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The large deflection of a circular thin plate under uniform external pressure
is a classic problem in solid mechanics, dated back to Von Kármán [1].
This problem is reconsidered in this paper using an analytic approximation
method, namely, the homotopy analysis method (HAM). Convergent series
solutions are obtained for four types of boundary conditions with rather
high nonlinearity, even in the case of w(0)/h > 20, where w(0)/h denotes
the ratio of central deflection to plate thickness. Especially, we prove that
the previous perturbation methods for an arbitrary perturbation quantity
(including the Vincent’s [2] and Chien’s [3] methods) and the modified
iteration method [4] are only the special cases of the HAM. However,
the HAM works well even when the perturbation methods become invalid.
All of these demonstrate the validity and potential of the HAM for the
Von Kármán’s plate equations, and show the superiority of the HAM over
perturbation methods for highly nonlinear problems.

1. Introduction

The large deflection of a circular thin plate under uniform external pressure,
which may date back to Love [5, 6], plays an important role in many
engineering fields, such as mechanical and marine engineering, the precision
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instrument manufacture, and so on. In 1910, Von Kármán [1] derived the so-
called Von Kármán’s plate equations for large displacements. Its differential
form [1, 7] reads

N1[ϕ(y), S(y)] = y2 d2ϕ(y)

dy2
− ϕ(y)S(y) − Qy2 = 0, (1)

N2[ϕ(y), S(y)] = y2 d2S(y)

dy2
+ 1

2
ϕ2(y) = 0, (2)

subject to the boundary conditions

ϕ(0) = S(0) = 0, (3)

ϕ(1) = λ

λ− 1
· dϕ(y)

dy

∣∣∣∣
y=1

, S(1) = μ

μ− 1
· d S(y)

dy

∣∣∣∣
y=1

, (4)

under the definitions

y = r2

R2
a

, W (y) =
√

3(1 − ν2)
w(y)

h
, ϕ(y) = y

dW (y)

dy
, (5)

S(y) = 3(1 − ν2)
R2

a Nr

Eh3
y, Q = 3(1 − ν2)

√
3(1 − ν2)R4

a

4Eh4
p, (6)

where r is the radial coordinate whose origin locates at the center of the
plate, w(y) and Nr describe the deflection and the radial membrane force of
the plate, the constants E , ν, Ra , and h are elastic modulus, the Poisson’s
ratio, radius, and thickness of the plate, respectively, p represents the
external uniform load, and λ and μ are parameters related to the boundary
conditions at y = 1. From Eq. (5), we have the dimensionless deflection

W (y) = −
∫ 1

y

1

ε
ϕ(ε)dε. (7)

As shown in Fig. 1, four types of boundary conditions are considered:

(a) Clamped: λ = 0 and μ = 2/(1 − ν);
(b) Moveable clamped: λ = 0 and μ = 0;
(c) Simple support: λ = 2/(1 + ν) and μ = 0;
(d) Simple hinged support: λ = 2/(1 + ν) and μ = 2/(1 − ν).

Over the past century, lots of analytic/numerical methods are proposed
[8–15] for the Von Kármán’s plate equations. Vincent [2] proposed a
perturbation approach by using the load Q as a small physical parameter,



Analytic Solutions of Von Kármán Plate Under Arbitrary Uniform Pressure 3

Figure 1. Four types of boundary conditions.

say,

ϕ(y) = ϕ(V )(y) =
+∞∑
i=1

ϕ
(V )
i (y)Q2i−1,

S(y) = S(V )(y) =
+∞∑
i=1

S(V )
i (y)Q2i ,

(8)

where ϕ(V )
i (y) and S(V )

i (y) are governed by

Q :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y2 d2ϕ

(V )
1 (y)

dy2
= y2, y ∈ (0, 1),

ϕ
(V )
1 (0) = 0, ϕ

(V )
1 (1) = λ

λ− 1

dϕ(V )
1 (y)

dy

∣∣∣∣
y=1

;
(9)

Q2 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y2 d2S(V )

1 (y)

dy2
= −1

2

(
ϕ

(V )
1 (y)

)2
,

S(V )
1 (0) = 0, S(V )

1 (1) = μ

μ− 1

d S(V )
1 (y)

dy

∣∣∣∣
y=1

;
(10)

· · · · · ·

Q2i+1 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y2

d2ϕ
(V )
i+1(y)

dy2
=

i∑
j=1

ϕ
(V )
j (y)S(V )

i− j+1(y),

ϕ
(V )
i+1(0) = 0, ϕ

(V )
i+1(1) = λ

λ− 1

dϕ(V )
i+1(y)

dy

∣∣∣∣
y=1

;

(11)
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Q2i+2 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y2

d2S(V )
i+1(y)

dy2
= −1

2

i+1∑
j=1

ϕ
(V )
j (y)ϕ(V )

i− j+2(y),

S(V )
i+1(0) = 0, S(V )

i+1(1) = μ

μ− 1

d S(V )
i+1(y)

dy

∣∣∣∣
y=1

.

(12)

In the case of circular plate with clamped boundary (λ = 0, μ = 20/7), the
Vincent’s perturbation solutions are:

ϕ
(V )
1 (y) = − y

2
+ y2

2
, (13)

S(V )
1 (y) = 41y

672
− y2

16
+ y3

24
− y4

96
, (14)

ϕ
(V )
2 (y) = 659y

80640
− 41y2

2688
+ 83y3

8064
− 5y4

1152
+ y5

768
− y6

5760
, (15)

S(V )
2 (y) = − 2357y

1505280
+ 659y2

322560
− 1889y3

967680
+ 103y4

96768
− 59y5

161280

+ 13y6

138240
− 17y7

967680
+ y8

645120
, (16)

· · · · · ·
Unfortunately, Vincent’s perturbation method is valid only for rather small

ratio of central deflection to plate thickness w(0)/h < 0.52 for a circular
plate with clamped boundary [2]. Thereafter, extensive researches were done
to find a better perturbation quantity. For instance, the central deflection
and the average angular deflection were used by Chien [3], Chien and Yeh
[16], and Hu [17] as perturbation quantity. It is found [18] that the central
deflection is the best, which can give perturbation results convergent within
w(0)/h < 2.44 for clamped boundary [3]. Expanding ϕ(y), S(y), and Q
into power series of the central deflection W (0), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(y) = ϕ(C)(y) =
+∞∑
m=1

ϕ(C)
m (y)W 2m−1(0),

S(y) = S(C)(y) =
+∞∑
m=1

S(C)
m (y)W 2m(0),

Q = Q(C) =
+∞∑
m=1

Q(C)
m W 2m−1(0).

