
Commun Nonlinear Sci Numer Simulat 19 (2014) 1792–1821
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Do peaked solitary water waves indeed exist?
1007-5704/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.09.042

⇑ Address: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
E-mail address: sjliao@sjtu.edu.cn
Shijun Liao ⇑
State Key Laboratory of Ocean Engineering, Shanghai 200240, China
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Dept. of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 August 2013
Accepted 30 September 2013
Available online 11 October 2013

Keywords:
Unified wave model (UWM)
Progressive wave
Solitary peaked wave
Homotopy analysis method (HAM)
Many models of shallow water waves, such as the famous Camassa–Holm equation, admit
peaked solitary waves. However, it is an open question whether or not the widely accepted
peaked solitary waves can be derived from the fully nonlinear wave equations. In this
paper, a unified wave model (UWM) based on the symmetry and the fully nonlinear wave
equations is put forward for progressive waves with permanent form in finite water depth.
Different from traditional wave models, the flows described by the UWM are not necessar-
ily irrotational at crest, so that it is more general. The unified wave model admits not only
the traditional progressive waves with smooth crest, but also a new kind of solitary waves
with peaked crest that include the famous peaked solitary waves given by the Camassa–
Holm equation. Besides, it is proved that Kelvin’s theorem still holds everywhere for the
newly found peaked solitary waves. Thus, the UWM unifies, for the first time, both of
the traditional smooth waves and the peaked solitary waves. In other words, the peaked
solitary waves are consistent with the traditional smooth ones. So, in the frame of inviscid
fluid, the peaked solitary waves are as acceptable and reasonable as the traditional smooth
ones. It is found that the peaked solitary waves have some unusual and unique character-
istics. First of all, they have a peaked crest with a discontinuous vertical velocity at crest.
Especially, unlike the traditional smooth waves that are dispersive with wave height, the
phase speed of the peaked solitary waves has nothing to do with wave height, but depends
(for a fixed wave height) on its decay length, i.e., the actual wavelength: in fact, the peaked
solitary waves are dispersive with the actual wavelength when wave height is fixed. In
addition, unlike traditional smooth waves whose kinetic energy decays exponentially from
free surface to bottom, the kinetic energy of the peaked solitary waves either increases or
almost keeps the same. All of these unusual properties show the novelty of the peaked sol-
itary waves, although it is still an open question whether or not they are reasonable in
physics if the viscosity of fluid and surface tension are considered.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since the solitary surface wave was discovered by Russell [1] in 1834, various types of solitary waves have been found.
The mainstream models of shallow water waves, such as the Boussinesq equation [2], the KdV equation [3], the BBM equa-
tion [4] and so on, admit dispersive smooth periodic and solitary waves with permanent form: the wave elevation is infinitely
differentiable everywhere. Especially, the phase speed of these smooth waves is closely related to wave height: a smooth
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progressive wave with higher amplitude always propagates faster. Today, such kind of amplitude-dispersive periodic and
solitary waves with smooth crest are the mainstream of water waves.

However, the discontinuity of water wave elevation appears accidentally in theory. It is well-known that the famous lim-
iting gravity wave has a corner crest with 120�, as pointed out by Stokes [5] in 1894. It is a pity that the importance of such
kind of discontinuity seems to be neglected, mainly because Stokes’ limiting gravity wave [5] has been never observed in
practice. In 1993, almost one hundred years later, Camassa & Holm [6] proposed a model for shallow water waves with small
amplitude, called today the Camassa–Holm (CH) equation
ut þ 2xuX � uXXt þ 3uuX ¼ 2uXuXX þ uuXXX ; ð1Þ
where uðX; tÞ denotes the wave elevation, X and t are the spatial and temporal variables, x is a constant related to the critical
phase speed of shallow water waves, respectively. As pointed out by Camassa & Holm [6], the CH Eq. (1) has the solitary
wave when 0 6 x < 1=2. Especially, in the limit x! 0, the CH Eq. (1) admits the peaked solitary wave in the closed-form
uðX; tÞ ¼ c expð�jX � c tjÞ; ð2Þ
whose first derivative is discontinuous at the crest X ¼ c t, where c denotes the phase speed. Unlike the KdV equation and
Boussinesq equation, the CH Eq. (1) can model phenomena of soliton interaction and wave breaking, as mentioned by Const-
antin [7]. Mathematically, the CH Eq. (1) is integrable and bi-Hamiltonian, thus possesses an infinite number of conservation
laws in involution, as pointed out by Camassa & Holm [6]. In addition, it is associated with the geodesic flow on the infinite
dimensional Hilbert manifold of diffeomorphisms of line, as mentioned by Constantin [7]. Thus, the CH Eq. (1) has many
intriguing physical and mathematical properties. A few researchers even believed that the CH Eq. (1) ‘‘has the potential
to become the new master equation for shallow water wave theory’’ [8].

Note that the discontinuity also widely appears in practical flows, such as dam break in hydrodynamics and shock wave in
aerodynamics. In fact, such kind of discontinuous problems belong to the so-called Riemann problem [9,10], a classic re-
search field. So, the discontinuity of wave elevation seems to be reasonable not only in mathematics but also in physics.

Thousands of articles for peaked solitary waves have been published. Currently, the closed-form solutions of peaked sol-
itary waves of the Boussinesq equation, the KdV equation, the BBM equation, the modified KdV equation and KP equation are
derived by Liao [11,12] using the symmetry and the corresponding wave models mentioned above. Besides, Kraenkel and
Zenchuk [13] gave the explicit cusped solitary waves of the CH Eq. (1) when x – 0, called cuspon. The so-called cuspon
is a kind of solitary wave with the 1st derivative going to infinity at crest. Note that the peakon has a finite 1st derivative,
but the cuspon has an infinite 1st derivative at crest. Thus, peakons and cuspons are completely different two kinds of dis-
continuous solutions of the CH Eq. (1). Therefore, nearly all mainstream models of the shallow water waves admit the peaked
solitary waves, as pointed out by Liao [11,12].

However, there are many open questions about peaked solitary waves. Where does this kind of discontinuity come from?
Are these peaked solitary waves as acceptable and reasonable as the traditional smooth ones? Are there any other peaked
waves in finite water depth? It should be emphasized that all of the above-mentioned mainstream models of shallow water
waves are approximations of the fully nonlinear wave equations under assumptions of the existence of some small physical
parameters (such as small wave amplitude, shallow water and so on). Can we gain the peaked solitary waves from the fully
nonlinear water wave equations? To the best of the author’s knowledge, this is still an open question up to now. This situ-
ation is rather strange. Logically, if the peaked solitary waves given by the simplified wave models are acceptable and rea-
sonable, the exact fully nonlinear wave equations should also admit it. Otherwise, we must check carefully the
acceptableness and reasonableness of the peaked/cusped solitary waves reported/studied in thousands of published articles.

In this article, a positive answer to this open question is given. Proposing a unified wave model (UWM) based on the sym-
metry and the fully nonlinear wave equations, we gain a new type of solitary surface waves in finite water depth, which have
a peaked crest and possess many unusual characteristics quite different from the traditional smooth ones. The UWM admits
two different kinds of waves: one is infinitely differentiable everywhere, with a phase speed closely related to the wave
height, the other has a peaked crest and especially the discontinuous vertical velocity at crest, with a phase speed having
nothing to do with wave height! The former are exactly the same as the traditional periodic and solitary waves with smooth
crest found in textbooks. However, the latter has many completely new properties and has never been reported, to the best
of our knowledge. In theory, the UWM unifies both of the traditional smooth waves and the peaked solitary waves, for the
first time. Therefore, in essence, the peaked solitary waves are consistent with the traditional smooth ones, and thus are as
acceptable and reasonable as them.

This article is outlined as follows. In Section 2, a unified wave model (UWM) based on the symmetry and the fully non-
linear wave equations for progressive gravity waves with permanent form in finite water depth is described, which admits
not only the traditional periodic and solitary progressive waves with smooth crest (see Section 3), but also a new type of
peaked solitary waves (see Section 4). In Section 4.1, a new type of peaked solitary surface waves are first obtained by means
of the linearized UWM. In Section 4.2, such kind of peaked solitary surface waves are confirmed by the exact UWM. This kind
of peaked solitary surface waves have some unusual characteristics quite different from traditional smooth ones, as de-
scribed in Section 4.3. Besides, it is proved in Section 4.4 that the Kelvin’s theorem still holds everywhere for these peaked
solitary waves. The concluding remarks and discussions about the newly found peaked solitary waves are given in Section 5.
The corresponding nonlinear partial differential equations are solved in Section 4.2 by means of an analytic approximation



1794 S. Liao / Commun Nonlinear Sci Numer Simulat 19 (2014) 1792–1821
method for highly nonlinear problems, namely the homotopy analysis method (HAM) [14–20], which has nothing to do with
small/large physical parameters at all and besides can guarantee the convergence of solution series.

