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a b s t r a c t

A general analytic approach for nonlinear eigenvalue problems is described. Two physical
problems are used as examples to show the validity of this approach for eigenvalue
problems with either periodic or non-periodic eigenfunctions. Unlike perturbation
techniques, this approach is independent of any small physical parameters. Besides,
different from all other analytic techniques, it provides a simple way to ensure the
convergence of series of eigenvalues and eigenfunctions so that one can always get accurate
enough approximations. Finally, unlike all other analytic techniques, this approach
provides great freedom to choose an auxiliary linear operator so as to approximate the
eigenfunction more effectively by means of better base functions. This approach provides
us a new way to investigate eigenvalue problems with strong nonlinearity.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

There exist many nonlinear eigenvalue problems in science and engineering. Generally speaking, nonlinear eigenvalue
problems aremuchmore difficult to solve than linear ones. Many nonlinear eigenvalue problems havemultiple eigenvalues
and eigenfunctions. However, even by means of numerical techniques, it is difficult to find all multiple solutions of a
nonlinear differential equation.
There are some analytic techniques for nonlinear eigenvalue problems, which are based on either perturbation

techniques [1–6], or traditional non-perturbation methods such as the Adomian decomposition method [7–10], Lyapunov
artificial small parameter method [11], and so on. It is well known that perturbation techniques are too strongly dependent
upon small physical parameters. Besides, convergence radius of perturbation series is often small, so that perturbation
approximations are valid in general only for problems with weak nonlinearity. In form, the traditional non-perturbation
techniques, such as the Adomian decomposition method and the Lyapunov artificial small parameter method, seem
independent of small physical parameters. However, like perturbation techniques, they are in fact valid only for weakly
nonlinear problems. This is mainly because both the perturbation techniques and the traditional non-perturbationmethods
do not provide a way to ensure the convergence of solution series. Besides, by means of perturbation and non-perturbation
techniques, one has no freedom to choose better base functions so as to express the eigenfunction more effectively.
Homotopy is a fundamental concept in topology and differential geometry, which can be traced back to Poincaré [12].

Based on homotopy, an analytic technique, namely the homotopy analysis method (HAM) [13–17], is proposed and widely
applied to solve strongly nonlinear problems in science, engineering and finance [18–27]. Unlike perturbation techniques,
the homotopy analysis method is independent of any small physical parameters. Besides being different from perturbation
and traditional non-perturbation methods, it provides a simple way to ensure the convergence of solution series so that
one can always get accurate enough approximations even for strongly nonlinear problems. Furthermore, unlike all other
analytic techniques, the homotopy analysis method provides great freedom to choose the so-called auxiliary linear operator
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so that one can approximate a nonlinear problem more effectively by means of better base functions [16]. By means of the
homotopy analysis method, a few new solutions of some nonlinear problems [28,29] are found, which are neglected by all
other analytic methods and even by numerical techniques. In sum, the homotopy analysis method is independent of small
physical parameters, and is valid for strongly nonlinear problems.
In this paper, a general analytic approach for nonlinear eigenvalue problems is described by means of two examples. In

Section 2, the famous Euler problem of a beam is solved, whose eigenfunction is periodic. The closed-form exact solution
[30] of the eigenvalue and eigenfunction of this problem can be expressed by elliptic integrals and Jacobi elliptic functions,
so that our series solutions can be compared with the exact solutions. In Section 3, a nonlinear eigenvalue problem related
to the collapse of optical pulse is investigated, whose eigenfunction is non-periodic. To show the validity of our approach,
our series solutions are comparedwith exact or numerical ones in Sections 2 and 3. In Section 4, discussions and conclusions
are given.

2. Problems with periodic eigenfunction

For an example of periodic eigenvalues, let us consider a beam with uniform cross-section acted by an axial load P ,
governed by

dθ
dξ
= −

Pu
EI
, u(0) = u(l) = 0,

where θ denotes the rotation of cross-section and u its deflection, ξ is the arc-coordinate of the natural axis, l the length
of the beam, I the moment of inertia, E the Young’s Modulus of the beam material, respectively. Differentiating the above
equation with ξ and using the relationship sin θ = du/dξ , we have

θ ′′(ξ)+
P
EI
sin[θ(ξ)] = 0, θ ′(0) = θ ′(l) = 0.

Defining the dimensionless arc-coordinate of the natural axis

s =
(
ξ

l

)
π,

we have

θ ′′(s)+ λ sin[θ(s)] = 0, θ ′(0) = θ ′(π) = 0, (1)

where the eigenvalue λ is defined by

λ =
P
EI

(
l
π

)2
. (2)

So, as long as the eigenvalue λ is given, one has the axial load

P = λ(EI)
(π
l

)2
.

