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ABSTRACT

It is important to know the accurate trajectory of a free fall object in fluid (such as a spacecraft), whose motion might be chaotic in many
cases. However, it is impossible to accurately predict its chaotic trajectory in a long enough duration by traditional numerical algorithms in
double precision. In this paper, we give the accurate predictions of the same problem by a new strategy, namely, the Clean Numerical
Simulation (CNS). Without loss of generality, a free-fall disk in water is considered, whose motion is governed by the
Andersen–Pesavento–Wang model. We illustrate that convergent and reliable trajectories of a chaotic free-fall disk in a long enough interval
of time can be obtained by means of the CNS, but different traditional algorithms in double precision give disparate trajectories. Besides,
unlike the traditional algorithms in double precision, the CNS can predict the accurate posture of the free-fall disk near the vicinity of the
bifurcation point of some physical parameters in a long duration. Therefore, the CNS can provide reliable prediction of chaotic systems in a
long enough interval of time.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039688

I. INTRODUCTION

Free-fall motion widely exists in nature and industry. For exam-
ple, falling leaves and feathers are the common phenomena for people
to see in daily life. A very important application is the spacecraft re-
entry since some objects are massive in size and high-temperature
resistant, and the re-entry may cause structural, environmental, and
safety issues on the Earth's surface. Recently, the re-entry of China's
Tiangong-1 spacecraft has drawn much attention to accurately pre-
dicting the uncontrolled trajectories.1 The six degrees of freedom
(DoF) orbit model is the standard model describing this problem.2,3

Nevertheless, accurately modeling a free-falling process is quite chal-
lenging by the 6 DoF model. The chaotic features inherent of this sys-
tem strongly depend on initial conditions (SDIC)4 and, hence, are a
great threat to numerical calculations.

Unfortunately, traditional numerical methods are naturally not
“clean.” More or less noises (i.e., truncation errors and round-off
errors) are found during the calculation. These noises will increase
exponentially in chaotic cases, due to the SDIC, which was first

discovered by Poincar�e5 in 1890 and developed by Lorenz6 in 1963, i.
e., the so-called “butterfly effect.” Thus, for a chaotic dynamic system,
a tiny variation of the initial condition can result in significant differ-
ences between numerical trajectories after a long-time simulation.7,8

Furthermore, Lorenz9 reported that it is also sensitive to the numerical
algorithm. He found that the (maximum) Lyapunov exponent alters
between negative and positive values even when the time step is very
small. Teixeira et al.10 further investigated the time step sensitivity of
three non-linear atmospheric models utilizing traditional algorithms
in double precision. They made a somewhat pessimistic conclusion
that “for chaotic systems, numerical convergence cannot be guaran-
teed forever.”

In fact, the free-fall problem itself has been experiencing a long
and complicated history until a widely accepted theory emerges. The
qualitative discussion of it can date back to Maxwell.11 At that time, lit-
tle was known about the nature of the transitions between different
modes. Many simple shapes, such as disks, cylinders, polygons, cones,
and even particles, have been studied via experiments or numerical
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simulations of Navier–Stokes equations, and complex falling modes
were discovered, including tumbling, fluttering, steady, and chaotic
postures.12–18 Among these shapes, the disk is the most well-studied
subtopic in this field. A few analytical models developed by researchers
greatly enhanced the understanding of free-fall motion in fluids and
promised the possibility to predict the falling without solving the
Navier–Stokes equations, which are notorious for the high computa-
tional cost. Kuznetsov19 organized a comprehensive summary on that
topic.

A direct way to reveal the rules is the experiment. As for the free-
fall motion of disks, it mainly focuses on the relationships between
physical parameters and falling modes. Willmarth et al. designed a
series of experiments and measured a phase diagram of fluttering,
tumbling, and steady descent according to six related physical parame-
ters.20 By dimensional analysis, three similarities were obtained, and
with small ratios between the thickness and the diameter of the disk,
falling modes only depend on the dimensionless moment of inertia
and the Reynolds number. Field et al. further found a chaotic transi-
tion region between fluttering and tumbling.21 Zhong et al. recently
conducted the most comprehensive experimental research on free-fall
thin disks. They closely studied the relationships between fluttering
(zigzag in their words) free-fall motion and the Reynolds number.
They found a critical Reynolds number of Recr � 2000. The oscillatory
amplitude is proportional to Re below Recr while invariant beyond
Recr.