2. A unified wave model based on symmetry

First of all, we describe a unified wave model (UWM) for progressive waves with permanent form in water of finite depth.
Note that, mathematically, we must be extremely careful so that the discontinuous solutions are not lost.

Consider a progressive surface gravity wave propagating on a horizontal bottom with a constant phase speed c and a per-
manent form in a finite water depth D. For simplicity, let us consider the problem in the frame moving with the phase speed
c. Let x; z denote the horizontal and vertical dimensionless co-ordinates (using D as the characteristic length), with x ¼ 0 cor-
responding to the wave crest, z ¼ �1 to the bottom, and the z axis upward, respectively. Assume that the wave elevation has
a symmetry about the crest at x ¼ 0. Due to this symmetry, we need consider the interval x P 0 only. Assume that the fluid in
the domain x > 0 is inviscid and incompressible, the flow is irrotational, and surface tension is neglected. It should be
emphasized here that the flow at x ¼ 0 is not necessarily irrotational. In other words, there might exist the vorticity at
x ¼ 0. Thus, this model based on the symmetry is more general than others, as shown below.

Let g denote the acceleration due to gravity, / the velocity potential (in the interval 0 < x < þ1), f the free surface,
respectively. All of these variables are dimensionless by means of D and

ffiffiffiffiffiffi
gD

p
as the characteristic scales of length and veloc-

ity. Due to the symmetry fð�xÞ ¼ fðxÞ, we only need consider the flow in the interval x 2 ð0;þ1Þ. Since the fluid in the do-
main x > 0 is inviscid and incompressible, besides the flow is irrotational and the surface tension is neglected, it is easy to
have the governing equation
r2/ðx; zÞ ¼ 0; z 6 fðxÞ; 0 < x < þ1; ð3Þ
subject to the boundary conditions on the unknown free surface z ¼ fðxÞ:
a2 @
2/
@x2 þ

@/
@z
� a

@

@x
ðr/ � r/Þ þ r/ � r 1

2
r/ � r/

� �
¼ 0; 0 < x < þ1; ð4Þ

f� a
@/
@x
þ 1

2
r/ � r/ ¼ 0; 0 < x < þ1 ð5Þ
and the bottom condition
@/
@z
¼ 0; z ¼ �1; 0 < x < þ1; ð6Þ
where r2 is a Laplace operator, and
a ¼ cffiffiffiffiffiffi
gD

p ð7Þ
is the dimensionless wave-speed, respectively. Note that all of the above-mentioned governing equation and boundary con-
ditions are defined in the domain 0 < x < þ1. In fact, they are just the fully nonlinear wave equations, except the restricted
interval 0 < x < þ1. Besides, we have either the periodic condition
/ðx; zÞ ¼ /ðxþ k; zÞ; �1 6 z 6 fðxÞ ð8Þ
for the periodic progressive waves, where k ¼ 2p=k is the wavelength, or the decay condition
/ð�1; zÞ ¼ 0; �1 6 z 6 fðxÞ ð9Þ
for the solitary waves. On the vertical boundary x ¼ 0, we have the additional condition
uð0; zÞ ¼ lim
x!0

@/
@x
¼ UðzÞ; z 6 fðxÞ; ð10Þ
where UðzÞ is such an unknown horizontal velocity at x ¼ 0 that the corresponding velocity potential /ðx; zÞ and the progres-
sive wave elevation fðxÞ with permanent form exist. Furthermore, let Hw denote the dimensionless wave-elevation at x ¼ 0,
corresponding to the wave crest. Then, for given Hw, one has an addition condition
lim
x!0

fðxÞ ¼ Hw: ð11Þ
In addition, the wave elevation must be bounded, i.e.,
jfðxÞj < C; 0 < x < þ1; ð12Þ
for a large enough constant C.
Let uðx; yÞ and vðx; yÞ denote the horizontal and vertical velocity of fluid, respectively. Due to the symmetry, in the domain

x 2 ð�1;þ1Þ, we have the symmetry
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fðxÞ ¼ fð�xÞ; uðx; zÞ ¼ uð�x; zÞ; vðx; zÞ ¼ �vð�x; zÞ; ð13Þ
which gives at the crest (x ¼ 0) that
vð0; zÞ ¼ �vð0; zÞ; i:e:; vð0; zÞ ¼ 0: ð14Þ
Since the flow is irrotational in the interval x 2 ð0;þ1Þ, the corresponding velocities uðx; zÞ and vðx; zÞ are given by
uðx; zÞ ¼ @/
@x

; vðx; zÞ ¼ @/
@z

; 0 < x < þ1:
Note that, at crest (x ¼ 0), we have the boundary condition v ¼ 0 due to the symmetry, and the boundary condition u ¼ UðzÞ
defined by the limit (10) as x! 0. It should be emphasized that, in order not to lose the solutions that are discontinuous at
crest (x ¼ 0), the boundary condition (10) is defined by a limit. In this way, the problem is described more generally than the
traditional theories.

Note that, according to the symmetry (13) about crest (at x ¼ 0), the wave elevation fðxÞ and the horizontal velocity u are
continuous at the vertical boundary x ¼ 0. In fact, due to the symmetry (13), the boundary condition (10) is equivalent to the
continuous condition of the horizontal velocity u at x ¼ 0. It is a common knowledge that the Laplace Eq. (3) needs only one
boundary condition at each boundary. Therefore, at x ¼ 0, the boundary condition (10) is sufficient for the Laplace Eq. (3) so
that any other conditions for the smoothness of the horizontal velocity u (as x! 0) are unnecessary: the higher-order deriv-
atives of the horizontal velocity
lim
x!0

@2/
@x2 ; lim

x!0

@3/
@x3 ; lim

x!0

@4/
@x4 ; . . . ;
are unnecessary to be continuous, since the boundary condition (10) is mathematically enough for the Laplace Eq. (3). Thus,
any other boundary conditions (such as that / and f should be infinitely differentiable at x ¼ 0) may lead to the loss of the
discontinuous solutions and thus must be avoided. In other words, in the frame of the UWM, both of / and f are unnecessary
to be infinitely differentiable at crest (x ¼ 0). This is mainly because the velocity potential / satisfies Laplace equation only in
the domain x > 0 and x < 0 so that / is smooth only in x > 0 or x < 0, but not necessarily analytic at x ¼ 0.

The two nonlinear boundary conditions (4) and (5) must be satisfied on the unknown free surface z ¼ fðxÞ. This leads to
the mathematical difficulty to solve the nonlinear partial differential equations (PDEs). In case of small wave-amplitude, the
linear boundary condition
a2 @
2/
@x2 þ

@/
@z
¼ 0; on z ¼ 0; 0 < x < þ1; ð15Þ
is a good approximation of (4), and
fðxÞ ¼ a
@/
@x

����
z¼0
; 0 < x < þ1; ð16Þ
is a good approximation of (5), respectively. The above two linearized free-surface boundary conditions, combined with the
Laplace Eq. (3), the bottom condition (6) and either the periodic condition (8) or the decay condition (9), provide us the so-
called linear UWM.