2.1. Approach based on the HAM

Let us consider the non-zero solution θ(s) with θ(0) = α. For a given non-zero value of α, we should find the
corresponding eigenfunction θ(s) and the eigenvalue λ that is related to the axial load P through (2). Without loss of any
generality, we rewrite the equation as

θ ′′(s)+ λ sin[θ(s)] = 0, 0 < s < π, (3)

subject to the boundary conditions

θ ′(0) = θ ′(π) = 0, θ(0) = α. (4)

The above nonlinear differential equation has a closed-form exact solution1:

λ =
4κ2K 2(m∗)

π2
, κ = 1, 2, 3, . . . , (5)

θ(s) = −2 sin−1
[
m∗ sn

(√
λ s− K(m∗),m∗

)]
, (6)

1 This closed-form solution was given by the anonymous reviewer. I would like to express my sincere thanks to the reviewer for this.
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wherem∗ = sin(α/2), K(m∗) is the complete elliptic integral of the first kind, and sn is a kind of Jacobi elliptic function. For
details, please refer to Timoshenko and Gere [30].
According to Eqs. (3) and (4), it is obvious that the eigenfunction θ(s) can be expressed by the periodic base functions

{cos(n κ s) | n ≥ 1, κ ≥ 1, n ∈ N, κ ∈ N} (7)

as

θ(s) =
+∞∑
n=1

bn cos(nκs), (8)

where bn is a coefficient, and κ ≥ 1 is an integer. Note that the above expression automatically satisfies the boundary
condition θ ′(0) = θ ′(π) = 0. It provides us the so-called Solution Expression of θ(s).
According to Eq. (3), we define a nonlinear operator

N [φ(s; q),Λ(q)] =
∂2φ(s; q)
∂s2

+Λ(q)
(
sin[qφ(s; q)]

q

)
, (9)

where q ∈ [0, 1] denotes the embedding parameter. Let θ0(s) denote a initial guess of the eigenfunction, which satisfies
the boundary conditions (4). Besides, let L denote an auxiliary linear operator, and h̄ a non-zero auxiliary parameter,
respectively. All of θ0(s), L and h̄ will be chosen later with great freedom. Then, we construct a two-parameter family of
differential equations

(1− q)L [φ(s; q)− θ0(s)] = q h̄ N [φ(s; q),Γ (q)], 0 < s < π, (10)

subject to the boundary conditions

∂φ(s; q)
∂s

∣∣∣∣
s=0
=
∂φ(s; q)
∂s

∣∣∣∣
s=π
= 0, φ(0; q) = α. (11)

Obviously, when q = 0, because of the propertyL(0) = 0 of any linear operatorL, Eqs. (10) and (11) have the solution

φ(s; 0) = θ0(s). (12)

When q = 1, since h̄ 6= 0, Eqs. (10) and (11) are equivalent to the original ones, (3) and (4), provided

φ(s; 1) = θ(s), Λ(1) = λ. (13)

Write

Λ(0) = λ0, (14)

where λ0 denotes the initial guess of the eigenvalue. Then, as q increases from 0 to 1, φ(s; q) varies (or deforms) from
the initial guess θ0(s) to the eigenfunction θ(s), so does Λ(q) from the initial guess λ0 to the eigenvalue λ. These kinds of
deformations φ(s; q) andΛ(q) are totally determined by the so-called zeroth-order deformation equations (10) and (11).
Then, expanding φ(s; q) andΛ(q) into Taylor series with respect to the embedding parameter q, we have, using (12) and

(14), the so-called homotopy-series

φ(s; q) = θ0(s)+
+∞∑
m=1

θm qm, (15)

Λ(q) = λ0 +
+∞∑
m=1

λm qm, (16)

where

θm(s) = Dm[φ(s; q)], λm = Dm[Λ(q)], (17)

in which

Dmf =
1
m!
∂mf
∂qm

∣∣∣∣
q=0

(18)

is called the mth-order homotopy-derivative of f .
Note that, in general, the radius of convergence of a power series is finite. Fortunately, the homotopy-series (15) and

(16) contain an auxiliary parameter h̄, and besides we have great freedom to choose the auxiliary linear operator L, as
illustrated by Liao [16]. Assume that the auxiliary linear operator L and the auxiliary parameter h̄ are properly chosen so
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that the homotopy-series (15) and (16) are convergent at q = 1. Then, using (13), we have the so-called homotopy-series
solution

θ(s) = θ0(s)+
+∞∑
m=1

θm , (19)

λ = λ0 +

+∞∑
m=1

λm. (20)

According to the fundamental theorems in calculus, each coefficient of Taylor series of a function is unique. Thus, θm(s)
and λm are unique, and are determined by φ(s; q) andΛ(q), respectively. Therefore, the governing equations and boundary
conditions of θm(s) and λm can be deduced from the zeroth-order deformation equations (10) and (11). For simplicity, write

Eθn = {θ0(s), θ1(s), θ2(s), . . . , θn(s)} ,
Eλn = {λ0, λ1, λ2, . . . , λn} .

