 10:91266; k4 ¼ 14:07281; k5 ¼ 17:22616;
k6 ¼ 20:37587; k7 ¼ 23:52341; k8 ¼ 26:66955; k9 ¼ 29:81472; k10 ¼ 32:95921, and the asymptotic expression
kn � nþ 0:5ð Þp; n > 10; ð5Þ
with less than 0.08% error. In general, kn � ðnþ 0:5Þp is a rather accurate approximation of kn for large enough integer n.
Obviously, the peaked solitary wave (4) is not smooth at crest, i.e. its first derivative is discontinuous. Note that the well-

known peaked solitary wave g ¼ c expð�jxjÞ of the CH equation is only a special case of (4) when An ¼ c and kn ¼ 1. However,
unlike g ¼ c expð�jxjÞ that is a weak solution of the CH equation, it is unnecessary to consider whether or not the peaked
solitary wave (4) is a kind of weak solution, because, unlike the CH equation that is defined in the whole domain
�1 < x < þ1, the governing equation of the UWM is defined only in 0 < x < þ1. Physically, unlike the CH equation and
other traditional wave models, waves in the frame of the UWM are not necessary to be irrotational at x ¼ 0, therefore the
governing equation holds only in the domain 0 < x < þ1, since the solution in the interval �1 < x < 0 is gained by means
of the symmetry. Mathematically, x ¼ 0 is a boundary of the governing equation, and it is well-known that solutions of dif-
ferential equations can be non-smooth at boundary, like a beam with discontinuous cross sections acted by a constant bend-
ing moment. Therefore, in the frame of the UWM, it is unnecessary to consider whether the peaked solitary waves (4) are
weak solutions or not. This is the reason why, unlike the well-known peaked solitary wave g ¼ c expð�jxjÞ of the CH equa-
tion whose phase speed is always equal to its wave height, the phase speed of the peaked solitary waves (4) given by the
UWM has nothing to do with wave height [1]. This is the most attractive novelty of the UWM, which might provide us a sim-
ple, elegant relationship between peaked and cusped solitary waves, as described below.

The above peaked solitary waves in finite water depth have some unusual characteristics, as revealed by Liao [1]. First, it
has a peaked crest with a discontinuous vertical velocity v at crest. Besides, unlike the smooth waves whose horizontal veloc-
ity u decays exponentially from free surface to bottom, the horizontal velocity u of the peaked solitary waves at bottom is
always larger than that on free surface. Especially, different from the smooth waves whose phase speed depends upon wave
height, the phase speed of the peaked solitary waves in finite water depth has nothing to do with wave height, i.e. it is non-
dispersive.

Thus, in the frame of the linear UWM [1], given a dimensionless phase speed a P 1, there exist an infinite number of
peaked solitary waves An expð�knjxjÞwith the same phase speed a but different wave amplitudes An. Thus, we may have such
peaked solitary waves
gðxÞ ¼
X1

n¼0

An expð�knjxjÞ;
where An is a constant, which can be chosen with great freedom, as long as the above infinite series is convergent in the
whole interval ð�1;þ1Þ. As a special case of it, let us consider such a one-parameter family of wave elevations
gðxÞ ¼ Hw

fðbÞ
Xþ1

n¼1

1
nb

expð�kn�1jxjÞ; b > 1; ð6Þ
where Hw denotes wave height, b > 1 is a constant, fðbÞ is the Riemann zeta function, and kn is determined by (2) for the
given a P 1, respectively. Since b > 1, we have

Pþ1
n¼1n�b ¼ fðbÞ so that the above infinite series converges to the wave height

Hw at x ¼ 0, and besides it is convergent in the whole interval ð�1;þ1Þ. However, its 1st derivative at x ¼ 0, i.e.
g0ð0Þ � Hw

fðbÞ
Xþ1

n¼1

kn�1

nb
; ð7Þ
is convergent to a finite value when b > 2, but tends to infinity when 1 < b 6 2, because kn�1 � ðn� 0:5Þp for large enough
integer n and the series

P
1=nb�1 is convergent when b > 2 but tends to infinity when 0 < b 6 2. So, the infinite series (6)
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defines a cusped solitary wave in finite water depth when 1 < b 6 2 and a peaked solitary wave when b > 2. Therefore, in
essence, a cusped solitary wave in finite water depth might be consist of an infinite number of peaked solitary waves (when
1 < b 6 2) with the same phase speed! To the best of the author’s knowledge, this reveals a simple but elegant relationship
between the peaked and cusped solitary waves in finite water depth! In addition, the infinite series (6) illustrates the con-
sistency of the peaked and cusped solitary waves, and besides explains why and how a cuspon has an infinite 1st-derivative
at crest. Since the phase speed of peaked solitary waves (4) in finite water depth has nothing to do with the wave height, it is
straight forward that the phase speed of a cusped solitary wave in finite water depth also has nothing to do with the wave
height, too.