22 Zhong et al. also researched the mechanism of how two-
dimensional fluttering modes transform to three-dimensional spiral
modes.23,24 Their experimental results have been numerically con-
firmed with an immersed boundary-lattice Boltzmann flux solver.25,26

Based on the three-dimensional spiral modes, Kim et al. further stud-
ied the free-fall motion of a pair of rigidly linked disks. They discov-
ered a mutative falling mode with two disks falling in helical and
conical motions.27 Recently, Lee et al. also studied the bristled disk
where they found that the bristled structure of disks could strengthen
the stability of free-fall motion.28

Naturally, analytical models were built to explain the various
modes and the bifurcation. Kirchhoff made a pioneering distribution
by deriving finite-dimensional governing equations,29 called Kirchhoff
equations, based on an important fact that velocities of the solid body
moving in an ideal incompressible fluid can be decoupled from the
field equations of the fluid itself. Nevertheless, Kirchhoff equations are
only related to ideal fluid corresponding to conservative systems with-
out considering dissipation. It can describe the steady fall regimes and
how to sustain regular or chaotic oscillations and rotations,30,31 but
still far away from the real motion. Inherited from Kirchhoff equa-
tions, many researchers tried to introduce appropriate amendments to
build a better model, especially on replicating the fluttering, tumbling,
stable, and chaotic falling modes and also manifesting the bifurcation
structure between fluttering and tumbling. There are two models with
significant importance, and we introduce them briefly. The first is the
Tanabe–Kaneko model.32 This model first introduces the Joukowsky
theorem to introduce the effect of circulation and implements a sign
function to relate the lift term to the kinematic information of a disk.
Tanabe and Kaneko explained that the introduction of Joukowsky the-
orem may give rise to complex dynamics and chaos during falling in a
fluid due to gravity and expressed the circulation with a sign function.
Although there was some incorrectness of the Tanabe–Kaneko formu-
lation, including that they omitted the effect of added mass and

Archimedean buoyancy and there was some contradiction between
the coefficients, which was criticized after publication,33,34 the
Tanabe–Kaneko model qualitatively gives a reasonable picture of pos-
sible regimes of complex dynamics for a disk falling in a fluid.
Andersen, Pesavento, and Wang proposed a more elaborate model to
describe the fall of a flat disk or a body with an elliptic profile in a fluid
through a finite-dimensional model.35,36 The Andersen–Pesavento–
Wang model considers the problems in the Tanabe–Kaneko model
and is more coherent with the experimental results and the numerical
results from the direct numerical simulation of the Navier–Stokes
equations.

However, Andersen et al. paid much attention to the phenome-
nology of their model but lacked close research in the simulation part.
Without reliable numerical simulation near the heteroclinic bifurca-
tion region, they only mentioned the possibility that the chaotic transi-
tion region found in experiments could be the heteroclinic bifurcation
in their model. Moreover, it turned out in our simulation that the
model cannot provide meaningful prediction in chaos by traditional
numerical methods. Thus, we aim to conduct reliable numerical simu-
lations to closely study the chaotic cases and heteroclinic bifurcation
regions. The motivation of this paper is to implement a radical numer-
ical strategy to empower the Andersen–Pesavento–Wang model with
the ability to accurately predict trajectories in extremely sensitive cases.