Differentiating the zeroth-order deformation equations (10) and (11) m times with respect to q, then setting q = 0, and
finally dividing bym!, we have the so-calledmth-order deformation equation:

L[θm(s)− χmθm−1(s)] = h̄ Rm(Eθm−1, Eλm−1), (21)

subject to the boundary conditions

θ ′m(0) = θ
′

m(π) = 0, θm(0) = 0, m ≥ 1 (22)

where

Rm(Eθm−1, Eλm−1) =
1

(m− 1)!
dm−1N [φ(s; q),Γ (q)]

dqm−1

∣∣∣∣
q=0

(23)

and

χm =

{
0, m ≤ 1,
1, m > 1. (24)

Using the definitions (9) and (23), and bymeans of Leibnitz’s rule for derivatives of product, we have the explicit expression

Rm(Eθm−1, Eλm−1) = θ ′′m−1(s)+
m−1∑
n=0

λn Sm−n(s), (25)

with the following recurrence formulas

Sn =
(An − Bn)
2i

, n ≥ 0,

A0 = 1, B0 = 1,

An = i
n−1∑
m=0

(
1−

m
n

)
Am θn−m−1, n ≥ 1,

Bn = −i
n−1∑
m=0

(
1−

m
n

)
Bm θn−m−1, n ≥ 1,

in which i =
√
−1. For details, please refer to Liao [17]. According to the above recurrence formula, we have

R1(Eθ0, Eλ0) = θ ′′0 (s)+ λ0θ0(s), (26)

R2(Eθ1, Eλ1) = θ ′′1 (s)+ λ0θ1(s)+ λ1θ0(s), (27)

R3(Eθ2, Eλ2) = θ ′′2 (s)+ λ0θ2(s)+ λ1θ1(s)+ λ2θ0(s)−
λ0

6
θ30 (s), (28)

...

and so on. So, bymeans of symbolic computation software such asMathematica, Maple, MathLab and so on, it is not difficult
to get Rm(Eθm−1, Eλm−1) for large value ofm.
Note that the mth-order deformation equations (21) and (22) are linear ODEs. So, according to (19) and (20), the

original nonlinear eigenvalue problem is transferred into an infinite number of linear ODEs (21) and (22). However, unlike
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perturbation techniques, we do not need any small physical parameters to do such a kind of transformation. Besides, unlike
the traditional ‘‘non-perturbation techniques’’, we have great freedom to choose the auxiliary linear operator L and the
initial guess θ0(s).
Both the auxiliary linear operatorL and the initial guess θ0(s) are chosen under the so-called Rule of Solution Expression:

the auxiliary linear operatorL and the initial guess θ0(s)must be chosen so that the solutions of the high-order deformation
equations (21) and (22) exist and besides they obey the Solution Expression (8). So, for the solutions to obey the Solution
Expression (8) and the boundary condition (4), we choose the initial guess of the eigenfunction:

θ0(s) = α cos(κs). (29)

Because the original equation (3) is of 2nd order, it is natural for us to choose such a 2nd-order auxiliary linear operator

Lu = u′′ + A1(s)u′ + A0(s)u, (30)

where A0(s) and A1(s) are unknown real functions to be determined. Let f1(s), f2(s) be the solutions ofLu = 0, i.e.

L[f1(s)] = 0, L[f2(s)] = 0. (31)

Let θ̂m(s) denote a special solution of Eq. (21), then its general solution is expressed by

θm(s) = θ̂m(s)+ χmθm−1(s)+ C1 f1(s)+ C2 f2(s).

For the solution to obey the Solution Expression (8), wemust choose f1(s) = cos(κs). Because the coefficients A0(s) and A1(s)
are real functions, we must choose f2(s) = sin(κs), according to the fundamental theorems of linear differential equations.
Substituting f1(s) = cos(κs) and f2(s) = sin(κs) into (31) with the definition (30), we have

[A0(s)− κ2] cos(κs)− κA1(s) sin(κs) = 0,
[A0(s)− κ2] sin(κs)+ κA1(s) cos(κs) = 0,

which give

A0(s) = κ2, A1(s) = 0.

Substituting them into (30), we have the auxiliary linear operator

L(u) = u′′ + κ2u, (32)

with the property

L[C1 cos(κs)+ C2 sin(κs)] = 0. (33)

Then, the general solution of Eq. (21) is given by

θm(s) = θ̂m(s)+ χmθm−1(s)+ C1 cos(κs)+ C2 sin(κs).

Using the boundary condition θ ′m(0) = θ
′
m(π) = 0, we have C2 = 0. To satisfy the boundary condition θm(0) = 0, we have

C1 = −θ̂m(0)− χmθm−1(0).

Using the definition (29) of θ0(s), one has

R1(Eθ0, Eλ0) = α(λ0 − κ2) cos(κs).

Due to the property (33) of the auxiliary operatorL, if λ0 6= κ2, the 1st-order deformation equation contains the so-called
secular term s cos(κs), which is non-periodic and thus disobeys the periodic Solution Expression (8). Thus, for the solution
to obey the Solution Expression (8), it must hold

λ0 = κ
2. (34)

Then, it is easy to get the solution θ1(s) = 0 of the 1st-order deformation equations (21) and (22). Similarly, one can get λ1
and θ2(s), and so on. In general, it holds

Rm(Eθm−1, Eλm−1) = Am,1(Eλm−1) cos(κs)+ Am,2(Eλm−1) cos(2κs)+ · · · ,

where Am,n(Eλm−1) is a coefficient dependent upon Eλm−1. In general, for the solution to obey the Solution Expression (8),
we had to enforce Am,1(Eλm−1) = 0, which gives an additional algebraic equation to determine λm−1. Thereafter, one
can get θm(s) by solving the mth-order deformation equations (21) and (22), as mentioned above. In this way, we obtain
λ0, θ1, λ1, θ2(s), λ3, θ3(s), . . . , one after the other. This is easy to do by means of the symbolic computation software.
Note that the linear termof the governing equation (3) is θ ′′, which corresponds to the linear operatorLu = u′′. However,

we choose the auxiliary linear operator Lu = u′′ + κ2u, which has no close relationship with the original nonlinear
equation (3). This is mainly because, different from all other analytic techniques, our approach provides us with great
freedom to choose the auxiliary linear operatorL so as to approximate the eigenfunction by the chosen base functions.
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Fig. 1. Curves of λ ∼ h̄ at the 20th order of approximation. Solid line: κ = 1, α = 1; Dashed line: κ = 1, α = 2; Dash-dotted line: κ = 1, α = 3.