3. Smooth gravity waves given by the UWM

Based on the traditional linear or fully nonlinear wave equations, thousands of articles have been published for the
smooth periodic and solitary progressive waves. Mostly, these traditional smooth progressive waves are based on the base
functions
cosh½nkðzþ 1Þ� sinðnkxÞ; n P 1; ð17Þ
for the velocity potential /, which automatically satisfy the Laplace Eq. (3), the bottom condition (6) and the periodic con-
dition (8), where k denotes the wave number and n P 1 is an integer. For smooth periodic progressive waves with small
wave-amplitude, substituting the velocity potential
/ðx; zÞ ¼ aA0 cosh½kðzþ 1Þ� sinðkxÞ ð18Þ
into the linear boundary condition (15), one has the dimensionless phase speed
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðkÞ

k

r
6 1; ð19Þ
say, the phase speed of a smooth periodic progressive wave in a finite water depth D is always less then
ffiffiffiffiffiffi
gD

p
. Besides, substi-

tuting (18) into (16) gives the wave elevation with small amplitude
f ¼ Hw

2
cosðkxÞ; ð20Þ
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where Hw ¼ 2A0 sinhðkÞ. The corresponding horizontal velocity reads
uðx; zÞ ¼ Hw

2a coshðkÞ cosh½kðzþ 1Þ� cosðkxÞ; ð21Þ
which gives
u
U0
¼ cosh½kðzþ 1Þ� cosðkxÞ

coshðkÞ ; 0 < x < þ1; ð22Þ
where U0 ¼ Hw=ð2aÞ. At x ¼ 0, we have the corresponding horizontal velocity
UðzÞ ¼ lim
x!0

uðx; zÞ ¼ U0

coshðkÞ cosh½kðzþ 1Þ�:
Note that the above velocity potential (18) and wave elevation (20) automatically satisfy the symmetry (13). Besides, at x ¼ 0,
the horizontal velocity u ¼ UðzÞ is gained by the limit (10), and the boundary condition v ¼ 0 is automatically satisfied. In
other words, first solving the linearized PDEs (3)–(12) in the interval 0 < x < þ1 and then expanding the results to the inter-
val �1 < x < 0 by means of the symmetry (13), we can gain exactly the same results by the linear UWM as the traditional
ones, i.e., the Airy wave. In this case, the velocity potential / and the wave elevation are smooth everywhere. All of these indi-
cate that the linear UWM is consistent with the traditional theories for linear smooth periodic progressive waves.

Note that, for given x, the horizontal velocity u and the kinetic energy of the smooth periodic progressive Airy’s waves
decrease exponentially from free surface (z ¼ 0) to the bottom (z ¼ �1). Especially, based on the base functions (17), the ele-
vation of the Airy’s wave and the corresponding velocities are infinitely differentiable everywhere, although the UWM does
not contain any smoothness conditions at all.

For the traditional periodic progressive surface waves with large amplitude, the fully nonlinear wave equations must be
considered. As pointed out by Cokelet [21], the phase speed c of the smooth periodic progressive waves depends not only on
the water depth D and the wave number k but also on the wave height Hw: the larger the wave amplitude, the faster the
periodic wave propagates. In other words, the smooth periodic progressive waves are dispersive with wave height. Like
the linear Airy waves, the nonlinear periodic progressive surface waves have a smooth crest with the exponentially decaying
velocity uðx; zÞ and kinetic energy from free surface to bottom. Besides, they are also infinitely differentiable everywhere,
although the boundary conditions of such kind of smoothness do not exist at all for all traditional wave theories.

It is very interesting that, using the UWM, i.e., first solving the fully nonlinear wave Eqs. (3)–(12) in the interval
0 < x < þ1 and then expanding the results to the interval �1 < x < 0 by means of the symmetry (13), we can gain exactly
the same results as the traditional nonlinear periodic progressive waves. Besides, the corresponding boundary condition
v ¼ 0 is satisfied automatically at crest (x ¼ 0). To shorten the length of this article, we neglect the detailed mathematical
derivation for them. Here, we only emphasize that the UWM indeed admits the traditional nonlinear periodic progressive
waves with smooth crest.

It should be emphasized that, in the frame of the traditional linear wave theories, solitary waves have never be reported,
to the best of the author’s knowledge. For details, please refer to Mei et al. [22]. Solitary waves for nonlinear and amplitude-
dispersive long waves had been found by Boussinesq [2] and Rayleigh [23]. For amplitude-dispersive long waves of perma-
nent form, the so-called KdV equation [3] gives the periodic cnoidal wave for a finite wavelength k, which tends to the sol-
itary wave
fðxÞ ¼ Hw sech2
ffiffiffiffiffiffiffiffiffiffi
3Hw
p

4
ðx� c tÞ

� �
ð23Þ
with the phase speed
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Hw

p
ð24Þ
as k! þ1. Both of the above-mentioned solitary wave and the nonlinear periodic progressive waves are special cases of the
so-called cnoidal waves. By means of perturbation methods and using the fully nonlinear wave equations, Fenton [24,25]
gave a high-order cnoidal wave theory and a ninth-order solution for the solitary wave in the form
fðxÞ ¼
Xþ1
i¼1

Xi

j¼1

ai;j �i sech2ðbxÞ
h ij

; ð25Þ
where ai;j; �; b are constants. It should be emphasized that all of these traditional cnoidal and solitary waves have a smooth
crest: fðxÞ is infinitely differentiable everywhere. Besides, the horizontal velocity uðx; zÞ and the kinetic energy always decay
exponentially from free surface to bottom. Furthermore, the phase speed is dependent upon wave height, say, the traditional
cnoidal and solitary waves are dispersive with wave height. Finally, to the best of author’s knowledge, all traditional solitary
surface waves have a crest higher than the still water: solitary waves in the form of depression have been reported only for
interfacial waves, but never for the surface waves.
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It is very interesting that, using the UWM, i.e., first solving the PDEs (3)–(12) (or the KdV equation) in the domain
0 < x < þ1 in a traditional way and then expanding these results to the domain �1 < x < 0 by means of the symmetry
(13), we can gain exactly the same results as the traditional cnoidal and solitary waves with smooth crest! Especially, the
boundary condition v ¼ 0 at crest (x ¼ 0) and the required smoothness in the whole domain are automatically satisfied. This
is mainly because the corresponding base functions such as (17) are smooth everywhere, and besides automatically satisfy the
symmetry condition (13) and the boundary condition v ¼ 0 at crest. To shorten the length of this article, the detailed math-
ematical derivations are neglected here. All of these indicate that the UWM based on the symmetry (13) and the fully non-
linear wave Eqs. (3)–(12) is indeed consistent with all traditional theories for the smooth progressive waves with permanent
form.

Indeed, the traditional periodic and solitary progressive waves are smooth everywhere. However, this kind of smoothness
is not absolutely necessary, since all of these traditional smooth waves can be obtained in the frame of the traditional wave
theories and the UWM without any smoothness conditions at all! In essence, such kind of perfect smoothness of the wave
elevation and velocities come automatically from the base functions (17), which are infinitely differentiable everywhere.

In summary, the unified wave model (UWM) admits all traditional smooth periodic and solitary progressive waves with
permanent form! Thus, the UWM based on the symmetry and the fully nonlinear wave equations defined in 0 < x < þ1 is
consistent with the traditional wave theories defined in the whole domain �1 < x < þ1. This shows the generality of the
UWM.

4. Peaked solitary waves given by the UWM

In this section, we illustrate that the unified wave model (UWM) based on symmetry (13) and the fully nonlinear wave
equations also admits the peaked solitary waves, which include the famous peaked solitary wave (2) of the CH Eq. (1) but
have many unusual characteristics quite different from the traditional smooth ones. Thus, the UWM unifies the traditional
smooth waves and the peaked solitary ones, for the first time, to the best of the author’s knowledge.

Mathematically, like the base functions (17) that are widely used for the smooth periodic and solitary progressive waves,
the following base functions
cos½nkðzþ 1Þ� expð�nkxÞ; n P 1; k > 0; 0 6 x < þ1; ð26Þ
also automatically satisfy the Laplace Eq. (3) in the domain 0 < x < þ1, the bottom condition (6) and the bounded condition
(12), too. However, different from the smooth base functions (17), the above base function decays exponentially in the x
direction and satisfies the decay boundary condition (9) at infinity. Thus, it is more convenient to strictly express solitary
waves that have truly only one crest. Note that, unlike the base function (17), its derivatives with respect to x are not differ-
entiable at crest (x ¼ 0). Even so, the base function (26) with discontinuity of the 1st-derivative at crest was widely used as
the so-called evanescent (or non-propagating) mode [26] in the problems of linear water wave diffraction-refraction by dis-
continuous bed undulations [27–30], or linear waves propagating over a bed consisting of substantial variations in water
depth [31–33], and so on. The solutions of these problems contain not only the propagating waves expressed by the base
function (17), but also the non-propagating (or evanescent) waves expressed by the base function (26), which represent
localized effects and depend on the local bottom geometry [33]. However, to the best of the author’s knowledge, the evanes-
cent base functions (26) have never been applied to express progressive solitary waves with permanent form propagating in
a constant, finite water depth.