(17)
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The procedures of Chien’s perturbation method [3, 7] are:

W (0) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y2 d2ϕ
(C)
1 (y)

dy2
= Q(C)

1 y2, y ∈ (0, 1),

ϕ
(C)
1 (0) = 0, ϕ

(C)
1 (1) = λ

λ− 1

dϕ(C)
1 (y)

dy

∣∣∣∣
y=1

,

−
∫ 1

0

1

ε
ϕ

(C)
1 (ε)dε = 1;

(18)

W 2(0) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y2 d2S(C)

1 (y)

dy2
= −1

2

(
ϕ

(C)
1 (y)

)2
,

S(C)
1 (0) = 0, S(C)

1 (1) = μ

μ− 1

d S(C)
1 (y)

dy

∣∣∣∣
y=1

;
(19)

· · · · · ·

W 2i+1(0) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2
d2ϕ

(C)
i+1(y)

dy2
=

i∑
j=1

ϕ
(C)
j (y)S(C)

i− j+1(y) + Q(C)
i+1 y2,

ϕ
(C)
i+1(0) = 0, ϕ(C)

i+1(1) = λ

λ− 1

dϕ(C)
i+1(y)

dy

∣∣∣∣
y=1

,

−
∫ 1

0

1

ε
ϕ

(C)
i+1(ε)dε = 0;

(20)

W 2i+2(0) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y2

d2S(C)
i+1(y)

dy2
= −1

2

i+1∑
j=1

ϕ
(C)
j (y)ϕ(C)

i− j+2(y),

S(C)
i+1(0) = 0, S(C)

i+1(1) = μ

μ− 1

d S(C)
i+1(y)

dy

∣∣∣∣
y=1

.

(21)

In the case of clamped boundary (λ = 0, μ = 20/7), we have the Chien’s
perturbation solutions

ϕ
(C)
1 (y) = −2y + 2y2, (22)

s(C)
1 (y) = 41y

42
− y2 + 2y3

3
− y4

6
, (23)

ϕ
(C)
2 (y) = 233y

1890
− 2179y2

3780
+ 83y3

126
− 5y4

18
+ y5

12
− y6

90
, (24)



6 X. X. Zhong and S. J. Liao

s(C)
2 (y) = − 211y

19845
+ 233y2

1890
− 529y3

2268
+ 667y4

3240
− 59y5

630

+ 13y6

540
− 17y7

3780
+ y8

2520
, (25)

· · · · · ·
Unfortunately, as pointed out by Volmir [19], the deflection curve given
by the Chien’s perturbation method [3] becomes concave at center when
the central deformation increases to a certain level, which is obviously in
contradiction with physical phenomena.

In summary, for circular plate under uniform external pressure, the
previous perturbation methods [2, 3] are valid only for the small physical
parameters, i.e., corresponding to the weak nonlinearity.

In 1965, a modified iteration method was proposed by Yeh and Liu [4],
which inherits the merits of iteration technique and Chien’s perturbation
method [3]. The procedures of the modified iteration method [4, 7] are as
follows:

y2 d2ψn(y)

dy2
= −1

2
ϑ2

n (y), (26)

y2 d2ϑn+1(y)

dy2
= ϑn(y)ψn(y) + Qn y2, (27)

subject to the boundary conditions

ϑn+1(0) = ψn(0) = 0, (28)

ϑn+1(1) = λ

λ− 1
· dϑn+1(y)

dy

∣∣∣∣
y=1

, ψn(1) = μ

μ− 1
· dψn(y)

dy

∣∣∣∣
y=1

, (29)

with the restriction condition

W (0) = a = −
∫ 1

0

1

ε
ϑn+1(ε)dε (30)

and the initial guess

ϑ1(y) = −2a

2λ+ 1
[(λ+ 1)y − y2]. (31)

However, Zhou [20] studied the relationship between Chien’s perturbation
solutions [3] and the modified iterative solutions [4], but found that
they have the same convergent region. The modified iterative method [4],
therefore, is also only valid for a small central deflection, too. Therefore,



Analytic Solutions of Von Kármán Plate Under Arbitrary Uniform Pressure 7

iteration itself can not enlarge the convergence radius of perturbation series,
although greatly boosts the computational efficiency.

Keller and Reiss [21] proposed the interpolation iterative method by in-
troducing an interpolation parameter to the iteration procedure. Fortunately,
the interpolation iterative method yields convergent solutions even for loads
as large as Q = 7000. However, while all of the iterations can be obtained
explicitly as polynomials, their degrees increase geometrically. Keller and
Reiss [21], therefore, computed the iterations approximately by means of
finite differences and gave numerical results. In 1988, Zheng and Zhou [22]
proved that the series solutions given by the interpolation iterative method
are convergent for arbitrary values of load if proper interpolation iterative
parameter is chosen [22].

In this paper, the same problem is solved by means of the homotopy anal-
ysis method (HAM) [23–26], an analytic approximation technique proposed
by Liao [23] for highly nonlinear problems. Unlike perturbation technique,
the HAM is independent of any small/large physical parameters. Besides, it
provides great freedom to choose equation-type and solution expression of
the high-order approximation equations. Especially, the HAM also provides
us a convenient way to guarantee the convergence of series solutions by
means of introducing the so-called “convergence-control parameter” c0. It
should be emphasized that some mathematical theorems of convergence have
been rigorously proved in the frame of the HAM [25]. For instance, it has
been proved [25] that the power series given by the HAM

u(t) = lim
m→+∞

m∑
n=0

μ
m,n
0 (c0)(−t)n, (32)

where

μ
m,n
0 (c0) = (−c0)n

m−n∑
k=0

(
n − 1 + k

k

)
(1 + c0)k, (33)

converges to 1/(1 + t) in the intervals:

−1 < t < − 2

c0
− 1, when c0 < 0, (34)

and

− 2

c0
− 1 < t < −1, when c0 > 0, (35)

respectively. Thus, the power series (32) converges to 1/(1 + t) either in
the interval (−1,+∞) if c0 < 0 impends 0, or in the interval (−∞,−1)
if c0 > 0 tends to 0, respectively. In other words, the introduction of the
convergence-control parameter c0 allows the power series (32) to converge
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to 1/(1 + t) in its entire definition domain. Note that the traditional power
series (regarding t as a small variable):

1

1 + t
∼ 1 − t + t2 − t3 + t4 − · · · (36)

only converges in the interval (−1, 1). Thus, the so-called “convergence-
control parameter” c0 can indeed greatly enlarge the convergence interval
of solution series. As a powerful technique to solve highly nonlinear
equations, the HAM has been successfully employed to solve various types
of nonlinear problems over the past two decades [27–36]. Note that the
Föppl–Von Kármán’s plate equations were solved by means of the HAM
[37]. Especially, the HAM can bring us something completely new/different:
the steady-state resonant waves were first predicted by the HAM in theory
[38–41] and then confirmed experimentally in a laboratory [40].