2.2. Solution series

Let (x, u) denote the coordinate of a point of the beam, where u(x) is the displacement of the beam. Then, it holds

x(s) =
∫ s

0
cos[θ(s)] ds, u(s) =

∫ s

0
sin[θ(s)] ds,

where 0 ≤ s ≤ π is the arc length of the beam. Obviously, if θ(s) is a solution for given α = β , then−θ(s) is also a solution
for α = −β , with the same eigenvalue λ for both α = ±β . Thus, for the solution θ(s) of any value of α > 0, there always
exists another solution θ∗(s) = −θ(s). So, we discuss here only the case of α > 0.
Note that we have great freedom to choose the value of the auxiliary parameter h̄. Mathematically, for given α and κ , the

value of λ at any finite order of approximation is dependent upon the auxiliary parameter h̄, because the zeroth and high-
order deformation equations contain h̄. Let Rλh̄ denote the set of all values of h̄ which ensure the convergence of the series
(20) of the eigenvalue λ. According to Liao’s proof [13], all of these series solutionsmust converge to the physical eigenvalue
of the original equations (3) and (4). On the other hand, physically, for given α and κ , λ has only one value, because the
corresponding axial load P is unique. Thus, the limit of all series solutions of λ is the same for given α and κ , as long as they
are convergent. Let h̄ be the variable of the horizontal axis and the limit of the series solution (20) of λ be the variable of
vertical axis. Plot the curve λ ∼ h̄, where λ denotes the limit of the series (20) of the eigenvalue. Because the limit of all
convergent series solutions (20) of the eigenvalue is the same for given α and λ, there exists a horizontal line segment above
the region h̄ ∈ Rλh̄ . In other words, all values of h̄ ∈ Rλh̄ give the same, convergent eigenvalue for the given α and κ . So, by
plotting the curve λ ∼ h̄ at a high enough order approximation, one can find an approximation of the set Rλh̄ , as shown in
Fig. 1 in the case of α = 1. Then, one can choose a proper value of h̄ ∈ Rλh̄ to get a convergent series of λ. For example,
from Fig. 1, it is clear that, when α = 1, the series of λ is convergent by means of h̄ = −1.5, as shown in Table 1. Similarly,
there exists a region h̄ ∈ Rθh̄ , and each value of h̄ in this region ensures the convergence of the series of the eigenfunction
θ(s). It is found that Rλh̄ = Rθh̄ . Thus, as long as the series solution of λ is convergent, the corresponding series solution of the
eigenfunction θ(s) is also convergent to the exact solution, as shown in Figs. 2 and 3. In a similar way, for any given values
of α and κ , we can always find a proper value of h̄ to ensure the convergence of the series of both the eigenvalue λ and the
eigenfunction θ(s).
According to our series solutions, when α = 1, it holds λ/κ2 = 1.137069, x(π) = 2.395950 and κ y

(
π
2κ

)
= 0.899203

for all integer κ ≥ 1, as shown in Table 1. Besides, for any a given value of α, all of λ/κ2, x(π) and κ y
(
π
2κ

)
are the same

for every integer κ ≥ 1, i.e. they are only dependent upon the value of α, as shown in Table 2. All of these series results
completely agree with the exact solution (5) and (6), as shown in Figs. 2 and 3. This indicates the validity of the analytic
approach for nonlinear eigenvalue problems with periodic eigenfunction.
Let Pκ(α) and Eκ(α) denote the axial load and the inner energy of the beam for given α and κ . According to our series

solutions, it holds

Pκ(α) = κ2 P1(α), Eκ(α) = κ2 E1(α). (35)
So, for given α, there exist an infinite number of eigenfunctions and eigenvalues with different κ , but λ/κ2, Pκ/κ2 and Eκ/κ2
are independent of κ . Thus, for a large value of κ ≥ 2, one needs much larger axial load P and much more energy. That is the
reason why the deformations of a beam in the case of κ ≥ 2 are hardly observed in practice.
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Table 1
Convergent series solutions of Example 1 when α = 1 by means of h̄ = −3/2

κ x(π) κ y
(
π
2κ

)
λ/κ2

1 2.39590 0.899203 1.137069
2 2.39590 0.899203 1.137069
3 2.39590 0.899203 1.137069
4 2.39590 0.899203 1.137069
8 2.39590 0.899203 1.137069
12 2.39590 0.899203 1.137069
16 2.39590 0.899203 1.137069
20 2.39590 0.899203 1.137069
50 2.39590 0.899203 1.137069

Fig. 2. The eigenfunctions θ(x) when α = 1 by means of h̄ = −2. Solid line: 10th-order approximation when κ = 1; Dashed line: 10th-order
approximation when κ = 2; Dash-dotted line: 10th-order approximation when κ = 3; Symbols: the corresponding exact solution given by (5) and (6).