Can we find any peaked solitary waves in the frame of the UWM based on the symmetry and the fully nonlinear wave Eqs.
(3)–(12) by means of the evanescent base function (26)? The answer is positive: the UWM indeed admits a kind of solitary
surface waves with peaked crest, which not only include the famous solitary wave (2) of the CH Eq. (1) but also have many
unusual characteristics quite different from the traditional smooth ones, as shown below. Therefore, the UWM indeed unifies
the smooth waves and the peaked solitary waves as a whole, for the first time, to the best of the author’s knowledge.

4.1. Peaked solitary waves by the linear UWM

As mentioned in Section 2, both of the base functions (17) and (26) automatically satisfy the Laplace Eq. (3) in the domain
0 < x < þ1, the bottom condition (6) and the bounded condition (12). In the frame of the linear UWM, the former satisfies
the periodic boundary condition (8) and gives the traditional Airy waves, which are infinitely differentiable everywhere, as
mentioned in Section 3. The latter satisfies the decay condition (9) and gives peaked solitary waves, as shown below.

In the interval 0 < x < þ1, we have the velocity potential in the form
/þðx; zÞ ¼ aA cos½kðzþ 1Þ� e�kx; 0 < x < þ1; ð27Þ
where the superscript + denotes a solution in the interval x 2 ð0;þ1Þ;a denotes the (dimensionless) phase speed, A is a con-
stant related to the wave height, and k > 0 is a parameter related to the phase speed a, respectively. Note that the above
expression automatically satisfies the Laplace Eq. (3) in the domain 0 < x < þ1, the bottom condition (6), the decay condi-
tion (9) and the bounded condition (12). Substituting (27) into the linear boundary condition (15) gives
akAða2k cos k� sin kÞ expð�kxÞ ¼ 0; 0 < x < þ1;
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which leads to the important relationship
Fig. 1.
½expð�k
a2 ¼ tan k
k

; np < k < npþ p
2
; ð28Þ
where n P 0 is an integer. Similarly, defining /� the potential function in the interval x 2 ð�1;0Þ, we gain exactly the same
result. Obviously, we have a P 1, i.e., c P

ffiffiffiffiffiffi
gD

p
. This is different from the periodic Airy wave whose phase speed has the

property c 6
ffiffiffiffiffiffi
gD

p
.

Given the dimensionless phase speed a, the transcendental Eq. (28) has an infinite number of solutions kn, where
np < kn < npþ p
2
; n P 0: ð29Þ
For the sake of simplicity, define the set
Ka ¼ kn : a2 ¼ tan kn

kn
;np < kn < npþ p

2
;n ¼ 0;1;2;3; . . .

� 	
: ð30Þ
Write km 2 Ka, where m P 0 is an integer. Then, we have the solution
/þðx; zÞ ¼ aAm cos kmðzþ 1Þ½ � expð�kmxÞ; 0 < x < þ1: ð31Þ
According to the linearized boundary condition (16), the corresponding elevation of the solitary wave reads
fþðxÞ ¼ a
@/þ

@x

����
z¼0
¼ �a2Amkm cos km expð�kmxÞ ¼ �Am sin km expð�kmxÞ; 0 < x < þ1; ð32Þ
where a2km cos km ¼ sin km given by (28) is applied. Due to the continuity of wave elevation, we have at x ¼ 0 the wave
elevation
fð0Þ ¼ lim
x!0

fþðxÞ: ð33Þ
Then, according to (11), we have the relation
Hw ¼ �Am sin km: ð34Þ
Thus, using the symmetry (13), we gain a peaked solitary wave
fðxÞ ¼ Hw e�km jxj; �1 < x < þ1: ð35Þ
This is a solitary wave that seriously has only one crest, but with a discontinuous 1st-derivative f0ðxÞ at crest! For example, in
the case of a ¼ 33=4=

ffiffiffiffi
p
p

, we have an infinite number of peaked solitary waves with k0 ¼ p=3; k1 ¼ 4:58117, and so on: the
corresponding elevations of the peaked solitary waves are as shown in Fig. 1, respectively. Note that all of them have a
peaked crest. Besides, the larger the value of km, the sharper the peaked solitary wave. These are essentially different from
the traditional periodic and solitary progressive waves that are infinitely differentiable everywhere. This clearly indicates
the novelty of the peaked solitary waves given by the UWM. It should be emphasized that (35) is exactly the same as the
famous peaked solitary wave (2) of the CH Eq. (1) when Hw ¼ km ¼ c, with the definition x ¼ X � c t.

In the interval 0 < x < þ1, the corresponding horizontal velocity reads
uþðx; zÞ ¼ @/
þ

@x
¼ akmHw cos½kmðzþ 1Þ�e�kmx

sinðkmÞ
: ð36Þ
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. Dashed line: expð�k0jxjÞ; Solid line: expð�k1jxjÞ; Dash-dotted line:
0jxjÞ þ expð�k1jxjÞ�=2.
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Using the symmetry (13), we have
Fig. 2
u�ðx; zÞ ¼ uþð�x; zÞ ¼ akmHw cos½kmðzþ 1Þ�ekmx

sinðkmÞ
; �1 < x < 0: ð37Þ
At x ¼ 0;u is continuous and we have the corresponding horizontal velocity
UðzÞ ¼ lim
x!0

@/þ

@x
¼ akmHw cos½kmðzþ 1Þ�

sinðkmÞ
: ð38Þ
Thus, in the whole domain �1 < x < þ1, we have a uniform expression
u
U0
¼ cos½kmðzþ 1Þ�e�km jxj

cosðkmÞ
; x 2 ð�1;þ1Þ; ð39Þ
where U0 ¼ Hw=a. Thus, as long as the horizontal velocity at x ¼ 0 is given by the above expression, the peaked solitary wave
with the symmetry and the permanent surface form exists! Note that, for given x, the horizontal velocity u of the peaked sol-
itary wave increases as z varies from the free surface (z ¼ 0) to the bottom (z ¼ �1): in other words, u on the bottom is always
larger than that on the free surface. For example, when k0 ¼ p=3 (corresponding to the phase speed c ¼ 33=4=

ffiffiffiffi
p
p

), the hor-
izontal velocity on the bottom is always twice of that on the free surface, as shown in Fig. 2. This is quite different from the
traditional smooth waves whose horizontal velocity u on bottom is always less than that on free surface. This indicates once
again the novelty of the peaked solitary waves given by the UWM.

Let vþðx; zÞ and v�ðx; zÞ denote the vertical velocity in the interval x > 0 and x < 0, respectively. In the domain
0 < x < þ1, the corresponding vertical velocity reads
vþðx; zÞ ¼ @/
þ

@z
¼ akmHw sin½kmðzþ 1Þ�e�kmx

sin km
: ð40Þ
Using the symmetry (13), we have
v�ðx; zÞ ¼ �vþð�x; zÞ ¼ �akmHw sin½kmðzþ 1Þ�ekmx

sin km
; �1 < x < 0: ð41Þ
As x! 0, we have the limits
lim
x!0

vþ ¼ akmHw

sin km
sin½kmðzþ 1Þ�; lim

x!0
v� ¼ �akmHw

sin km
sin½kmðzþ 1Þ� ð42Þ
so that
lim
x!0

vþ ¼ �lim
x!0

v� – 0: ð43Þ
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. Velocity profile u=U0 at x ¼ 0 in the case of k0 ¼ p=3 with U0 ¼ Hw=a. Solid line: periodic Airy wave; Dashed line: linear peaked solitary wave.
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However, according to the boundary condition (14), the vertical velocity v exactly equals to zero at x ¼ 0, i.e., vð0; zÞ ¼ 0.
Thus, at the interface x ¼ 0, the vertical velocity v is discontinuous: v changes sign as we cross the interface x ¼ 0. Besides,
for given z, the jump of v at x ¼ 0, i.e.,
Fig. 3.
UWM.
lim
x!0
ðvþ � v�Þ ¼ 2lim

x!0
vþ
is directly proportional to km.
Is such kind of discontinuity of the vertical velocity acceptable in the frame of inviscid fluid? It should be emphasized here

that, in the frame of the traditional theories for smooth waves, there exist the similar discontinuity and jump of velocity on
an interface, which however are widely accepted by the scientific community. For instance, on the free surface of interfacial
waves [34–37], although the velocity normal to the interface is continuous, the tangential velocity is discontinuous, as
pointed out by Lamb [38] (§231, page 371): ‘‘the tangential velocity changes sign as we cross the surface’’, but ‘‘in reality
the discontinuity, if it could ever be originated, would be immediately abolished by viscosity’’. Similarly, in the frame of
the inviscid fluid, the peaked solitary waves should be acceptable, too. We will discuss this problem later in details.