In the present paper, the impact of numerical noises is eliminated
by a novel approach. Liao37 suggested a numerical strategy in 2009,
namely, the “Clean Numerical Simulation” (CNS),38,39 to overcome
the limitations mentioned above of traditional algorithms in double
precision. Employing the CNS, reliable/convergent numerical simula-
tions of chaotic dynamical systems can be obtained in a controllable
interval of time 0 � t � Tc, where Tc is called the “critical predictable
time.” Compared with the traditional validated numerical methods
like interval arithmetics,40 the CNS is a practical numerical strategy.
The implementation of MP makes it easier to use and computationally
cheaper than interval arithmetic, while the convergence checks to
determine Tc still practically ensure the reliability of computational
results. This method has been proved to be effective to calculate reli-
able trajectories in many chaotic systems, including the Lorenz equa-
tion,37 three-body system,42–44 and also spatiotemporal chaos.45,46 For
example, by implementing the CNS, Li et al. successfully found more
than 2000 new periodic orbits of the three-body problem, which was
pointed out by Poincar�e5 as a classic chaotic system. Most of these
periodic solutions are inaccessible by traditional means,42–44 which
illustrates the usefulness of the CNS as a powerful tool for reliable
investigation of chaotic systems in physics with high fidelity. As for
the spatiotemporal chaos, Lin et al.45 used the CNS to control numeri-
cal noises smaller than the micro-level thermal fluctuations, by which
it was proved that the inherent micro-level thermal fluctuations are
the root source of macroscopic randomness of Rayleigh–B�enard tur-
bulent convection flows. Hu et al.46 developed a more efficient algo-
rithm of the CNS to simulate the one-dimensional complex
Ginzburg–Landau equation (CGLE). It further exhibits that the CNS
method can accurately maintain both the statistical features of spatio-
temporal systems and the symmetric characteristics of the solutions in
which traditional numerical treatment has failed.

We organize this manuscript as follows. The Andersen–
Pesavento–Wang model and the CNS strategy are briefly introduced
in Sec. II. In Sec. III, we demonstrate the sensitivity of the free-fall
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problem to numerical noises and the advantage of the CNS method by
comprehensive comparisons from both chaotic and periodic simula-
tions. Finally, we close with discussions and concluding remarks in the
last section.

II. MATHEMATICAL MODEL AND NUMERICAL
ALGORITHM
A. Andersen–Pesavento–Wangmodel

As shown in Fig. 1, the Andersen–Pesavento–Wang model is a
comprehensive analytical model to predict the trajectories of a freely
falling two-dimensional disk driven by gravity,

I� _Vx0 ¼ I� þ 1ð Þ _hVy0 � CVy0 � sin h� Fx0 ;

I� þ 1ð Þ _Vy0 ¼ �I� _hVx0 þ CVx0 � cos h� Fy0 ;

1
4

I� þ 1
2

� �
€h ¼ �Vx0Vy0 � s;

8>>>><
>>>>:

(1)

with the coordinate transformation

_x ¼ Vx0 cos h� Vy0 sin h;

_y ¼ Vx0 sin hþ Vy0 cos h;

(
(2)

where the dot denotes the derivative with respect to the time t, (x0; y0)
is the local coordinate fixed with the disk, (x, y) is the global (inertia)
coordinate, ðVx0 ;Vy0 Þ is the velocity of the disk in the local coordinate,
and h is the rotation angle of the disk; the circulation C is given by

C ¼ 2
p

� CTVx0Vy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x0 þ V2

y0

q þ CR
_h

0
@

1
A; (3)

and the viscous forces ðFx0 ; Fy0 Þ and torque s are given by

Fx0 ; Fy0ð Þ ¼ 1
p

A� B
V2
x0 � V2

y0

V2
x0 þ V2

y0

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x0 þ V2

y0

q
Vx0 ;Vy0ð Þ;

s ¼ l1 þ l2j _hj
� �

_h; (4)

respectively. All variables are dimensionless. This model has seven
dimensionless parameters I�;CT ;CR;A;B; l1; l2, where I

� ¼ ðqsbÞ=
ðqf aÞ, with qs;qf being the densities of the disk and fluid and a, b the
length of the semi-major and semi-minor axis of the elliptical disk,
and other parameters are related to the geometry of the falling disk.
For an elliptical disk,35,36 we obtain

CT ¼ 1:2; CR ¼ p; A ¼ 1:4; B ¼ 1:0; l1 ¼ 0:2; l2 ¼ 0:2

(5)

by means of fitting the viscous forces and torques of experimental
results and the direct numerical simulation of the Navier–Stokes equa-
tion. For details, refer to Refs. 35 and 36. In this paper, we use the
Andersen–Pesavento–Wang model with the above-mentioned values
of the parameters CT ;CR;A;B; l1;l2. In this paper, we only adjust
the parameter I� to produce different falling modes of the disk.