Note that, according to the definition of the wave elevation (6), given a dimensionless phase velocity a P 1 and an arbi-
trary (but small enough) wave height Hw, there exist an infinite number of cusped solitary waves, dependent upon b 2 ð1;2�.
For example, the two cusped solitary waves in finite water depth defined by the infinite series (6) in the case of
a2 ¼ 2

ffiffiffi
3
p

=p;Hw ¼ 1=10 when b ¼ 1:5 and b ¼ 1:9 are as shown in Fig. 1. It should be emphasized that the same expression
(6) can define an infinite number of peaked solitary waves in finite water depth, too, depending on b 2 ð2;þ1Þ. For example,
the two peaked solitary waves in finite water depth in the case of a2 ¼ 2

ffiffiffi
3
p

=p;Hw ¼ 1=10 when b ¼ 5=2 and b ¼ 10 are as
shown in Fig. 2. This well illustrates the consistency of the peaked and cusped solitary waves in finite water depth.

Theoretically speaking, given an arbitrary wave height Hw and a dimensionless phase speed a P 1, there are many differ-
ent types of peaked/cusped solitary waves in finite water depth. For example, a more generalized, two-parameter family of
peaked/cusped solitary waves in finite water depth reads
Fig. 1.
line: b
gðxÞ ¼ Hw

fðb; cÞ
Xþ1

n¼0;n–�c

1
ðnþ cÞb

expð�knjxjÞ; ð8Þ
where b > 1 and c–0 are constants to be chosen with great freedom, fðb; cÞ is a generalized Riemann zeta function, and kn is
determined by (2) for the given a P 1, respectively. Since kn � ðnþ 0:5Þp for large enough integer n, the above infinite series
defines a cusped solitary wave when 1 < b 6 2 and a peaked ones when b > 2, respectively. This illustrates once again the
consistency of the peaked and cusped solitary waves in finite water depth.

According to the linearized UWM [1], the velocity potential /þ (defined only in the interval x > 0) corresponding to the
peaked/cusped solitary wave elevation (6) reads
/þ ¼ �aHw

fðbÞ
Xþ1

n¼1

cos½kn�1ðzþ 1Þ� expð�kn�1xÞ
nb sinðkn�1Þ

; ð9Þ
which gives, using the symmetry, the corresponding horizontal velocity
u ¼ aHw

fðbÞ
Xþ1

n¼0

kn cos½knðzþ 1Þ� expð�knjxjÞ
ðnþ 1Þb sinðknÞ

ð10Þ
in the whole interval x 2 ð�1;þ1Þ, the vertical velocity
vþ ¼ aHw

fðbÞ
Xþ1

n¼0

kn sin½knðzþ 1Þ� expð�knxÞ
ðnþ 1Þb sinðknÞ

ð11Þ
in the interval x 2 ð0;þ1Þ, and the vertical velocity
x
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ffiffiffiffi
p
p

). Solid line: b ¼ 10; dashed
line: b ¼ 2:5.

S. Liao / Commun Nonlinear Sci Numer Simulat 20 (2015) 769–775 773
v� ¼ �aHw

fðbÞ
Xþ1

n¼0

kn sin½knðzþ 1Þ� expðknxÞ
ðnþ 1Þb sinðknÞ

ð12Þ
in the interval ð�1;0Þ, respectively. Obviously, it holds
lim
x!0

vþ ¼ �lim
x!0

v�–0
for the cusped (1 < b 6 2) and peaked (b > 2) solitary waves, although we always have v ¼ 0 at x ¼ 0. Thus, like a peakon in
finite water depth, a cuspon in finite water depth has the velocity discontinuity at x ¼ 0, too.

Especially, at z ¼ 0 and as x! 0, the corresponding vertical velocity reads
lim
x!0

vþðx;0Þ ¼ aHw

fðbÞ
Xþ1

n¼0

kn

ðnþ 1Þb
which is finite when b > 2 but tends to infinity when 1 < b 6 2, since kn � ðnþ 0:5Þp for large enough integer n. Thus, unlike
a peaked solitary wave in finite water depth whose v is always finite, the vertical velocity of the cusped solitary waves in
finite water depth tends to infinity at z ¼ 0 as x! 0. Mathematically, this is acceptable, since it is traditionally believed that
a cuspon has a higher singularity than a peakon. Such kind of singularity leads to a more strong vortex sheet at x ¼ 0 near
z ¼ 0. Physically, in reality such kind of singularity and discontinuity, ‘‘if it could ever be originated, would be immediately
abolished by viscosity’’, as mentioned by Lamb [13].