The stream function of the peaked solitary wave reads
wðx; zÞ ¼ aHw sin½kmðzþ 1Þ�e�km jxj

sinðkmÞ
; jxj 2 ð0;þ1Þ: ð44Þ
For the linear Airy waves, we have the stream function
wðx; zÞ ¼ aHw sinh½kð1þ zÞ� cosðkxÞ
2 sinhðkÞ ; x 2 ð�1;þ1Þ: ð45Þ
The streamlines for Airy wave are smooth everywhere and periodic in the horizontal direction, as shown in Fig. 3. However,
the streamlines of the peaked solitary waves are neither smooth at crest (x ¼ 0) nor periodic in the horizontal direction. Note
that the velocity field of the traditional Airy waves is also smooth everywhere, but there exists the discontinuity of the veloc-
ity at crest x ¼ 0 for the peaked solitary waves. This illustrates once again that the peaked solitary waves are indeed quite
different from the traditional smooth ones.

Mathematically speaking, given a dimensionless phase speed a, there exist an infinite number of km satisfying (28), and
each of them corresponds to a solution of the linear UWM. This is quite different from the smooth periodic progressive Airy
wave fðxÞ ¼ A cosðkxÞ that is unique for a given a. This is because, given a dimensionless phase speed a, the transcendental Eq.
(19) has an unique solution, but the transcendental Eq. (28) has an infinite number of solutions! Note that, unlike the smooth
Airy wave theory, the parameter km of the peaked solitary wave does not denote the wave number, but the decay-rate of the
wave elevation as x! þ1: the larger the value of km, more quickly the wave elevation decays to zero. When the wave height
is fixed, define the decay length
ka ¼ 2jxBj ð46Þ
of the peaked solitary waves, where xB is determined by the nonlinear equation fðxBÞ ¼ 10�4. Essentially, for a fixed wave
height, we can regard the decay length ka as a characteristic length of peaked solitary waves in the horizontal direction,
called the ‘‘actual wavelength’’, although in theory wavelength of a solitary waves is infinite. In this meaning, for a fixed
wave height, the peaked solitary waves are dispersive with the actual wavelength ka. Besides, according to (28), the peaked
solitary wave can propagate very quickly even if the wave height Hw is small, since tan km=km ! þ1 as km ! mpþ p=2, where
km 2 Ka and m P 0 is an integer.
x

z

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0
(A)

x

z

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0
(B)

Comparison of streamlines given by the stream-function w=ðaHwÞ in case of k ¼ 1. (A): Airy wave; (B): peaked solitary wave given by the linear
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The kinetic energy of the smooth progressive Airy waves given by the linear UWM reads
Ek ¼
1
2

u2 þ v2
 �
¼ aHwk

4 sinhðkÞ

� �2

cosh½2kð1þ zÞ� þ cosð2kxÞf g; ð47Þ
which is periodic in the horizontal direction and decreases exponentially as z decreases from the free surface (z ¼ 0) to the
bottom (z ¼ �1). However, according to (36) and (40) or (41), we have the kinetic energy of the peaked solitary waves given
by the linear UWM:
Ekm ¼
1
2

u2 þ v2
 �
¼ ðaHwkmÞ2

2 sin2ðkmÞ
expð�2kmjxjÞ; ð48Þ
which is independent of z and decays exponentially as jxj increases. This is quite different from the traditional smooth Airy
waves. It illustrates once again the novelty of the peaked solitary waves given by the UWM.

Since the governing Eq. (3), the two linearized free surface conditions (15) and (16) and all other conditions are linear, the
solution of the peaked solitary wave can be expressed in a general form
/þðx; zÞ ¼ a
Xþ1
n¼0

An cos knðzþ 1Þ½ � expð�knxÞ; 0 < x < þ1: ð49Þ
Using the linear boundary condition (16), we have the corresponding elevation of the solitary wave
fþðxÞ ¼ a
@/þ

@x

����
z¼0
¼ �a2

Xþ1
n¼0

Ankn cos kn expð�knxÞ ¼ �
Xþ1
n¼0

An sin kn expð�knxÞ ¼
Xþ1
n¼0

bn expð�knxÞ; 0 < x < þ1; ð50Þ
where the relationship (28) is applied. Using the symmetry (13), we have
fðxÞ ¼
Xþ1
n¼0

bn expð�knjxjÞ; ð51Þ

uðx; zÞ ¼ �a
Xþ1
n¼0

An kn cos½knðzþ 1Þ� expð�knjxjÞ; ð52Þ

vþðx; zÞ ¼ �a
Xþ1
n¼0

An kn sin½knðzþ 1Þ� expð�knxÞ; ð53Þ

v�ðx; zÞ ¼ a
Xþ1
n¼0

An kn sin½knðzþ 1Þ� expðknxÞ; ð54Þ
where the superscripts + and � denote the interval x 2 ð0;þ1Þ and x 2 ð�1;0Þ, respectively. Note that, using the restriction
(11), we have a linear algebraic equation
Hw ¼
Xþ1
n¼0

bn; ð55Þ
which has an infinite number of solutions of bn for a given value of Hw, where n P 0 is an integer. In other words, from math-
ematical viewpoints, given a wave height Hw and a phase speed a P 1, there exist an infinite number of peaked solitary
waves. This is completely different from the smooth periodic progressive Airy wave that is unique for given phase speed
and wave height. This is because, given a phase speed a, the transcendental Eq. (19) has an unique solution but (28) has
an infinite number of ones! Thus, different peaked solitary waves might have exactly the same phase speed. For example,
in the case of k0 ¼ p=3; k1 ¼ 4:58117 when a ¼ 33=4=

ffiffiffiffi
p
p

, the peaked solitary wave
fðxÞ ¼ 1
2

e�k0 jxj þ e�k1 jxj

 �
is different from the peaked solitary waves expð�k0jxjÞ and expð�k1jxjÞ but has the same phase speed with them, as shown in
Fig. 1. Note that, in the frame of the linear UWM, the crest of each peaked solitary wave may be at different position. So, the
peaked wave elevation can be generally expressed by
fðxÞ ¼
Xþ1
n¼0

bn expð�knjx� n0jÞ; ð56Þ
where bn and nn are real numbers.
Like traditional smooth Airy’s wave, since the elevation (35) of the peaked solitary wave is gained by the linear wave

equations, the value of Hw can be negative, corresponding to a peaked solitary wave in the form of depression. For example,
fðxÞ ¼ � expð�jxjÞ=10 is a peaked solitary wave of depression. Such kind of peaked solitary waves have been never reported
for surface waves. This once again indicates the novelty of the peaked solitary waves given by the UWM.
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It is traditionally believed that solitary waves are always governed by nonlinear differential equations and exist in shal-
low water. However, we illustrate here that solitary waves may exist even in the frame of the linear wave equations in water
of finite depth. It should be emphasized that the peaked solitary wave (35) includes the famous peaked solitary wave (2)
found by Casamma & Holm [6]. This might reveal the origin of the peaked solitary waves of the CH Eq. (1), since the CH equa-
tion was derived from the fully nonlinear wave equations under some assumptions in shallow water. Note that the peaked
solitary wave (35) is valid not only in shallow water but also in water of finite depth, and thus is more general. Logically
speaking, the peaked solitary wave (35) is as acceptable as the peaked solitary waves (2) of the CH Eq. (1), as shown later
in more details.

In summary, the linear UWM admits not only the traditional progressive waves with smooth crest, but also the peaked
solitary waves that include the famous peaked solitary wave (2) given by the CH Eq. (1) and besides have many unusual char-
acteristics. Thus, the UWM unifies, for the first time, the traditional smooth waves and the peaked solitary waves. In other
words, the linear peaked solitary waves are consistent with the traditional smooth ones, and thus are as acceptable as the
traditional ones in the frame of inviscid fluid. It is found that the linear peaked solitary waves have many unusual charac-
teristics that are quite different from those of the traditional smooth ones. First, its 1st-derivative of elevation is discontin-
uous at crest with a discontinuous vertical velocity. Besides, the phase speed of the peaked solitary waves has nothing to do
with wave height: in fact, it is dispersive (when wave height is fixed) with the decay length, i.e., the so-called ‘‘actual wave-
length’’ ka. In addition, unlike the traditional smooth waves whose kinetic energy is periodic in the horizontal direction and
decreases exponentially as z decreases from free surface to bottom, the kinetic energy of the linear peaked solitary waves
decreases in the horizontal direction as jxj increases, but keeps the same from free surface to bottom, i.e., it is independent
of z at all. All of these reveal the novelty of the linear peaked solitary waves.