Fig. 3. The deformation of the beam when α = 1 (λ/κ2 = 0.899203) by means of h̄ = −3/2. Solid line: 10th-order approximation when κ = 4; Dashed
line: 10th-order approximation when κ = 3; Dash-dotted line: 10th-order approximation when κ = 2; Dash-dot-dotted line: 10th-order approximation
when κ = 1; Symbols: the corresponding exact solution given by (5) and (6).
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Table 2
Convergent series solution of Example 1 for different values of α

α x(π) κ y
(
π
2κ

)
λ/κ2

0.25 3.09266 0.24838 1.007856
0.50 2.94778 0.48709 1.031956
0.75 2.71254 0.70686 1.073986
1 2.39590 0.89920 1.137069
1.25 2.00989 1.05669 1.226361
1.50 1.56848 1.17325 1.350171
1.75 1.08712 1.24423 1.522165
2 0.58130 1.26641 1.765987
2.05 0.47848 1.26479 1.826701
2.10 0.37535 1.26110 1.892437
2.20 0.16848 1.24750 2.041440
2.25 0.06490 1.23755 2.126220
2.28 0.00273 1.23055 2.180905
2.281 0.00066 1.23031 2.18278
2.2812 0.00025 1.23026 2.18315
2.28132 0.00000 1.23023 2.18338
2.282 −0.00141 1.23006 2.18466
2.30 −0.03871 1.22546 2.21910
2.50 −0.45305 1.15520 2.69940

Let

θ(s) =
+∞∑
m=1

Bm cos(mκs)

denote the solution of Eqs. (3) and (4), where Bm is a coefficient and κ ≥ 1 is an integer. According to our series solution, the
coefficient Bm is only dependent upon the value of α, i.e. it is independent of κ . So, as long as one gets the series solution θ(s)
in the case of κ = 1, one has the series solutions for all integers κ ≥ 1. For example, when κ = 2, the deformation of the
beam has two similar parts: one is in the range of 0 ≤ s ≤ π/2, the other is in π/2 ≤ s ≤ π , where s is the arc length of the
beam, and the 2nd is the inverse of the 1st. When κ = 3, the deformation of the beam has three similar parts in the range
of 0 ≤ s ≤ π/3, π/3 ≤ s ≤ 2π/3, 2π/3 ≤ s ≤ π , respectively, as shown in Fig. 3. So, there exists a kind of similarity of
eigenfunctions: for a given value of α, the deformation of the beam has κ similar parts for the κth eigenfunction. In general,
it holds

y(s) = κ y
( s
κ

)
, s ∈ [0, π]. (36)

Note that the above relation is not obvious in the exact solution (5) and (6). In some cases, the eigenfunctions look elegant
and beautiful, as shown in Fig. 4 for α = 2, Fig. 5 for α = 2.05, Fig. 6 for α = 2.2, Fig. 7 for α = 2.5, and Fig. 8 for α = 2.25,
respectively. All of these curves are obtained by our analytic approach, and agree well with the exact solution.
In this section, we use a beam with uniform cross-section acted by an axial load as an example to show the validity of

our analytic approach for nonlinear eigenvalue problems with periodic eigenfunctions.

3. Problems with non-periodic eigenfunction

As an example of eigenvalue problems with non-periodic eigenfunctions, let us consider here the eigenvalue problem
governed by

urr +
(
d− 1
r

)
ur − 2λu+ 2u3 = 0, u(0) = 1, u(+∞) = 0,

where λ is an unknown eigenvalue, u(r) is the eigenfunction, d = 1, 2, 3 is the number of dimensions, and the subscript
denotes the derivatives with respect to the independent variable r , respectively. This nonlinear eigenvalue problem was
solved numerically by Silberberg [31], who investigated an optical pulse that collapses simultaneously and symmetrically
in time and space under the combined effect of diffraction, anomalous dispersion, and nonlinear refraction.
According to the boundary conditions, the eigenfunction u(r) is obviously non-periodic. Besides, it is easy to find that

u(r) is an even function, i.e. u(−r) = u(r). So, we introduce the transformation

u(r) = w(ξ), ξ =
1

1+ γ r2
,

and the original equation becomes

2γ (1− ξ)ξ 3w′′ + γ ξ 2[4(1− ξ)− d] w′ − λ w + w3 = 0, w(0) = 0, w(1) = 1, (37)
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Fig. 4. The deformation of the beam when α = 2 (λ/κ2 = 1.765987) by means of h̄ = −1. Solid line in red: κ = 1; Solid line in blue: κ = 2; Solid line in
yellow: κ = 3; Solid line in black: κ = 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 5. The deformation of the beam when α = 2.05 (λ/κ2 = 1.826701) by means of h̄ = −1. Solid line in red: κ = 3; Solid line in yellow: κ = 5; Solid
line in blue: κ = 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where the prime denotes the differentiation with respect to ξ . Note that both the eigenfunction w(ξ) and the eigenvalue
λ are unknown, but we have only one differential equation for w(ξ). Thus, an additional algebraic equation is necessary to
determine the eigenvalue λ. To do so, we substitute the boundary condition w(1) = 1 into (37) and obtain the following
algebraic equation

λ = 1− γ d w′(1), (38)

which provides us a relation between the eigenvalue λ and the eigenfunctionw(ξ).