In this paper, Von Kármán’s plate equations in the differential form
with clamped boundary are solved at first. By means of the normal
HAM (without iteration), convergent results are obtained in the case
of w(0)/h = 3.03, which is larger than the maximum convergent range
(w(0)/h < 2.44) of the perturbation method [18]. Further, an iteration
approach is proposed in the frame of the HAM to gain convergent solutions
within a rather large ratio of w(0)/h > 20, corresponding to a case of rather
high nonlinearity. Our HAM approximations agree well with those given by
the interpolation iterative method [7]. Furthermore, analytic approximations
for other three boundaries (moveable clamped, simple support, and simple
hinged support) are also presented in a similar way. In addition, we prove
that the previous perturbation methods (including Vincent’s [2] and Chien’s
[3] perturbation methods) and the modified iteration method [4] are only
special cases of the HAM.

2. Analytic approach based on the HAM

Like Zheng [7], we express ϕ(y) and S(y) in power series

ϕ(y) =
+∞∑
m=1

am · ym, S(y) =
+∞∑
m=1

bm · ym, (37)

where am and bm are constant coefficients to be determined. This provides
us the so-called “solution expression” of ϕ(y) and S(y) in the frame of the
HAM. Writing

W (0) = a, (38)



Analytic Solutions of Von Kármán Plate Under Arbitrary Uniform Pressure 9

we have due to Eq. (7) an algebraic equation:∫ 1

0

1

ε
ϕ(ε)dε = −a. (39)

Let ϕ0(y) and S0(y) denote the initial guesses of ϕ(y) and S(y),
respectively, which satisfy the boundary conditions (3), (4), and (39).
Moreover, let L denote an auxiliary linear operator with property L[0] = 0,
H1(y) and H2(y) the auxiliary functions, c0 a nonzero auxiliary parameter,
called the convergence-control parameter, and q ∈ [0, 1] the embedding
parameter, respectively. We construct a family of differential equations in
q ∈ [0, 1]:

(1 − q)L[	(y; q) − ϕ0(y)]

= c0q H1(y)

[
y2 ∂

2	(y; q)

∂y2
−	(y; q)�(y; q) −�(q)y2

]
, (40)

(1 − q)L[�(y; q) − S0(y)]

= c0q H2(y)

[
y2 ∂

2�(y; q)

∂y2
+ 1

2
	2(y; q)

]
, (41)

subject to the boundary conditions

	(0; q) = �(0; q) = 0, (42)

	(1; q) = λ

λ− 1
· ∂	(y; q)

∂y

∣∣∣∣
y=1

, �(1; q) = μ

μ− 1
· ∂�(y; q)

∂y

∣∣∣∣
y=1

, (43)

with the restriction condition∫ 1

0

1

ε
	(ε; q)dε = −a. (44)

Note that 	(y; q), �(y; q) and �(q) correspond to the unknown ϕ(y), S(y),
and Q, respectively, as mentioned below.

Note that Q is unknown for a given value of W (0) = a. Expand �(q) in
a power series

�(q) = Q0 +
+∞∑
m=1

Qm qm, (45)

where

Qm = Dm[�(q)], (46)
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is determined later, in which

Dm[ f ] = 1

m!

∂m f

∂qm

∣∣∣∣
q=0

(47)

is called the mth-order homotopy-derivative of f .
When q = 0, due to the property L(0) = 0, Eqs. (40)–(44) have the

solution

	(y; 0) = ϕ0(y), �(y; 0) = S0(y). (48)

When q = 1, Eqs. (40)–(44) are equivalent to the original equations (1)–(4)
and (39), provided that

	(y; 1) = ϕ(y), �(y; 1) = S(y), �(1) = Q. (49)

Therefore, as the embedding parameter q increases from 0 to 1, 	(y; q)
varies (or deforms) continuously from the initial guess ϕ0(y) to ϕ(y), so
do �(y; q) from the initial guess S0(y) to S(y), and �(q) from Q0 to
Q, respectively. Thus, we call Eqs. (40)–(44) the zeroth-order deformation
equations. Note that Q0 is an unknown constant at present, which will be
determined later.

Using (48), we have the power series

	(y; q) = ϕ0(y) +
+∞∑
m=1

ϕm(y) qm, �(y; q) = S0(y) +
+∞∑
m=1

Sm(y) qm, (50)

in which

ϕm(y) = Dm[	(y; q)], Sm(y) = Dm[�(y; q)], (51)

where Dm is defined by (47).
It is well known that convergence radius of a power series is finite in

general. Fortunately, in the frame of the HAM, we have great freedom
to choose the auxiliary linear operator L and especially the so-called
convergence-control parameter c0. Assume that all of them are properly
chosen so that the power series (45) and (50) are convergent at q = 1. Then,
according to (49), we have the so-called homotopy-series solution

ϕ(y) =
+∞∑
m=0

ϕm(y), S(y) =
+∞∑
m=0

Sm(y), Q =
+∞∑
m=0

Qm . (52)

The governing equations and boundary conditions of ϕm(y), Sm(y), and
Qm−1 are obtained in the following way. Substituting (45) and (50) into
the zeroth-order deformation equations (40)–(44) and then equating the
like-power of q, we have the so-called mth-order deformation equations

L[ϕm(y) − χmϕm−1(y)] = c0 H1(y)δ1,m−1(y), (53)
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L[Sm(y) − χm Sm−1(y)] = c0 H2(y)δ2,m−1(y), (54)

subject to the boundary conditions

ϕm(0) = Sm(0) = 0, (55)

ϕm(1) = λ

λ− 1
· dϕm(y)

dy

∣∣∣∣
y=1

, Sm(1) = μ

μ− 1
· d Sm(y)

dy

∣∣∣∣
y=1

, (56)

with the restriction condition∫ 1

0

1

ε
· ϕm(ε)dε = 0, (57)

where

χm =
{

0 when m ≤ 1,
1 when m > 1,

(58)

and

δ1,m−1(y) = y2 d2ϕm−1(y)

dy2
−

m−1∑
k=0

ϕk(y)Sm−1−k(y) − Qm−1 y2, (59)