In the following section, we further check and confirm these unusual characteristics of the linear peaked solitary waves
using the exact UWM based on the symmetry and the fully nonlinear wave equations.

4.2. Peaked solitary waves by the nonlinear UWM

As shown in Section 4.1, the peaked solitary surface waves given by the linear UWM with the free surface conditions (15)
and (16) have some unusual characteristics that are quite different from the smooth periodic and solitary ones. Does the ex-
act UWM based on the symmetry (13) and the fully nonlinear wave Eqs. (3)–(12) indeed admit such kind of peaked solitary
waves? Do this kind of peaked solitary waves have the same unusual characteristics as those reported in Section 4.1?

To answer these questions, we consider here the solitary surface waves with a finite wave height in a finite water depth so
that the nonlinear terms of the free surface conditions (4) and (5) are not negligible, and besides z ¼ 0 is not a good approx-
imation of the free surface fðxÞ. In other words, we had to accurately solve the fully nonlinear wave Eqs. (3)–(12) in the inter-
val 0 < x < þ1 with the symmetry (13).

In this section, an analytic approximation technique for highly nonlinear differential equations proposed by Liao, namely
the homotopy analysis method (HAM) [14–20], is applied to solve the exact UWM based on the symmetry (13) and the fully
nonlinear wave Eqs. (3)–(12). Unlike perturbation techniques, the HAM does not need any assumptions of small/large phys-
ical parameters, since it is based on the homotopy, a basic concept in topology. Besides, the HAM provides us great freedom
to choose base functions and equation-type for high-order approximation equations. Especially, by means of the so-called
‘‘convergence-control parameter’’ that has no physical meanings, the HAM provides us a convenient way to guarantee the
convergence of approximation series. In essence, it is the so-called ‘‘convergence-control parameter’’ that differs the HAM
from all other analytic approximation techniques, as pointed out by Liao [19]. Therefore, the HAM is valid for highly nonlin-
ear problems, as shown by lots of successful applications in fluid mechanics, applied mathematics, physics and finance. For
example, by means of the HAM, Liao [15] gained, for the first time, convergent series solution of Blasius and Falker–Skan
boundary-layer flows, which are uniformly valid in the whole field of flow (Note that the traditional power series given
by Blasius [39] is valid only in the near field, and thus had to be matched with another asymptotic approximation of flow
in far field). Besides, using the HAM as a tool, the exact Navier–Stokes equations were solved by Turkyilmazoglu [40] for
a compressible boundary layer flow due to a porous rotating disk, and by Xu et al. [41] for viscous flows in a porous channel
with orthogonally moving walls. Furthermore, the limit cycle of Duffing – van der Pol equation was solved by Turkyilmazo-
glu [42], and the two coupled Van der Pol equations were solved by Li et al. [43]. Especially, by means of the HAM, some new
solutions of boundary layer flows have been found by Liao [44] and by Liao & Magyari [45], which have been neglected by
other analytic and even numerical techniques. In addition, the HAM has been successfully applied to solve some nonlinear
PDEs with moving boundary conditions, such as those about the famous problem of the American put option in finance. For
example, Zhu [46] successfully applied the HAM to give a series approximation of the American put option and gained the
optimal exercise boundary valid for a couple of years, while perturbative and/or asymptotic formulas are accurate only in a
few days or weeks. All of these illustrate the potential and validity of the HAM for highly nonlinear problems.

It should be emphasized that the HAM has been successfully applied to solve the fully nonlinear wave equations, too.
Using the traditional base functions (17), Liao & Cheung [47] applied the HAM to solve the smooth periodic progressive sur-
face waves in deep water and obtained convergent solutions for waves with large amplitude even close to the limiting case.
Their analytic results agree quite well with those given by Schwartz [48] and Longuet-Higgins [49]. Besides, using the same
base functions (17), Tao et al. [50] successfully applied the HAM to solve the fully nonlinear wave equations for smooth peri-
odic progressive waves in finite water depth, and their analytic results agree well not only with the analytic ones given by
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Cokelet [21] and Rienecker & Fenton [51] but also with the experimental ones reported by Mehaute et al. [52]. Currently, Xu
et al. [53] successfully applied the HAM to investigate the steady-state fully-resonant progressive waves in finite water
depth, and found, for the first time, the multiple steady-state resonant waves whose wave spectrums are independent of
time, i.e., without exchange of wave energy. All of these demonstrate the validity of the HAM for the fully nonlinear wave
Eqs. (3)–(12).

4.2.1. Analytic approach based on the HAM
In short, the fully nonlinear wave Eqs. (3)–(12) in the domain 0 < x < þ1 can be solved by means of the HAM and the

evanescent base functions (26) in a rather similar way as those by Liao & Cheung [47] and Tao et al. [50], although they used
the traditional base functions (17) with perfect smoothness. Then, we expand these results to the whole domain
x 2 ð�1;þ1Þ using the symmetry (13). In this way, we can gain the peaked solitary waves in the whole domain
x 2 ð�1;þ1Þ by means of the UWM.

Due to the symmetry (13), we need consider the case x > 0 only. As mentioned in Section 4.1 for the linearized UWM,
given a phase speed a, there exists an infinite number of peaked solitary waves fðxÞ ¼ Hw expð�kmxÞ with different decay-
parameter km satisfying the transcendental Eq. (28), where km P 0 is an integer. So, the general expression of the peaked sol-
itary waves becomes rather complicated when the nonlinear boundary conditions are considered. Thus, for the sake of sim-
plicity, we consider here only the peaked solitary waves with the primary decay-parameter 0 6 k0 6 p=2. From now on, let k
denote the primary decay-parameter k0, if not mentioned. Obviously, due to the nonlinearity of the two free surface condi-
tions, the peaked solitary wave elevation should contain the terms expð�nkxÞ, and correspondingly the velocity potential
function /ðx; zÞ should be expressed in the form
/ðx; zÞ ¼
Xþ1
n¼1

an cos½nkðzþ 1Þ� expð�nkxÞ; x > 0; k > 0; ð57Þ
which automatically satisfies the Lapalce Eq. (3) in the domain 0 < x < þ1, the bottom condition (6) and the bounded con-
dition (12), where k ¼ k0 2 Ka defined by (30) is a primary decay-parameter, and an is a constant to be determined. We
search for the solitary surface waves in the form
fðxÞ ¼
Xþ1
n¼1

bn exp �nkxð Þ; x > 0; k ¼ k0 2 Ka; ð58Þ
where bn is a constant coefficient to be determined. The above expressions (57) and (58) provide us the so-called solution-
expression of /ðx; zÞ and fðxÞ, respectively, which play important role in the frame of the HAM, as shown below.

Let /0ðx; zÞ; f0ðxÞ denote the initial guess of the velocity potential /ðx; zÞ and the wave elevation fðxÞ in the interval
x 2 ð0;þ1Þ, respectively. To apply the HAM, we should first of all construct two continuous variations from the initial guess
/0ðx; zÞ; f0ðxÞ to the exact solution /ðx; zÞ; fðxÞ, respectively. This can be easily done by means of the homotopy, a basic con-
cept in topology, as shown below.