3.1. Approach based on the HAM

It is reasonable to assume thatw(ξ) can be expressed by the set of non-periodic base functions{
ξm | m ≥ 1,m ∈ N

}
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Fig. 6. The deformation of the beam when α = 2.2 and κ = 7 with λ/κ2 = 2.041440.

Fig. 7. The deformation of the beam when α = 2.5 and κ = 5 with λ/κ2 = 2.6994.

as follows:

u(ξ) =
+∞∑
m=1

am ξm, (39)

where am is a coefficient.
Letw0(ξ) denote an initial guess ofw(ξ) that satisfies the boundary conditions,L an auxiliary linear operator, h̄ a non-

zero auxiliary parameter, and q ∈ [0, 1] an embedding parameter, respectively. For simplicity, define the nonlinear operator

N [W (ξ ; q),Λ(q)] = 2γ ξ 3(1− ξ)
∂2W (ξ ; q)
∂ξ 2

+ γ ξ 2 [4(1− ξ)− d]
∂W (ξ ; q)
∂ξ

−Λ(q)W (ξ ; q)+W 3(ξ ; q). (40)

We construct the zeroth-order deformation equation

(1− q)L[W (ξ ; q)− w0(ξ)] = q h̄ N [W (ξ ; q),Λ(q)], q ∈ [0, 1], (41)

subject to the boundary conditions

W (0; q) = 0, W (1; q) = 1, q ∈ [0, 1]. (42)
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Fig. 8. The deformation of the beam when α = 2.25 and κ = 25 with λ/κ2 = 2.126220.

When q = 0, becausew0(ξ) satisfies the boundary conditions, it holds obviously

W (ξ ; 0) = w0(ξ). (43)

When q = 1, since h̄ 6= 0, Eqs. (41) and (42) are equivalent to the original equation (37), provided

W (ξ ; 1) = w(ξ), Λ(1) = λ. (44)

Thus, as the embedding parameter q increases from 0 to 1,W (ξ ; q) varies (or deform) from the initial guess w0(ξ) to the
eigenfunction w(ξ), so does Λ(q) from the initial guess λ0 = Λ(0) to the eigenvalue λ. The deformations ofW (ξ ; q) and
Λ(q) are completely determined by Eqs. (41) and (42).
Using (43) and by means of Taylor series, we expand W (ξ ; q) and Λ(q) into the following homotopy-series in the

embedding parameter q:

W (ξ ; q) = w0(ξ)+
+∞∑
m=1

wm(ξ) qm, (45)

Λ(q) = λ0 +
+∞∑
m=1

λm qm, (46)

where

wm(ξ) = Dm [W (ξ ; q)] , λm = Dm [Λ(q)]

with the definition Dm by (18). Note that the zeroth-order deformation equation (41) contains the auxiliary parameter h̄.
Thus, the homotopy-series (45) and (46) are also dependent upon h̄. Besides, we have large freedom to choose the initial
guess w0(ξ) and the auxiliary linear operator L. Assuming that all of w0(ξ), h̄ and L are properly chosen so that the
homotopy-series (45) and (46) are convergent at q = 1, we have, using (43) andΛ(0) = λ0, the homotopy-series solutions

w(ξ) = w0(ξ)+

+∞∑
m=1

wm(ξ), (47)

λ = λ0 +

+∞∑
m=1

λm. (48)

According to the fundamental theorems in calculus, the coefficient of a Taylor series is unique. Thus, both wm(ξ) and
λm are unique, and are governed by unique equations, respectively. Directly substituting the homotopy-series (45) and (46)
into the zeroth-order deformation equations (41) and (42), then comparing the coefficients of qm, we have the mth-order
deformation equation

L[wm(ξ)− χm wm−1(ξ)] = h̄ Rm(ξ), (49)
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subject to the boundary conditions

wm(0) = 0, um(1) = 0, (50)

where χm is defined by (24), and

Rm(ξ) = Dm−1N [W (ξ ; q),Λ(q)]

= 2γ ξ 3(1− ξ)w′′m−1 + γ ξ
2 [4(1− ξ)− d] w′m−1 −

m−1∑
k=0

λm−1−kwk +

m−1∑
k=0

wm−1−k

k∑
j=0

wk−jwj. (51)

For the details of the deduction, please refer to Liao [17]. Note that, differentiating the zeroth-order deformation equations
(41) and (42) m times with respect to q, then setting q = 0, and finally dividing by m!, one can obtain the same mth-order
deformation equation as those listed above, as proved in [22].
Note that we have large freedom to choose the initial guess w0(ξ) and the auxiliary linear operator L. Both of them

should be chosen under the so-called Rule of Solution Expression: the high-order deformation equations (49) and (50) should
have a unique solution wm(ξ) that agrees with the solution expression (39). According to the Solution Expression (39) and
the boundary conditionsw(0) = 0, w(1) = 1, it is obvious to choose the initial guess of eigenfunction:

w0(ξ) = ξ + β(ξ − ξ
2), (52)

where β is a parameter to be determined later. Besides, according to the above-mentioned Rule of Solution Expression, we
simply choose the auxiliary linear operator

Lu = u′′ (53)

which has the property

L(C1 + C2 ξ) = 0, (54)

for any real coefficients C1 and C2. Let ŵm(ξ) denote a special solution of Eqs. (49) and (50). Then, according to (54), we have
the general solution

wm(ξ) = ŵm(ξ)+ χm um−1(ξ)+ C1 + C2ξ, (55)

where C1 and C2 are determined by (50), i.e.