δ2,m−1(y) = y2 d2Sm−1(y)

dy2
+ 1

2

m−1∑
k=0

ϕk(y)ϕm−1−k(y). (60)

According to the solution expression (37), we choose

ϕ0(y) = −2a

2λ+ 1
[(λ+ 1)y − y2], S0(y) = (μ+ 1)y − y2 (61)

as the initial guesses of ϕ(y) and S(y), and such an auxiliary linear
operator

L[u(y)] = d2u(y)

dy2
. (62)

Note that the initial guesses (61) satisfy all boundary conditions. Similarly,
according to the solution expression (37), the auxiliary functions H1(y) and
H2(y) should be properly chosen so as to make sure that the right-hand
sides of the high-order deformation equations (53) and (54) are in the
forms

c0 H1(y)δ1,m−1(y) =
∑
k=0

d1,k yk, (63)

c0 H2(y)δ2,m−1(y) =
∑
k=0

d2,k yk, (64)
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where d1,k and d2,k are constants. The auxiliary functions H1(y) and H2(y),
therefore, must be in the form

H1(y) = H2(y) = 1

y2
. (65)

Then, we have the general solutions of the high-order deformation
equations (53) and (54):

ϕm(y) = χmϕm−1(y) + c0

∫ y

0

∫ η

0

δ1,m−1(τ )

τ 2
dτdη + D1,m y + D2,m, (66)

Sm(y) = χm Sm−1(y) + c0

∫ y

0

∫ η

0

δ2,m−1(τ )

τ 2
dτdη + D3,m y + D4,m, (67)

where D1,m , D2,m , D3,m , and D4,m are determined by four linear boundary
conditions (55) and (56), and the unknown Qm−1 is determined by the
restriction condition (57). In this way, ϕm(y) , Sm(y), and Qm−1 of Eqs. (53)
and (54) can be obtained step-by-step, starting from m = 1. Then, we have
the M th-order homotopy-approximation of ϕ(y), S(y), and Q:

ϕ̃(y) =
M∑

m=0

ϕm(y), S̃(y) =
M∑

m=0

Sm(y), Q̃ =
M∑

m=0

Qm . (68)

Define the squared residual error

E =
∫ 1

0

{(
N1

[
ϕ̃(y), S̃(y)

] )2

+
(
N2

[
ϕ̃(y), S̃(y)

] )2
}

dy, (69)

where the nonlinear operators defined by N1 and N2 are related to
the original equations (1) and (2). Obviously, the smaller the E , the
more accurate the HAM approximation. According to Liao [24, 25], the
optimal value of the convergence-control parameter c0 is determined by the
minimum of E . It was proved [24, 25] in general cases that the homotopy-
series converge to solutions of original equations as long as all squared
residual errors tend to zero. Thus, it is enough to check the squared residual
error (69) only.

According to Liao [24], convergence of the homotopy-series solutions
can be greatly accelerated by means of iteration technique, which uses the
M th-order homotopy-approximation (66) and (67) as the new initial guesses
ϕ0(y) and S0(y) for the next iteration. This provides us the M th-order
iteration of the HAM. In the iteration process of the HAM, the right-hand
side of Eqs. (53) and (54) are truncated to yN , say,

c0 H1(y) · δ1,m(y) ≈
N∑

k=0

Em,k · yk, c0 H2(y) · δ2,m(y) ≈
N∑

k=0

Fm,k · yk, (70)
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Table 1
The Approximations of Q, the Squared Residual Errors E, and the Used
CPU Time in the Case of a = 5 with the Clamped Boundary by Means

of the HAM (Without Iteration) Using c0 = −0.28

m, Order of Approx. E Q CPU Time (Seconds)

20 6.4 × 10−2 131.7 6
40 5.8 × 10−4 132.1 35
60 9.3 × 10−6 132.1 106
80 2.0 × 10−7 132.2 243
100 5.1 × 10−9 132.2 465
120 1.5 × 10−10 132.2 782
140 4.9 × 10−12 132.2 1205

where Em,k and Fm,k are constants and N is called the truncation
order.

3. Result analysis

Without loss of generality, the Poisson’s ratio ν is taken to be 0.3 in all
cases considered in this paper.

3.1. The HAM-based approach without iteration

Without loss of generality, let us consider the clamped boundary in the
case of a = 5, equivalent to w(0)/h = 3.03. At the beginning, the so-called
convergence-control parameter c0 is unknown. Its optimal value (i.e., –0.28
in this case) is determined by the minimum of the squared residual error
defined by (69). According to Table 1, the squared residual error decreases
to 4.9 × 10−12 by means of c0 = −0.28. Thus, unlike perturbation method
that is valid only for w(0)/h < 2.44 in the same case [18], we gain
convergent result by means of the HAM. This is mainly because the so-
called convergence-control parameter in the frame of the HAM provides us a
convenient way to guarantee the convergence of solution series.

Given a value of a, the optimal value of c0 for the Von Kármán’s plate
equations with clamped boundary can be obtained in a similar way, which
can be expressed by such an empirical formula

c0 = − 50

50 + 0.45 · a
7
2

(0 ≤ a ≤ 5). (71)
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Table 2
The Approximations of Q, the Squared Residual Errors E, and the Used
CPU Time Versus Iteration Times in the Case of a = 5 with the Clamped

Boundary, Given by the First-Order HAM Iteration Approach Using
c0 = −0.55 with the Truncation Order N = 100

m, Times of Iteration E Q CPU Time (Seconds)

10 4.5 × 10−3 132.2 5
20 4.8 × 10−11 132.2 12
30 1.3 × 10−18 132.2 18
40 1.7 × 10−24 132.2 25

Note that, like perturbation approximations, all of these homotopy-
approximations of ϕ(y) and S(y) are expressed in polynomial for a given
value of a.

In Appendix A, we prove that the previous perturbation methods for an
arbitrary perturbation quantity (including the Vincent’s [2] and Chien’s [3]
methods) are only the special cases of the HAM when c0 = −1. This also
explains why the HAM can give convergent results for larger w(0)/h: the
convergence-control parameter c0 plays an important role in the guarantee of
convergence of solution series.