First, according to the solution expression (57), we choose
/0ðx; zÞ ¼ A0 cos½kðzþ 1Þ� e�kx; x > 0; k > 0; ð59Þ
as the initial guess of the velocity potential /ðx; zÞ, where A0 is a constant to be determined. Note that, different from Liao &
Cheung [47] and Tao et al. [50], the evanescent-mode base-function (26) is used here. Note also that /0ðx; zÞ automatically
satisfies the Laplace Eq. (3) in the interval 0 < x < þ1, the bottom condition (6) and the bounded condition (12). Besides,
following Liao & Cheung [47] and Tao et al. [50], we choose
f0ðxÞ ¼ 0 ð60Þ
as the initial guess of wave elevation fðxÞ.
Secondly, according to (4), we define a nonlinear operator
N/ ¼ a2 @
2/
@x2 þ

@/
@z
� a

@

@x
ðr/ � r/Þ þ r/ � r 1

2
r/ � r/

� �
: ð61Þ
Let q 2 ½0;1� denote an embedding parameter, c/ and cg be two non-zero auxiliary parameters without physical meanings,
called the convergence-control parameters, and L denote an auxiliary linear operator, respectively. Following Liao & Cheung
[47] and Tao et al. [50], we construct the so-called zeroth-order deformation equation
r2Uðx; z; qÞ ¼ 0; 0 < x < þ1; z 6 gðx; qÞ; ð62Þ
subject to the boundary conditions on the unknown free surface z ¼ gðx; qÞ:
ð1� qÞL Uðx; z; qÞ � /0ðx; zÞ½ � ¼ c/ q N Uðx; z; qÞ½ �; 0 < x < þ1; ð63Þ

ð1� qÞgðx; qÞ ¼ cg q gðx; qÞ � a
@U
@x
þ 1

2
rU � rU

� �
; 0 < x < þ1 ð64Þ
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and the boundary condition at the bottom
@U
@z
¼ 0; z ¼ �1; 0 < x < þ1: ð65Þ
If the wave height Hw is given, there exists the additional condition:
lim
x!0

gðx; qÞ ¼ Hw: ð66Þ
Note that Uðx; z; qÞ and gðx; qÞ depend not only on the original physical variables x; z but also on the embedding parameter
q 2 ½0;1� and the two convergence-control parameter c/; cg, though q; c/ and cg have no physical meanings at all. It should be
emphasized that we have great freedom to choose the values of the convergence-control parameters c/ and cg. Following
Liao & Cheung [47] and Tao et al. [50], we choose the auxiliary linear operator
L/ ¼ a2 @
2/
@x2 þ

@/
@z

; ð67Þ
which has the property L½0� ¼ 0. Note that L is exactly the linear part of the nonlinear operator N defined by (61). In this
way, the zeroth-order deformation Eqs. (62)–(66) are well defined.

When q ¼ 0, we have from (64) that
gðx; 0Þ ¼ 0 ¼ f0ðxÞ; ð68Þ
and then the corresponding zeroth-order deformation equations become
r2Uðx; z; 0Þ ¼ 0; z 6 0; 0 < x < þ1; ð69Þ
subject to the boundary conditions on the known free surface
L Uðx; z; 0Þ � /0ðx; zÞ½ � ¼ 0; when z ¼ 0; 0 < x < þ1; ð70Þ
and the boundary condition at the bottom
@Uðx; z; 0Þ
@z

¼ 0; z ¼ �1; 0 < x < þ1: ð71Þ
Since the auxiliary linear operator L has the property L½0� ¼ 0 and besides the initial guess /0ðx; zÞ defined by (59) satisfies
the Laplace Eq. (3) and the bottom condition (6), it is straightforward that
Uðx; z; 0Þ ¼ /0ðx; zÞ: ð72Þ
When q ¼ 1, since c/ – 0 and cg – 0, the zeroth-order deformation Eqs. (62)–(66) are equivalent to the original, fully non-
linear wave Eqs. (3)–(11), respectively, so that we have the relationship
Uðx; z; 1Þ ¼ /ðx; zÞ; gðx; 1Þ ¼ fðxÞ: ð73Þ
Thus, as the embedding parameter q increases from 0 to 1, Uðx; z; qÞ and gðx; qÞ indeed vary continuously from the initial
guess /0ðx; zÞ; f0ðxÞ to the exact solution /ðx; zÞ; fðxÞ of the fully nonlinear wave Eqs. (3)–(11), respectively. Therefore, the zer-
oth-order deformation Eqs. (62)–(66) truly construct such a kind of continuous variation that provides a base of our analytic
approach, as shown below.

Since both of Uðx; z; qÞ and gðx; qÞ are dependent upon the embedding parameter q 2 ½0;1�, we can expand them in
Maclaurin series with respect to q to gain the so-called homotopy-Maclaurin series
Uðx; z; qÞ ¼ /0ðx; zÞ þ
Xþ1
m¼1

/mðx; zÞ qm; ð74Þ

gðx; qÞ ¼
Xþ1
m¼1

fmðxÞ qm; ð75Þ
where
/mðx; zÞ ¼
1

m!

@mUðx; z; qÞ
@qm

����
q¼0
; fmðxÞ ¼

1
m!

@mgðx; qÞ
@qm

����
q¼0
and the relationship (68) and (72) are used. However, it is well known that a Maclaurin series often has a finite radius of
convergence. Fortunately, both of Uðx; z; qÞ and gðx; qÞ contain the two convergence-control parameters c/ and cg, which have
great influence on the convergence of the Maclaurin series of Uðx; z; qÞ and gðx; qÞ, as shown by Liao & Cheung [47] and Tao
et al. [50]. Here, it should be emphasized once again that we have great freedom to choose the values of c/ and cg. Thus, if the
convergence-control parameters c/ and cg are properly chosen so that the above homotopy-Maclaurin series are convergent
at q ¼ 1, we have the homotopy-series solution
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/ðx; zÞ ¼ /0ðx; zÞ þ
Xþ1
m¼1

/mðx; zÞ; ð76Þ

fðxÞ ¼
Xþ1
m¼1

fmðxÞ: ð77Þ
The equations for the unknown /mðx; zÞ and fmðxÞ can be derived directly from the zeroth-order deformation equations.
Like Liao & Cheung [47] and Tao et al. [50], substituting the series (74) and (75) into the zeroth-order deformation Eqs. (62)–
(66), then equating the like-power of q, we gain
fmðxÞ ¼ cg Dg
m�1 þ vm fm�1

� 
��
z¼0; m P 1; 0 < x < þ1; ð78Þ
where
Dg
m ¼ fm � a �/m;1 þ Cm;0 ð79Þ
and the mth-order deformation equation
r2/mðx; zÞ ¼ 0; m P 1; z 6 0; 0 < x < þ1; ð80Þ
subject to the boundary condition on the known free surface z ¼ 0:
�Lð/mÞ ¼ a2 @2/m

@x2 þ
@/m

@z

 !�����
z¼0

¼ RmðxÞ; 0 < x < þ1 ð81Þ
and the bottom condition
@/m

@z
¼ 0; z ¼ �1; 0 < x < þ1; ð82Þ
where
RmðxÞ ¼ c/ D/
m�1 þ vm Sm�1 � Sm

n o���
z¼0
; 0 < x < þ1; ð83Þ

vn ¼
0; when n 6 1;
1; when n > 1:

�
ð84Þ
The detailed derivations of Dg
m�1;D

/
m�1; Sm�1; Sm with all related formulas are given explicitly in the Appendix. These

formulas are essentially the same as those for the smooth periodic progressive waves used by Liao & Cheung [47] and
Tao et al. [50], although we explicitly give all formulas in details so that high-order approximations can be gained more
efficiently.

Note that the dimensionless phase speed a of the peaked solitary waves is unknown up to now. According to the linear
UWM described in Section 4.1, the peaked solitary waves exist only when
a2 ¼ tan k
k

; np < k < npþ p
2
; ð85Þ
where n P 0 is an integer. Note that here we consider only the primary decay-parameter 0 < k0 < p=2 with the definition
k ¼ k0. If the above expression also holds for the fully nonlinear wave equations of the UWM, the auxiliary linear operator
defined by (67) has the property
L cos½kðzþ 1Þ�e�kx
� 


¼ 0; x P 0; k ¼ k0 > 0 ð86Þ
and the corresponding inverse operator of �L defined by (81) has the property
�L�1 exp �nkxð Þf g ¼ cos½nkðzþ 1Þ� expð�nkxÞ
ðnkÞ a2ðnkÞ cosðnkÞ � sinðnkÞ½ � ; k > 0; n – 1; x > 0; ð87Þ
where n P 2 is an integer. Note that the above expression does not hold when n ¼ 1. Fortunately, it is found that RmðxÞ in-
deed does not contain the term expð�kxÞ as long as the phase speed is given by a2 ¼ tanðkÞ=k, where 0 < k < p=2. Mathe-
matically, this is because the nonlinear terms of (61) do not contain the term expð�kxÞ at all, since
expð�mkxÞ � expð�nkxÞ ¼ e�ðmþnÞkx
with mþ n P 2 for any integers m P 1 and n P 1. So do the linear terms of the nonlinear operator (61), since
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a2 @2

@x2 þ
@

@z

 !Xþ1
n¼1

bn cos½nkðzþ 1Þ� expð�nkxÞ
( )�����

z¼0

¼
Xþ1
n¼1

ðnkÞ a2ðnkÞ cosðnkÞ � sinðnkÞ
� �

bn expð�nkxÞ

¼
Xþ1
n¼2

ðnkÞ a2ðnkÞ cosðnkÞ � sinðnkÞ
� �

bn expð�nkxÞ
does not contain the term expð�kxÞ, too. This is the essential reason why the phase speed
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðkÞ

k

r
ð88Þ
given by the linear UWM still holds for the fully nonlinear wave Eqs. (3), (63)–(66) of the exact UWM! Thus, unlike the tra-
ditional smooth periodic and solitary progressive waves that are dispersive with wave height, the phase speed of the peaked
solitary waves has nothing to do with the wave height: it is dispersive with the so-called ‘‘actual wavelength’’ ka when wave
height is fixed. More discussions about this point will be given in Section 5.