B. Clean numerical simulation (CNS)

Generally, the CNS is able to obtain long-term reliable results
thanks to its strategy to control the “numerical noises,” say decrease
the truncation errors to a required level by implementing numerical
schemes with extremely high precision and control the round-off
errors within a required range with all physical/numerical variables
and parameters in multiple precision.

Truncation errors come from the discretization of continuous
systems. The numerical methods have the following general form:

f ðt þ hÞ ¼ f ðtÞ þ h� RHSðtÞ; (6)

where RHS(t) denotes the right-hand side. It varies according to the
numerical methods. For the Nth order Runge–Kutta family method,
N-step multi-step method, and Nth order Taylor series method, the
right-hand side has the following general forms:

RHS tð Þ ¼
XN
i¼1

kif tkið Þ þ O hNð Þ;

RHS tð Þ ¼
XN
i¼1

kif ti�N�1ð Þ þ O hNð Þ

RHS tð Þ ¼
XN
i¼1

f ið Þ tð Þ
i!

hi�1 þ O hNð Þ:

;

8>>>>>>>>><
>>>>>>>>>:

(7)

OðhNÞ is the order of global truncation errors. The CNS is aimed to
reduce the truncation errors so small that it would not damage the
long-term prediction, either by reducing time steps h or increasing N
with high-order methods. The round-off errors invariably arising with
data are stored in computers in finite digits. We implemented the
multiple-precision libraries (MP, called the MPFR library in the C lan-
guage)41 to also reduce the round-off errors to a small enough level.

By that, the numerical noises of the simulation are controlled
arbitrarily small. To determine the critical predictable time Tc, one
would conduct an additional simulation with even smaller numerical

FIG. 1. The local reference frame ðx0; y 0Þ fixed with the disk and the global refer-
ence frame (x, y) of a freely falling two-dimensional desk, where h denotes the rota-
tion angle of the disk, g is the acceleration due to gravity, and C is the circulation.
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noises. In a temporal dynamic system, we assume that numerical
noises grow exponentially within an interval of time t 2 ½0;Tc�,

EðtÞ ¼ E0 exp ðjtÞ; t 2 0;Tc½ �; (8)

where the constant j > 0 is called the noise-growing exponent, which
is coherent with the largest Lyapunov exponent (LLE), E0. It denotes
the level of initial noises (i.e., truncation and round-off errors), and
EðtÞ is the level of evolving noises of numerical simulation.
Theoretically, a critical level of noise Ec determines the critical predict-
able time Tc by the equation

Ec ¼ E0 exp jTcð Þ: (9)

It is obvious to tell from the above equation that the smaller initial
noise E0 promises a longer Tc. Since the true orbits are impossible to
get, the CNS implements a practical method to determine Tc. Let UðtÞ
be a numerical simulation reliable in t 2 ½0;Tc� with the initial noise
E0 and U0ðtÞ be another simulation (with the same physical parame-
ters and the same initial conditions) in t 2 ½0;Tc� with the initial noise
E0
0 that is several orders of magnitude smaller than E0. According to

the hypothesis that numerical noises grow exponentially, it is sure that
T 0
c > Tc and U0ðtÞ in t 2 ½0;Tc� should be much closer to the true

orbit than UðtÞ. Therefore, we use U0ðtÞ, a better simulation with less
numerical noises, to decide Tc of UðtÞ. After obtaining Tc of UðtÞ, we
can name safely that UðtÞ is clean numerical simulation (CNS) in
t 2 ½0;Tc�. These, as mentioned earlier, provide us a heuristic explana-
tion of the strategy of the CNS. The CNS also applies to non-
hyperbolic chaotic systems.