3.2. Convergence acceleration by means of iteration

Iteration can be naturally introduced into the frame of the HAM to greatly
accelerate the convergence, as illustrated by Liao [24, 25]. Without loss of
generality, let us first consider here the same case of a = 5 with the clamped
boundary. It is found that the squared residual error arrives its minimum at
c0 ≈ −0.55 by means of the HAM-based first-order iteration approach with
the truncation order N = 100. As shown in Table 2, the squared residual
error quickly decreases to 1.7 × 10−24 in only 25 seconds, which is about
100 times faster than the HAM approach without iteration. Thus, from the
viewpoint of computational efficiency, the iteration HAM approach is used
in the subsequent part of this paper.

The HAM iteration approach contains two parameters, the iteration order
M and the truncation order N . Without loss of generality, let us further
consider the case of a = 15, corresponding to a higher nonlinearity. As
shown in Fig. 2, the squared residual errors decrease to the level of
10−26 with different iteration order M : the higher order iteration needs
less iteration times, but more CPU times. Thus, from the computational
efficiency, the first-order HAM iteration approach is suggested.
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Figure 2. The squared residual error versus the times of iteration and the CPU times in
the case of a = 15 with clamped boundary, given by the HAM iteration approach using
c0 = −0.13 with the truncation order N = 150 and different order M of iteration approach.
Square: first-order; triangle down: second-order; circle: third-order; triangle up: fourth-order;
and triangle left: fifth-order.

In addition, it is found that the iteration converges with high accuracy
when N is large enough, but larger N also corresponds to a slower con-
vergence. Obviously, as the load increases, i.e., a enlarges, the nonlinearity
becomes stronger, so that larger N is necessary. It is found that, in the frame
of first-order HAM iteration approach, the following empirical formula for
the truncation order is good enough for all cases in this paper:

N = Max{100, γ · a}, (72)

where γ is dependent upon the type of boundary:

γ =

⎧⎪⎪⎨⎪⎪⎩
10, clamped boundary;
13, moveable clamped boundary;

7, simple support boundary;
5, simple hinged support boundary.

As shown in Table 3, by means of the first-order HAM iteration approach,
the convergent results in polynomials are obtained by means of the optimal
convergence-control parameter with the empirical formula

c0 = − 26

26 + a2
(73)

within a ≤ 35, which is large enough for practice, because a = 35 corre-
sponds to w(0)/h = 21.2.

As shown in Fig. 3, Chien’s perturbation method [3] is valid only in
the region of w(0)/h < 2.44, and becomes worser and worser for larger
w(0)/h. In addition, our HAM results agree quite well with those given by



16 X. X. Zhong and S. J. Liao

Table 3
The Homotopy-Approximation of the Load Q Versus a for Clamped

Boundary, Given by the HAM-Based First-Order Iteration Approach with the
Truncation Order N Given by (72) and the Optimal Convergence-Control

Parameter c0 Given by (73)

a c0 N Q

5 −0.51 100 132.2
10 −0.21 100 957.7
15 −0.10 150 3152.1
20 −0.06 200 7386.9
25 −0.04 250 14334.1
30 −0.03 300 24665.7
35 −0.02 350 39053.6

w(0)/h

pR
a4 /E

h4

1 2 3 4 5
0

100

200

300

400

500

w(0)/h

pR
a4 /E

h4

2 4 6 8 10 12 14 16 18 20 22
100

101

102

103

104

105

Figure 3. Comparison of the results given by the HAM-based first-order iteration
approach and other methods for clamped boundary. Solid line: results given by the HAM;
symbols: results given by Chien’s perturbation method [3] (left) and by Zheng [7] using the
interpolation iterative method (right).

Zheng [7] using the interpolation iterative method, but converge in larger
region. The obtained deflections under different loads are depicted in Fig. 4.

In Appendix B, we prove that the modified iteration method [4] is only
a special case of the HAM when c0 = −1. This reveals why the modified
iteration method [4] is valid for weak nonlinearity and besides shows the
importance of the convergence-control parameter c0 in the frame of the
HAM. In fact, it is the convergence-control parameter c0 that differs the
HAM from all other analytic approximations [24, 25].

shijun
高亮
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Figure 4. The deflections of a thin circular plate with clamped boundary given by
the HAM-based first-order iteration approach in the case of a = 5, 15, 25, 35. Solid
line: pR4

a/Eh4 = 117.2; dash-double-dotted line: pR4
a/Eh4 = 2795.2; dash-dotted line:

pR4
a/Eh4 = 12711.2; and dashed line: pR4

a/Eh4 = 34632.0.

Table 4
The Convergent Homotopy-Approximation of the Load Q in Case of

Different Values of a for a Circular Plate with Moveable Clamped
Boundary, Given by the HAM-Based First-Order Iteration Approach Using

the Truncation Order N Given by (72) and the Optimal
Convergence-Control Parameter c0 Given by (74)

a c0 N Q

5 −0.61 100 49.3
10 −0.28 130 240.1
15 −0.15 195 657.7
20 −0.09 260 1372.5
25 −0.06 325 2450.9
30 −0.04 390 3956.8
35 −0.03 455 5952.2
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Table 5
The Convergent Homotopy-Approximation of the Load Q in Case of

Different Values of a for a Circular Plate with the Simple Support
Boundary, Given by the HAM-Based First-Order Iteration Approach with the

Truncation Order N Given by (72) and the Optimal Convergence-Control
Parameter c0 Given by (75)

a c0 N Q

10 −0.44 100 107.8
20 −0.17 140 737.4
30 −0.08 210 2304.8
40 −0.05 280 5199.8
50 −0.03 350 9799.3

Table 6
The Convergent Homotopy-Approximation of the Load Q in Case of

Different Values of a for a Circular Plate with the Boundary of Simple
Hinged Support Given by the HAM-Based First-Order Iteration Approach

with the Truncation Order N Given by (72) and the Optimal
Convergence-Control Parameter c0 Given by (76)

a c0 N Q

10 −0.112 100 890.0
20 −0.021 100 7152.3
30 −0.008 150 24166.4
40 −0.004 200 57308.7
50 −0.002 250 111955.3

Similarly, by means of the first-order HAM iteration approach, the
convergent results for moveable clamped boundary are obtained by means of
the optimal convergence-control parameter with the empirical formula

c0 = − 39

39 + a2
(74)

within the range of a ≤ 35, as shown in Table 4.
For simple support boundary, the convergent results are obtained by

means of the optimal convergence-control parameter with the empirical
formula

c0 = − 80

80 + a2
(75)



Analytic Solutions of Von Kármán Plate Under Arbitrary Uniform Pressure 19

within the range of a ≤ 50, as shown in Table 5. For a circular plate with
the boundary of simple hinged support, the convergent results are obtained
by means of the optimal convergence-control parameter with the empirical
formula

c0 = − 40

40 + a
5
2

(76)

within the range of a ≤ 50, as shown in Table 6.