3. Effect of nonlinearity

To consider the effect of the nonlinearity, the fully nonlinear boundary conditions on free surface is used. In the frame of
the UWM, we solve the exact wave equation in the x > 0 and then use the symmetry to extend the solution to the whole
domain. For detailed mathematical formulations, please refer to Liao [1].

Without loss of generality, let us consider here a wave system consist of M progressive peaked ones with the same phase
speed a, whose surface elevation given by the linear UWM reads
gðxÞ ¼ H
fðbÞ

XM

n¼1

1
nb

expð�kn�1jxjÞ; b > 1 ð13Þ
where b > 1 and H > 0 are constants, and
a2 ¼ tanðkn�1Þ
kn�1

; n ¼ 1;2; . . . ;M
Since each wave component has the same phase speed, they as a whole construct one progressive peaked wave with a single
wave crest. Obviously, there exist nonlinear interactions between wave components.

According to the linear UWM [1], the velocity potential corresponding to the wave elevation (13) reads
/þ ¼ � aH
fðbÞ

XM

n¼1

cos½kn�1ðzþ 1Þ� expð�kn�1xÞ
nb sinðkn�1Þ

; x > 0 ð14Þ
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In the frame of the HAM, the above expression is now used as the initial guess of the velocity potential. Almost all are the
same as those in [1], except that the velocity potential always contains the above-mentioned part with the same coefficients
and that the wave height are not given. In addition, we choose the same auxiliary linear operator as that in [1], and proper
values of the so-called convergence-control parameters to guarantee the convergence of series solution. For details, please
refer to Liao [1].

Without loss of generality, let us consider the case k0 ¼ p=6; k1 ¼ 4:51413; k2 ¼ 7:73730 and so on. It is found that, when
H ¼ 1=40; b ¼ 1:9 and M ¼ 2;3;4 and so on, respectively, the corresponding wave elevations given by the fully nonlinear sur-
face conditions are very close to the above linear results, as shown in Fig. 3 (when M ¼ 5). It is found that the two wave ele-
vations are almost the same, except near the crest. This is because the peaked wave components with large kn decay very
quickly, since each decays exponentially. Besides, the wave component with larger kn has much smaller wave amplitude:
for example, when M ¼ 10 and b ¼ 1:9, the wave amplitude of the last component (with k9 > 8p) is only about 1.25% of
the first. This example suggests that, when the wave height is small enough, the effect of the nonlinear interaction should
be negligible.

Thus, the explicit expressions (6) and (8) should be good enough approximations of peaked/cusped solitary waves in
finite water depth, when wave height is small enough.
4. Concluding remarks

In summary, in the frame of the linearized UWM [1], we give, for the first time, some explicit expressions of cusped sol-
itary waves in finite water depth by means of the linearized UWM, and reveal that a cuspon might be regarded as an infinite
number of peaked solitary waves with the same phase speed. This kind of consistency also well explains why and how the
1st-derivative of a cusped solitary wave tends to infinity at crest. It is found that, like a peakon in finite water depth, the
vertical velocity of a cuspon is also discontinuous at x ¼ 0, and besides, its phase speed also has nothing to do with wave
height, too. All of these would deepen and enrich our understandings about the peaked and cusped solitary waves.

It is found that, when wave height is small enough, the effect of nonlinearity is negligible for the interaction of peaked
waves, as shown in Section 3. Therefore, the explicit expressions (6) and (8) should be good enough approximations of
peaked/cusped solitary waves in finite water depth, when wave height is small enough.

It should be emphasized that, in the frame of the UWM, the governing equation is defined only in the domain 0 < x < þ1,
since the solution at �1 < x < 0 is given by means of the symmetry. This is quite different from other wave models such as
the CH equation, which are defined in the whole domain �1 < x < þ1. Physically, it means that the flow at crest is not abso-
lutely necessary to be irrotational. Thus, mathematically, we need not consider whether the peaked/cusped solitary waves
are weak solutions or not. This is the reason why, unlike the well-known peaked solitary wave g ¼ c expð�jxjÞ of the CH
equation, whose phase speed is always equal to wave height, the phase speed of the peaked/cusped solitary waves (4) given
by the UWM has nothing to do with wave height! This is the most attractive novelty of the UWM, which provides us a simple
but elegant relationship between peaked and cusped solitary waves in finite water depth. Vice versa, such kind of simple and
elegant relationship further reveals the reasonableness of the UWM.

Finally, we emphasize that the HAM is successfully applied as an easy-to-use, powerful analytic tool to find out the
peaked and cusped solitary waves in finite water depth governed by the UWM. This is a good example to illustrate that a
truly new method can indeed bring us somethings novel and/or different.
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