We implement the above strategy to obtain the CNS results of
the Andersen–Pesavento–Wang model. Given the discontinuous term
in Eq. (4), we use a fixed step fourth order Runge–Kutta method with
a strict time step in multiple precision. To determine Tc, an additional
simulation is performed with even smaller time steps and more digits
to store data in computer to guarantee that the extra simulation con-
tains even less numerical noises. For the formal definition of Tc, we
follow the form in Ref. 37. With the formula that j1� u1

u2
j > d; at

t ¼ Tc, where d ¼ 1% in this paper, we determine the exact Tc of the
Andersen–Pesavento–Wang model. In the following manuscript, we
would like to demonstrate where and how numerical noises can harm
the fidelity of trajectory prediction in the Andersen–Pesavento–Wang
model.

III. ACCURATE PREDICTION GIVEN BY THE CNS
A. Chaotic trajectories

It was regarded that chaotic free-fall motion of disks in the water
is long-term unpredictable by numerical simulation. In this section,
we address that the CNS is able to provide long-term reliable predic-
tion. We study the chaotic case with I� ¼ 2:2 reported by Andersen
et al.35,36 Four different types of initial conditions are considered
for generality. These four initial conditions are listed in the form
ðx; y; h;Vx0 ;Vy0 ; _hÞ in Table I with their corresponding schematic
diagram shown in Fig. 2.

Traditional methods are powerless as a prediction tool with
chaos. In case 1, we computed trajectories by the fourth order
Runge–Kutta method in double precision with different time steps
from 1� 10−2 to 1� 10−7. The trajectories are plotted in Fig. 3. It is
found that all trajectories are divergent from each other after about
250UT. Although traditional numerical methods can obtain

qualitatively correct chaotic trajectories, these trajectories are of little
use from the aspect of prediction: it is impossible to tell which one
should be used as the predicted trajectory. The CNS, on the other
hand, is able to give true trajectories: the trajectory with h ¼ 1� 10−6

in 60-digits and that with h ¼ 1� 10−7 in 120-digits. Therefore, for a
chaotic system, the reliable solution is too sensitive to be found by the
traditional approach. The good thing is that CNS can perfectly circum-
vent this issue.

Without loss of generality, we consider the relationships between
Tc and numerical noises in case 1. We have demonstrated that with
h ¼ 1� 10−6 in 60-digits, the trajectory is clean. According to that,
two sets of numerical experiments are conducted to consider the effect
of truncation and round-off errors, respectively. The first set is
designed to contain only truncation errors: thus, all data are stored in
60-digits, while the time steps are larger than h ¼ 1� 10−6. The sec-
ond set is designed to contain only round-off errors: thus, the same
time step h ¼ 1� 10−6 is implemented, but data are stored in less dig-
its, from 16-digits (double precision) to around 25-digits. With the
definition of Tc, we could compute Tc of these cases by comparing the
trajectories with the clean trajectory computed with h ¼ 1� 10−6 in
60-digits. With these two sets of numerical experiments, we confirm
that Tc of the Andersen–Pesavento–Wang model also applies to the
exponential growth law. There exist linear relationships between Tc
and the logarithm of time steps h, Tc, and the digits of data K. The
quantitative results are given by the following equations:

Tc � min 10:95K þ 96:11;�42:81 log10hþ 112:56
� �

; (10)

which provide a rough estimation of Tc of case 1. The exact Tc is
decided by the minimum of Tc with truncation and round-off errors.
Generally, with smaller time steps h and larger digits K, longer reliable
prediction could be obtained. Also, it is able to estimate the time
steps and digits needed for a certain Tc for the purpose of prediction
(Fig. 4).

In all four cases, the CNS is able to provide convergent prediction
of the exact falling trajectories of disks. Let us compare the differences

TABLE I. The initial conditions of the four cases of chaotic falling.