4. Conclusions

In this paper, the HAM is applied to the large deflection of a circular thin
plate under uniform external pressure. By means of choosing a proper value
of the so-called convergence-control parameter c0 given by the empirical
formulas (73)–(76), convergent results are successfully obtained even in the
case of w(0)/h > 20 for four types of boundary conditions. Besides, it is
found that iteration can greatly accelerate the convergence of solutions. In
addition, we reveal that the previous perturbation methods for an arbitrary
perturbation quantity (including the Vincent’s [2] and Chien’s [3] methods)
and the modified iteration method [4] are only the special cases of the
HAM1 when c0 = −1. This reveals the reason why the previous perturbation
techniques [2, 3] and the modified iteration method [4] are only valid for
small physical parameters, corresponding to weak nonlinearity. This work
shows once again that the convergence-control parameter c0 indeed plays a
significant role in the frame of the HAM: it differs the HAM from all other
analytic approximation methods.

This paper demonstrates the validity of the HAM for the Von Kármán
plate equations, and also clearly shows the superiority of the HAM over
perturbation methods. Without doubt, the HAM can be further applied to
solve some challenging problems with high nonlinearity in solid mechanics.

Acknowledgment

This work is partly supported by National Natural Science Foundation of
China (Approval No. 11272209 and 11432009) and State Key Laboratory of
Ocean Engineering (Approval No. GKZD010063).

1Even the interpolation iterative method [21] is also a special case of the HAM. Limited to the
length of the paper, we will give the proof somewhere else.

shijun
高亮

shijun
高亮



20 X. X. Zhong and S. J. Liao

Appendix A: Relations between the perturbation methods and the HAM
approach

Here, we prove that the perturbation methods for an arbitrary perturbation
quantity (including Vincent’s [2] and Chien’s [3] perturbation methods) are
special cases of the HAM approach when c0 = −1.

In general, the perturbation solutions can be expressed as:

u P (y) = u P
0 (y) + u P

1 (y)ε + u P
2 (y)ε2 + · · ·,

where ε is a physical parameter. The HAM-series solutions are expressed
by

uH (y; c0) = uH
0 (y; c0) + uH

1 (y; c0) + uH
2 (y; c0) + · · ·.

Obviously, if u P
i (y)εi = uH

i (y; −1), then u P (y) is exactly the same as
uH (y; −1), say, the perturbation method is a special case of the HAM when
c0 = −1.

First, we describe the perturbation methods for a circular plate under
uniform pressure in a general way. Let ζ denote a perturbation quantity and
write the perturbation series⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ(P)(y) =
+∞∑
i=1

ϕ
(P)
i (y)ζ 2i−1, S(P)(y) =

+∞∑
i=1

S(P)
i (y)ζ 2i ,

Q(P) =
+∞∑
i=1

Q(P)
i ζ 2i−1, W (P)(0) =

+∞∑
i=1

W (P)
i (0)ζ 2i−1.

(A.1)

Define

S(P)
0 (y) = 0.

Substituting (A.1) into Eqs. (1)–(4) and (7), and equating the like-power of
ζ , we have the governing equations

y2 d2ϕ
(P)
m (y)

dy2
=

m∑
i=1

ϕ
(P)
i (y)S(P)

m−i (y) + Q(P)
m · y2, (A.2)

y2 d2S(P)
m (y)

dy2
= −1

2

m∑
i=1

ϕ
(P)
i (y)ϕ(P)

m+1−i (y), (A.3)

subject to the boundary conditions

ϕ(P)
m (0) = S(P)

m (0) = 0, (A.4)
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ϕ(P)
m (1) = λ

λ− 1
· dϕ(P)

m (y)

dy

∣∣∣∣
y=1

, S(P)
m (1) = μ

μ− 1
· d S(P)

m (y)

dy

∣∣∣∣
y=1

, (A.5)

with the restriction condition

−
∫ 1

0

1

ε
· ϕ(P)

m (ε)dε = W (P)
m (0). (A.6)

Note that there is an another linear equation that characterizes the re-
lation between the physical parameter ζ and the central deflection
W (0), which provides an another linear restriction condition. Note that
the above-mentioned perturbation approach is valid for arbitrary physical
parameter ζ .

The Von Kármán’s equations for a circular plate under uniform pressure
can be solved by the HAM in the following way, which is a little different
from those mentioned in Section 2.

Let the initial guesses of ϕ(y) and S(y) be zero. We construct the
following homotopy deformation equations:

(1 − q)y2 d2	̃(y; q)

dy2
= c0

[
q y2 d2	̃(y; q)

dy2
− 	̃(y; q)�̃(y; q) − �̃(q)y2

]
, (A.7)

(1 − q)y2 d2�̃(y; q)

dy2
= c0

[
q y2 d2�̃(y; q)

dy2
+

(
1

2q

)
	̃2(y; q)

]
, (A.8)

subject to the boundary conditions:

	̃(0; q) = �̃(0; q) = 0, (A.9)

	̃(1; q) = λ

λ− 1
· ∂	̃(y; q)

∂y

∣∣∣∣
y=1

, �̃(1; q) = μ

μ− 1
· ∂�̃(y; q)

∂y

∣∣∣∣
y=1

, (A.10)

with the restriction condition:

−
∫ 1

0

1

ε
	̃(ε; q)dε = �̃(q), (A.11)

where q ∈ [0, 1] is the embedding parameter.
When q = 0, the solutions of Eqs. (A.7)–(A.11) are the initial guess,

i.e.,

	̃(y; 0) = 0, �̃(y; 0) = 0. (A.12)

When q = 1, Eqs. (A.7)–(A.11) are equivalent to the original equations
(1)–(4) and (39), provided that

	̃(y; 1) = ϕ(y), �̃(y; 1) = S(y), �̃(1) = Q, �̃(1) = W (0). (A.13)
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Then, according to (A.12), 	̃(y; q), �̃(y; q), �̃(q), and �̃(q) can be
expanded as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

	̃(y; q) =
+∞∑
m=1

ϕ̃m(y) qm, �̃(y; q) =
+∞∑
m=1

S̃m(y) qm,

�̃(q) =
+∞∑
m=0

Q̃m qm, �̃(q) =
+∞∑
m=0

W̃ m(0) qm .