C1 = 0, C2 = −ŵm(1)− χm wm−1(1).

In this way, we get um(ξ) and λm (as mentioned below) one by one in the order m = 1, 2, 3, . . .. Note that the high-order
deformation equations (49) and (50) are linear. Thus, it is easy to get approximations at high enough order, especially by
means of the symbolic computation software such as Mathematica, Maple, MathLab and so on.
Because the eigenfunction w(ξ) is non-periodic, we cannot use the Solution Expression (39) to obtain an additional

algebraic equation of λm (m ≥ 1) in a similar way to that described in Section 2. In other words, the idea of avoiding the
appearance of secular terms is useless for eigenvalue problems with non-periodic eigenfunctions. So, we must provide a
new way to find the eigenvalue. According to Eq. (38), we construct the following zeroth-order deformation equation

Λ(q) = 1− (γ d)
∂W (ξ ; q)
∂ξ

∣∣∣∣
ξ=1

. (56)

Substituting the series (45) and (46) into the above equation, and comparing the coefficients of qm, we have
+∞∑
m=0

λm qm = 1− (γ d)
+∞∑
m=0

w′m(1) q
m,

i.e.

λ0 − 1+ (γ d)w′0(1)+
+∞∑
m=1

[λm + (γ d)w′m(1)]q
m
= 0.

Because the above equation holds for every q ∈ [0, 1], one has:

λ0 = 1− (γ d)w′0(1), λm = −(γ d) w′m(1), m ≥ 1. (57)

So, using (52), we have

λ0 = 1− (γ d)(1− β). (58)

In this way, it is easy to get λm.
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Note that the auxiliary parameters γ in (37) and β in (52) are unknown. Let E0 denote the square of residual error of the
initial guess, i.e.

E0 =

∫ 1

0

{
2γ ξ 2(1− ξ)w′′0 + γ ξ

2 [4(1− ξ)− d] w′0 − λ0w0 + w
2
0

}2
dξ,

where λ0 is given by (58). The ‘‘best’’ initial guessw0(ξ) is given by the minimum value of E0, i.e.

∂E0

∂β
= 0

∂E0

∂γ
= 0,

which give

γ = 0.261, β = −0.895, when d = 1;
γ = 0.240, β = −0.635, when d = 2;
γ = 0.226, β = −0.362, when d = 3.

By means of the command FindMinimum of Mathematica, it is easy to get the above results. Note that, using (58), we have
the corresponding initial guess of the eigenvalue λ0 = 0.5054, 0.2152, 0.0766 for d = 1, 2, 3, respectively. It is interesting
that, they are good enough initial guesses to Silberberg’s [31] numerical results λ = 0.5, 0.2055 and 0.05316 for d = 1, 2, 3,
respectively.
The procedure is as follows. First, for a given dimension-number d, determine the ‘‘best’’ values of γ and β by the

minimum of the square residual error E0. Then, the initial approximations of eigenvalue w0(ξ) and eigenvalue λ0 are
obtained by (52) and (58), respectively. Second, becausew0(ξ) and λ0 are known, it is straightforward to get R1(ξ) bymeans
of (51). Then, it is easy to get w1(ξ) by solving the linear ODEs (49) and (50), and then λ1 by means of (57). Similarly, one
can get w2(ξ), λ2, w3(ξ), λ3, and so on. All of these are easy to do by means of the symbolic computation software such as
Mathematica, MathLab, Maple and so on.
It is found thatwm(ξ) is expressed by

wm(ξ) =

6m+2∑
n=1

am,n ξ n, (59)

where am,n are coefficients. Substituting (59) into the mth-order deformation equations (49) and (50), one can obtain the
recurrence formulas for the coefficient am,n.
Note that the governing equation (37) contains the linear term

2γ (1− ξ)ξ 3w′′ + γ ξ 2[4(1− ξ)− d] w′ − λ w,

which corresponds to a complicated linear operator

Lw = 2γ (1− ξ)ξ 3w′′ + γ ξ 2[4(1− ξ)− d] w′ − λ w.

However, the linear differential equation

2γ (1− ξ)ξ 3w′′ + γ ξ 2[4(1− ξ)− d] w′ − λ w = 0

has no simple, closed-form solution. So, if it is used as the auxiliary linear operator, it is rather hard to get high
approximations. Fortunately, unlike all other analytic approaches, our approach provides us with great freedom to choose
the auxiliary linear operator L, as mentioned by Liao [16]. It is due to this kind of freedom that we can simply choose
Lw = w′′ as the auxiliary linear operator so as to express the corresponding eigenfunction by the power series of ξ .