No. Angle of attack Rotation ðx; y; h;Vx0 ;Vy0 ; _hÞ
1 ð0; 0; 0; 0; 0:01; 0Þ
2

p ð0; 0; 1; 0; 0:01; 0Þ
3

p ð0; 0; 0; 0; 0:01; 1Þ
4

p p ð0; 0; 1; 0; 0:01; 1Þ

FIG. 2. The schematic diagram of the four types of initial conditions considered.
The four cases correspond to disks that fall from a static state with no angle of
attack, that fall from a static state with an angle of attack, that fall from a rotational
state with no angle of attack, and that fall from a rotational state with an angle of
attack.
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between the falling trajectories computed by the traditional methods
and the CNS. The details of how trajectories computed by traditional
methods diverge from the true trajectories of all four cases are demon-
strated in Fig. 5. The trajectories in red are computed by traditional
methods with h ¼ 1� 10−6, while the trajectories in black are com-
puted by the CNS with the same time steps. In all our cases, the
numerical noises first result in an observable phase difference of pos-
ture angle h. Then, the phase difference continuously increases and
finally develops into a different falling path, marking the failure of pre-
diction. Among the four cases, the divergence happens at different
times. The first case that disks fall from a static state with no angle of
attack has the latest divergence because it takes the longest time for the
initial condition to develop into chaos. Except for that, these four cases
have the same qualitative phenomenon.

B. Heteroclinic bifurcation

In this section, we study the heteroclinic bifurcation region
reported by Andersen et al. in their paper on the analysis of transition
between fluttering and tumbling states.36 They described it as a sharp
transition, while the bifurcation regions are sensitive to noises. In their

work, Andersen et al. succeeded in studying the heteroclinic bifurca-
tion to the precision of 1� 10−5. With the help of CNS, we approach
the heteroclinic bifurcation region in even higher precision of
1� 10−11 and provide reliable prediction, which was never reported
before. It is worth noting that only the CNS can predict the falling
modes in that high precision as shown in the following example.

Given the dynamical characteristics of the Andersen–
Pesavento–Wang model, it has four steady solutions, corresponding to
two fixed points where disk falls vertically, and gravity is balanced by
drag,

vx0

vy0

h
_h

2
66664

3
77775 ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffi
p

A� B

r
0

p
2
;
3p
2

0

2
66666664

3
77777775
¼

�V

0
p
2
;
3p
2

0

2
666664

3
777775; (11)

and two other fixed points where the face of the disk is normal to the
direction of motion,

FIG. 3. (a) The trajectories of the same
initial condition computed by the fourth
order Runge–Kutta method in double pre-
cision with different time steps. All trajecto-
ries are divergent from each other, making
these trajectories of little value a predic-
tion. (b) The trajectories of the same initial
condition but computed by the CNS. The
black dotted trajectory is computed with
smaller time steps and data stored in
more digits, which proves that the red tra-
jectory is “clean.”

FIG. 4. (a) The linear relationships
between Tc and decimal digits K; (b) the
linear relationships between Tc and the
logarithm of steps.
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vx0

vy0

h
_h

2
66664

3
77775 ¼

0

�
ffiffiffiffiffiffiffiffiffiffiffiffi
p

Aþ B

r
0;p

0

2
6666664

3
7777775
¼

0

�W

0;p

0

2
66664

3
77775: (12)

Andersen et al. discovered that the fluttering modes transform to
tumbling modes via a heteroclinic bifurcation at a specific I�c , that is
with I close to I�c , all disks with I� < I�c fall in fluttering modes, while
disks with I� > I�c fall in tumbling modes, as shown in Fig. 6. So,
mathematically, I�c is the critical parameter that decides disks' falling
modes. Note that the periodicity of disks grows exponentially longer
as I� approaches I�c . Andersen et al. explained that the phenomenon
results from heteroclinic bifurcation like the famous Shilnikov
phenomenon.