(A.14)

Substituting (A.14) into Eqs. (A.7)–(A.11) and equating the like-power of
q, it is easy to find that Q̃0 = 0 and W̃ 0(0) = 0, and besides to obtain the
mth-order deformation equations

y2 d2

dy2
[ϕ̃m(y) − χm ϕ̃m−1(y)]

= c0

(
y2 d2ϕ̃m−1(y)

dy2
−

m∑
i=1

ϕ̃i (y)S̃m−i (y) − Q̃m y2

)
, (A.15)

y2 d2

dy2

[
S̃m(y) − χm S̃m−1(y)

]
= c0

(
y2 d2 S̃m−1(y)

dy2
+ 1

2

m∑
i=1

ϕ̃i (y)ϕ̃m+1−i (y)

)
, (A.16)

subject to the boundary conditions

ϕ̃m(0) = S̃m(0) = 0, (A.17)

ϕ̃m(1) = λ

λ− 1
· dϕ̃m(y)

dy

∣∣∣∣
y=1

, S̃m(1) = μ

μ− 1
· d S̃m(y)

dy

∣∣∣∣
y=1

, (A.18)

with the restriction condition

−
∫ 1

0

1

ε
· ϕ̃m(ε)dε = W̃ m(0), (A.19)

where χm is defined by (58).
When c0 = −1, Eqs. (A.15)–(A.19) are the same as the perturbation

procedures (A.2)–(A.6), apart from the boundary conditions in the first-order
deformation equations that lead to ϕ̃1(y) = ζ · ϕ(P)

1 (y). Thus, it holds{
ϕ̃m(y) = ϕ

(P)
m (y) ζ 2m−1, S̃m(y) = S(P)

m (y) ζ 2m,

Q̃m = Q(P)
m ζ 2m−1, W̃ m(0) = W (P)

m (0) ζ 2m−1.
(A.20)



Analytic Solutions of Von Kármán Plate Under Arbitrary Uniform Pressure 23

Therefore, the perturbation methods for arbitrary perturbation quantity ζ are
only special cases of the HAM when c0 = −1.

For instance, if we choose the perturbation quantity ζ = Q and define
�̃(q) = Q · q in the frame of the HAM, i.e., Q̃1 = Q and Q̃m = 0 for
m ≥ 2, we have

q :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2 d2ϕ̃1(y)

dy2
= Q · y2, y2 d2 S̃1(y)

dy2
= −1

2
(ϕ̃1(y))2 ,

ϕ̃1(0) = 0, ϕ̃1(1) = λ

λ− 1

dϕ̃1(y)

dy

∣∣∣∣
y=1

,

S̃1(0) = 0, S̃1(1) = μ

μ− 1

d S̃1(y)

dy

∣∣∣∣
y=1

;

(A.21)

q2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2 d2ϕ̃2(y)

dy2
= ϕ̃1(y)S̃1(y),

y2 d2 S̃2(y)

dy2
= −ϕ̃1(y)ϕ̃2(y),

ϕ̃2(0) = 0, ϕ̃2(1) = λ

λ− 1

dϕ̃2(y)

dy

∣∣∣∣
y=1

,

S̃2(0) = 0, S̃2(1) = μ

μ− 1

d S̃2(y)

dy

∣∣∣∣
y=1

;

(A.22)

· · · · · ·

qi+1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2 d2ϕ̃i+1(y)

dy2
=

i∑
j=1

ϕ̃ j (y)S̃i− j+1(y),

y2 d2 S̃i+1(y)

dy2
= −1

2

i+1∑
j=1

ϕ̃ j (y)ϕ̃i− j+2(y),

ϕ̃i+1(0) = 0, ϕ̃i+1(1) = λ

λ− 1

dϕ̃i+1(y)

dy

∣∣∣∣
y=1

,

S̃i+1(0) = 0, S̃i+1(1) = μ

μ− 1

d S̃i+1(y)

dy

∣∣∣∣
y=1

.

(A.23)

In the case of circular plate with clamped boundary (λ = 0, μ = 20/7), the
homotopy solutions are:

ϕ̃1(y) = Q ·
(

− y

2
+ y2

2

)
, (A.24)
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S̃1(y) = Q2 ·
(

41y

672
− y2

16
+ y3

24
− y4

96

)
, (A.25)

ϕ̃2(y) = Q3 ·
(

659y

80640
− 41y2

2688
+ 83y3

8064
− 5y4

1152
+ y5

768
− y6

5760

)
, (A.26)

S̃2(y) = Q4 ·
(

− 2357y

1505280
+ 659y2

322560
− 1889y3

967680
+ 103y4

96768

− 59y5

161280
+ 13y6

138240
− 17y7

967680
+ y8

645120

)
, (A.27)

· · · · · ·

which are exactly the same as (13)–(16) given by the Vincent’s perturbation
method [2]. Therefore, the Vincent’s perturbation method [2] is indeed a
special case of the HAM when c0 = −1.

If we choose the perturbation quantity ζ = W (0), then �̃(q) = W (0) · q.
Similarly, we have

q :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2 d2ϕ̃1(y)

dy2
= Q̃1 y2, y2 d2 S̃1(y)

dy2
= −1

2
(ϕ̃1(y))2 ,

ϕ̃1(0) = 0, ϕ̃1(1) = λ

λ− 1

dϕ̃1(y)

dy

∣∣∣∣
y=1

,

−
∫ 1

0

1

ε
ϕ̃1(ε)dε = W (0),

S̃1(0) = 0, S̃1(1) = μ

μ− 1

d S̃1(y)

dy

∣∣∣∣
y=1

;

(A.28)

q2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2 d2ϕ̃2(y)

dy2
= ϕ̃1(y)S̃1(y) + Q̃2 y2,

y2 d2 S̃2(y)

dy2
= −ϕ̃1(y)ϕ̃2(y),

ϕ̃2(0) = 0, ϕ̃2(1) = λ

λ− 1

dϕ̃2(y)

dy

∣∣∣∣
y=1

,

−
∫ 1

0

1

ε
ϕ̃2(ε)dε = 0,

S̃2(0) = 0, S̃2(1) = μ

μ− 1

d S̃2(y)

dy

∣∣∣∣
y=1

;

(A.29)
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· · · · · ·

qi+1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2 d2ϕ̃i+1(y)

dy2
=

i∑
j=1

ϕ̃ j (y)S̃i− j+1(y) + Q̃i+1 y2,

y2 d2 S̃i+1(y)

dy2
= −1

2

i+1∑
j=1

ϕ̃ j (y)ϕ̃i− j+2(y),

ϕ̃i+1(0) = 0, ϕ̃i+1(1) = λ

λ− 1

dϕ̃i+1(y)

dy

∣∣∣∣
y=1

,

−
∫ 1

0

1

ε
ϕ̃i+1(ε)dε = 0,

S̃i+1(0) = 0, S̃i+1(1) = μ

μ− 1

d S̃i+1(y)

dy

∣∣∣∣
y=1

.