3.2. Solution series

Note that the solution series (47) and (48) contain the auxiliary parameter h̄. In a similar way as described in Section 2,
we can choose a proper value of h̄ to ensure the convergence of the solution series (47) and (48). For example, let us first
consider the case of d = 1, whose exact eigenfunction u(r) = sech(r) and eigenvalue λ = 1/2 are well known. There
exists such a set Rλh̄ so that every value of h̄ ∈ Rλh̄ ensures the convergence of the series solution (48). The set R

λ
h̄ can be

approximately obtained by plotting the so-called λ ∼ h̄ curves at high enough order of approximations, as shown in Fig. 9,
which indicates that the series solution (48) is convergent when−30 ≤ h̄ < 0 in the case of d = 1. This is indeed true: in
the case of d = 1, the series solution (48) indeed converges to the exact eigenvalue λ = 1/2 bymeans of h̄ = −20, as shown
in Table 3. Besides, by means of the so-called homotopy-Padè technique [13], we also get the same eigenvalue λ = 1/2.
Similarly, there exists such a set Ruh̄ so that every value of h̄ ∈ Ruh̄ ensures the convergence of the series solution (47). It is
found that Ruh̄ = Rλh̄ . So, in the case of d = 1 and by means of h̄ = −20, the series solution (47) indeed converges to the
exact eigenfunction u(r) = sech(r), as shown in Fig. 10.
Similarly, in the cases of d = 2 and d = 3, one can find the corresponding Rλh̄ and R

u
h̄ approximately by plotting the curve

λ ∼ h̄, as shown in Fig. 9. Then, it is found that the solution series (47) and (48) are convergent by means of h̄ = −20 in
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Table 3
Approximation of λ of Example 2 when d = 1 and h̄ = −20

Order of approx. λ

2 0.5007
4 0.5001
6 0.5000
8 0.5000
10 0.5000
15 0.5000
20 0.5000

Fig. 9. Curve λ ∼ h̄ at the 10th order of approximation for Example 2. Solid line: d = 1; Dashed line: d = 2; Dash-dotted line: d = 3.

Fig. 10. Comparison of the exact solution u = sech(r)with the HAM approximationwhen d = 1 bymeans of h̄ = −20 for Example 2. Solid line: 5th-order
HAM approximation; Circles: exact solution.

the case of d = 2 and h̄ = −12 in the case of d = 3, respectively, as shown in Fig. 11. The convergent analytic results of
the eigenfunction u(r) in the cases of d = 2 and d = 3 are listed in Table 4. In the cases of d = 2 and d = 3, the series of
eigenvalues converge slowly than that in the case of d = 1. Thus, the homotopy-Padé technique [13] is used to accelerate
the convergence, which gives λ = 0.2055 for d = 2 and λ = 0.0533 for d = 3, respectively. All of these analytic results
agree well with Silberberg’s numerical ones [31].
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Table 4
Convergent series solution of eigenfunction u(r) of Example 2

r u(r)when d = 2 u(r)when d = 3

0 1 1
0.1 0.9961 0.9969
0.2 0.9843 0.9875
0.3 0.9653 0.9723
0.4 0.9398 0.9518
0.5 0.9087 0.9265
0.6 0.8730 0.8973
0.7 0.8338 0.8649
0.8 0.7923 0.8301
0.9 0.7494 0.7937
1.0 0.7059 0.7563
1.25 0.5994 0.6626
1.50 0.5016 0.5735
1.75 0.4160 0.4929
2.00 0.3433 0.4222
2.25 0.2826 0.3612
2.50 0.2324 0.3092
2.75 0.1912 0.2652
3.00 0.1575 0.2279
3.50 0.1072 0.1698
4 0.0733 0.1278
5 0.0349 0.0745
6 0.0169 0.0453
7 0.0083 0.0282
8 0.0041 0.0180
9 0.0021 0.0117
10 0.0011 0.0078

Fig. 11. The HAM approximation of eigenfunction u(r) when d = 2 (by means of h̄ = −20) and d = 3 (by means of h̄ = −12) for Example 2. Solid
line: 20th-order approximation when d = 2; Filled-circles: numerical approximation when d = 2; Dashed line: 20th-order approximation when d = 3;
Open-circles: numerical approximation when d = 3.

In this section, we used an example to show the validity of our approach for nonlinear eigenvalue problems with non-
periodic eigenfunctions.

4. Discussions

In this paper a analytic approach to get series solutions of nonlinear eigenvalue problems is described by means of
two examples. This analytic approach is valid for nonlinear eigenvalue problems with either periodic or non-periodic
eigenfunctions, and thus is rather general. All of our series solutions agree well with exact or numerical results, and this
fact shows the validity of our analytic approach.
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This analytic approach has some obvious advantages. First of all, unlike perturbation techniques, it is independent of
any small physical parameters: it is valid no matter whether or not there exist any small physical parameters in governing
equations and/or boundary conditions. Second, different from other traditional techniques, it provides us a simple way to
ensure the convergence of series solution of eigenvalue and eigenfunction, so that one can always get accurate enough
approximations. Thus, this approach can be applied to solve eigenvalue problems with strong nonlinearity. Third, unlike
all other analytic techniques, this approach provides us great freedom to choose an auxiliary linear operator so as to
approximate the eigenfunction more effectively by means of better base functions. Therefore, this approach can be widely
applied to solve strongly nonlinear eigenvalue problems in science and engineering, no matter whether the corresponding
eigenfunction is periodic or not.
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