With the help of the CNS, it is able to obtain an I� value that is
extremely close to I�c by a dichotomization process based on the fact
that I�c must lie between fluttering and tumbling modes. For example,
I� ¼ 1:219 146 631 202 101 5 is very close to I�c with a precision of
1� 10−11. Its true trajectory is in fluttering modes computed by the
CNS, plotted in Fig. 7. The CNS results can predict the falling modes

even in extremely high precision near the heteroclinic bifurcation
point.

However, the trajectories computed by the traditional methods
with different time steps (1 �10−2, 1 �10−3, and 1� 10−4) act chaotic
as a Computational Chaos (CC) phenomenon, shown in Fig. 7. From
the aspect of prediction, this means that traditional methods cannot
predict the falling modes of trajectories near the bifurcation point. The
CC addresses a loose similarity between the heteroclinic bifurcation
region and the chaotic transition region.21 However, note that when I�

is close to I�c , the periods are elongated. It is easy to find that the “cha-
otic” trajectories in Fig. 7 have the characteristics of periodicity, com-
pared with the chaos discussed in Sec. IIIA and in Fig. 3. The obvious
differences confirm that the heteroclinic bifurcation region and the
chaotic transition region are different.

Considering the special characteristics of the CC here, it is worth
for us to distinguish it from the classic CC proposed by Lorenz47 as a
new type. They have two main differences. First, this type of CC has
characteristics of periodicity as mentioned. The uncertainty only
occurs near the heteroclinic bifurcation point, which decides that the
disk would either flutter or tumble in the next period. Therefore, we
refer such chaos as heteroclinic bifurcation chaos. Second, the CC pro-
posed by Lorenz is only caused by too large time steps and can be

FIG. 5. Comparison between trajectories
computed by traditional methods vs that
computed by the CNS. (a)–(d) correspond
to case 1 to 4, respectively.
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eliminated when traditional methods with smaller time steps are used.
On the other hand, the CC found in the Andersen–Pesavento–Wang
model is unavoidable when computed by traditional methods. No
matter what time steps are picked, the CC always happens. This can

be explained by the fact that such CC can be caused by both truncation
errors and round-off errors, and so traditional methods are powerless
to control these errors small enough to ensure that the simulation is
clean.

Given the characteristics of heteroclinic bifurcation chaos, experi-
mental noises, as pointed out by Andersen et al.,36 could also trigger
that heteroclinic bifurcation chaos in that region. We can only conclude
that the heteroclinic bifurcation of the Andersen–Pesavento–Wang
model is actually different from the chaotic transition region. However,
we cannot preclude the existence of heteroclinic bifurcation chaos dis-
covered here although it is strange that it was never reported before in
any experiments of disks falling in the water. Whether this type of fall-
ing mode exists or the Andersen–Pesavento–Wang model is not correct
as describing the transition between fluttering and tumbling is still an
open question worth further study.

IV. DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we show that the uncertainty of the numerical sim-
ulation of free-fall motion in the water can be overcome by a novel but
powerful tool, the CNS. In the chaotic cases, numerical noises grow
exponentially. Hence, even though they are as small as 1� 10−16, they
are amplified exponentially. It is impossible to obtain long-term
reliable prediction of chaotic free-fall motion in the water by means of
traditional numerical algorithms in double precision unless the CNS is
applied. Besides, in the heteroclinic bifurcation region, numerical
noises can accumulate during the long period and destroy the bifurca-
tion structure, acting like a new type of computational chaos. Under
this circumstance, traditional methods cannot even predict the disk's
falling modes. Although numerical noises can ruin the validity of this
problem, a good way to control them at a small enough level can still
give us a trustful and reliable result in a long enough interval of time.

In the past, the role of numerical noises was usually neglected. It
is magnificent that we implement physical models to simulate and pre-
dict versatile phenomena in the nature, but it is not recommended to
draw conclusions without the awareness of the fidelity of the simula-
tion. Take the re-entry problem as an example. In this kind of big engi-
neering project, no doubt a better prediction of the landing spot will
bring tremendous economic and safety benefits. Hence, this work
shows people a correct direction to radically solve chaotic problems by
numerical methods, and it is of practical importance.
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