(A.30)

In the case of circular plate with clamped boundary (λ = 0, μ = 20/7), the
homotopy solutions are:

ϕ̃1(y) = W (0) · (−2y + 2y2
)
, (A.31)

S̃1(y) = W 2(0) ·
(

41y

42
− y2 + 2y3

3
− y4

6

)
, (A.32)

ϕ̃2(y) = W 3(0) ·
(

233y

1890
− 2179y2

3780
+ 83y3

126
− 5y4

18
+ y5

12
− y6

90

)
, (A.33)

S̃2(y) = W 4(0) ·
(

− 211y

19845
+ 233y2

1890
− 529y3

2268
+ 667y4

3240
− 59y5

630

+ 13y6

540
− 17y7

3780
+ y8

2520

)
, (A.34)

· · · · · ·
which are exactly the same as (22)–(25) given by Chien’s perturbation
method [3]. Therefore, the Chien’s perturbation method [3] is also a special
case of the HAM when c0 = −1, too.

However, it should be emphasized that the HAM provides us great
freedom to choose the convergence-control parameter c0. As shown in
Section 3, by means of choosing proper values of c0, we gain convergent
results in a range of Q and w(0)/h much larger than the known perturbation
results. This again illustrates the importance of the convergence-control
parameter c0 to the HAM. In fact, it is the convergence-control parameter c0

that differs the HAM from all of other analytic approximation techniques.
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Mathematically, the above proof also reveals the reason why the HAM has
advantages over the perturbation methods.

Appendix B: Relations between the modified iteration method and the
HAM-based iteration approach

By means of the first-order HAM-based iteration approach, the new
approximations ϕ∗(y) = ϕ0(y) + ϕ1(y) and S∗(y) = S0(y) + S1(y) are used
as the new initial guesses ϕ0(y), S0(y) for next iteration, because the HAM
provides us the freedom to choose initial guesses, as illustrated for various
types of nonlinear problems by Liao [24, 25]. According to (53) and (54),
ϕ1(y) and S1(y) satisfy

y2 d2ϕ1(y)

dy2
= c0

[
y2 d2ϕ0(y)

dy2
− ϕ0(y)S0(y) − Q0 y2

]
, (B.1)

y2 d2S1(y)

dy2
= c0

[
y2 d2S0(y)

dy2
+ 1

2
ϕ2

0(y)

]
. (B.2)

Thus, ϕ∗(y) and S∗(y) are governed by

y2 d2ϕ∗(y)

dy2
= y2 d2ϕ0(y)

dy2
+ y2 d2ϕ1(y)

dy2

= (1 + c0)y2 d2ϕ0(y)

dy2
− c0

[
ϕ0(y)S0(y) + Q0 y2

]
, (B.3)

y2 d2S∗(y)

dy2
= y2 d2S0(y)

dy2
+ y2 d2S1(y)

dy2

= (1 + c0)y2 d2S0(y)

dy2
+ c0

2
ϕ2

0(y), (B.4)

subject to the boundary conditions

ϕ∗(0) = S∗(0) = 0, (B.5)

ϕ∗(1) = λ

λ− 1
· dϕ∗(y)

dy

∣∣∣∣
y=1

, S∗(1) = μ

μ− 1
· d S∗(y)

dy

∣∣∣∣
y=1

, (B.6)

and the restriction condition

W (0) = −
∫ 1

0

1

ε
ϕ∗(ε)dε. (B.7)
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In case of c0 = −1, we have

y2 d2ϕ∗(y)

dy2
= ϕ0(y)S0(y) + Q0 y2, (B.8)

y2 d2S∗(y)

dy2
= −1

2
ϕ2

0(y), (B.9)

subject to the boundary conditions

ϕ∗(0) = S∗(0) = 0, (B.10)

ϕ∗(1) = λ

λ− 1
· dϕ∗(y)

dy

∣∣∣∣
y=1

, S∗(1) = μ

μ− 1
· d S∗(y)

dy

∣∣∣∣
y=1

, (B.11)

and the restriction condition

W (0) = −
∫ 1

0

1

ε
ϕ∗(ε)dε. (B.12)

Because the initial guesses are given at the beginning, we take the following
iterative procedures:

(1) Calculate S∗(y) according to Eqs. (B.9)–(B.11).
(2) Replace S0(y) by S∗(y) as the new initial guess, i.e., S0(y) = S∗(y).
(3) Calculate ϕ∗(y) and Q0 according to Eqs. (B.8) and (B.10)–(B.12).
(4) Replace ϕ0(y) by ϕ∗(y) as the new initial guess, i.e., ϕ0(y) = ϕ∗(y).

In the nth times of iteration, write

�n(y) = ϕ∗(y), ϒn−1(y) = S∗(y), Fn−1 = Q0.

Then, the HAM-based first-order iteration approach in case of c0 = −1
mentioned above is expressed by

y2 d2ϒn−1(y)

dy2
= −1

2
�2

n−1(y), (B.13)

y2 d2�n(y)

dy2
= �n−1(y)ϒn−1(y) + Fn−1 y2, (B.14)

subject to the boundary conditions

�n(0) = ϒn−1(0) = 0, (B.15)

�n(1) = λ

λ− 1
· d�n(y)

dy

∣∣∣∣
y=1

, ϒn−1(1) = μ

μ− 1
· dϒn−1(y)

dy

∣∣∣∣
y=1

, (B.16)
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and the restriction condition

W (0) = a = −
∫ 1

0

1

ε
�n(ε)dε. (B.17)

If we choose the initial guess

�0(y) = −2a

2λ+ 1
[(λ+ 1)y − y2], (B.18)

then Eqs. (B.13)–(B.18) are exactly the same as Eqs. (26)–(31) for the
modified iteration method [4, 7]. Therefore, the modified iteration method
[4, 7] is indeed a special case of the HAM-based first-order iteration
approach when c0 = −1.
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