Keeping (88) in mind and using the property (87) of the inverse operator �L�1, it is straightforward to gain the common
solution of the high-order deformation Eq. (80)–(82):
/mðx; zÞ ¼ /�mðx; zÞ þ Am cos k 1þ zð Þ½ �e�kx; x > 0; ð89Þ
where /�mðx; zÞ ¼ �L�1½RmðxÞ� is a special solution, and the coefficient Am is determined by the given wave height
Xmþ1

n¼1

lim
x!0

fnðxÞ ¼ Hw: ð90Þ
This is mainly because, according to (78), fmþ1ðxÞ is dependent upon /mðx; zÞ that contains the unknown parameter Am for
m P 1. Note that, according to (87), /mðx; zÞ is in the form of (57) and thus automatically satisfies the Laplace Eq. (3) in
the domain 0 < x < þ1, the bottom condition (6) and the bounded condition (12). Thus, using the explicit formulas given
in the Appendix, it is computationally efficient to gain high-order analytic approximations successively, especially by means
of the computer algebra system such as Mathematica and Maple, since our analytic approach needs only algebra
computations.

For example, using the initial guess (59) and (78), we directly have
f1ðxÞ ¼ �cg a
@/0

@x
� 1

2
r/0 � r/0

� �����
z¼0
¼ cgA0k a cosðkÞe�kx þ A0k

2
e�2kx

� �
; x > 0: ð91Þ
Thus, at the first-order of approximation, we have an algebraic equation for the given wave height
Hw ¼ cgkA0 a cos kþ 1
2

kA0

� �
;

which gives two different solutions
A0 ¼ k�1 �a cos k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2ðkÞ þ 2Hw=cg

q� �
: ð92Þ
We simply choice
A0 ¼ �k�1 a cos k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2ðkÞ þ 2Hw=cg

q� �
ð93Þ
to calculate A0 for a given Hw, since it has a smaller absolute value.
Furthermore, using the initial guess (59), we have
D/
0 ¼ kA0 a2k cos k� sin k


 �
e�kx þ 2ak3A2

0e�2kx þ k4A3
0 cosðkÞe�3kx:
Using the phase speed (88), the term expð�kxÞ of the above expression disappears, say,
D/
0 ¼ 2ak3A2

0e�2kx þ k4A3
0 cosðkÞe�3kx; x > 0:
Thus, the first-order deformation equation reads
r2/1ðx; zÞ ¼ 0; z 6 0; 0 < x < þ1; ð94Þ
subject to the boundary condition on the known free surface z ¼ 0:
�L /mð Þ ¼ a2 @2/m

@x2 þ
@/m

@z

 !�����
z¼0

¼ c/ 2ak3A2
0e�2kx þ k4A3

0 cosðkÞe�3kx
h i

ð95Þ
and the bottom condition
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@/1

@z
¼ 0; z ¼ �1; 0 < x < þ1: ð96Þ
Using the property of the inverse operator (87), it is easy to gain the common solution
/1ðx; zÞ ¼ c/
ak2A2

0 cos½2kðzþ 1Þ�e�2kx

2a2k cosð2kÞ � sinð2kÞ þ
k3A3

0 cos k cos½3kðzþ 1Þ�e�3kx

3½3a2k cosð3kÞ � sinð3kÞ�

( )
þ A1 cos½kðzþ 1Þ�e�kx; 0 < x < þ1; ð97Þ
where A1 is an unknown constant to be determined. Similarly, using (78), we gain f2ðxÞ, which contains the unknown con-
stant A1. Then, for the given wave height Hw, we have a linear algebraic equation
Hw ¼ lim
x!0

f1ðxÞ þ lim
x!0

f2ðxÞ;
which determines A1. Then, /1ðx; zÞ is completely determined. Similarly, we further gain /2ðx; zÞ; f3ðxÞ, and so on. Finally,
using the symmetry (13), we gain the wave elevation fðxÞ and the velocities uðx; zÞ;vðx; zÞ in the interval �1 < x < 0 and
0 < x < þ1. At x ¼ 0, the continuous horizontal velocity uð0; zÞ ¼ UðzÞ is given by (10), and the vertical velocity
vð0; zÞ ¼ 0 is given directly by the symmetry condition (13). The convergence of the solution series is guaranteed by properly
choosing the two convergence-control parameters c/ and cg in the frame of the HAM. In this way, we gain the convergent
series solutions of the peaked solitary waves in the whole domain �1 < x < þ1 by means of the UWM.

Our computations confirm that, for all m P 0;RmðxÞ in (81) indeed does not contain the term expð�kxÞ at all. Thus, the
fully nonlinear wave Eqs. (3)–(12) indeed give the same dimensionless phase speed a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan k=k

p
as that by the linear ones.

Therefore, the phase speed of the peaked solitary wave indeed has nothing to do with the wave height Hw: in fact, it is depen-
dent upon the decay-parameter k, which determines the decay-length, i.e., the so-called ‘‘actual wavelength’’ ka, when wave
height is fixed. In practice, the peaked solitary waves can be regarded to be dispersive (for a fixed wave height) with the
‘‘actual wavelength’’ that is a characteristic length in the horizontal direction. This is indeed completely different from
the traditional periodic and solitary waves with smooth crest, which are dispersive with wave height that is a characteristic
length in vertical direction. This unusual characteristic clearly demonstrates the novelty of the peaked solitary surface
waves. We will discuss this interesting characteristic of the peaked solitary waves later.

Note that our HAM-based analytic approach mentioned above is rather similar to those by Liao & Cheung [47] and Tao
et al. [50] for the traditional smooth progressive waves in deep and finite water, except that we use here the symmetry con-
dition (13), the evanescent-mode base-function (26), and besides regard the dimensionless phase speed a as a constant inde-
pendent of wave height.

Finally, we should emphasize that, unlike perturbation methods, our HAM-based analytic approach does not need any
assumptions about small/large physical parameters. More importantly, both of /ðx; zÞ and fðxÞ contain the two conver-
gence-control parameters c/ and cg, which provide us a convenient way to guarantee the convergence of approximation ser-
ies, as illustrated below.

4.2.2. Convergence of series solution
Note that, unlike perturbation results, /mðx; zÞ and fmðxÞ gained in the above-mentioned HAM-based approach contain the

two convergence-control parameters c/ and cg, which provide us a convenient way to guarantee the convergence of the ser-
ies (76) and (77), as shown below.

First, let us consider the case of k ¼ 1 and Hw ¼ 1=20, with the corresponding dimensionless phase velocity
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan k=k

p
� 1:24796. Since the wave height is only 5% of the water depth D, the nonlinearity is weak. Thus, following

Liao & Cheung [47] and Tao et al. [50], we choose c/ ¼ �1 and cg ¼ �1 for such a kind of weakly nonlinear wave problem.
It is found that, the corresponding series of analytic approximations indeed converge quickly, as shown in Table 1 for f0ð0þÞ
and the horizontal velocity UðzÞ ¼ uð0; zÞ at x ¼ 0 when z ¼ �1; z ¼ �1=2; z ¼ �1=4 and z ¼ Hw, respectively, where 0þ de-
notes x! 0 from the right along the x axis. It is found that the velocity potential /ðx; zÞ converges quickly in the domain
x 2 ð0;þ1Þ and z 6 fðxÞ, as shown in Fig. 4 for the corresponding horizontal velocity profile UðzÞ ¼ uð0; zÞ at crest (x ¼ 0).
This confirms that the peaked solitary wave is indeed a solution of the UWM based on the symmetry and the fully nonlinear
wave Eqs. (3)–(12).
approximations of UðzÞ ¼ uð0; zÞ and f0ð0þÞ in the case of Hw ¼ 1=20 and k ¼ 1 by means of c/ ¼ �1 and cg ¼ �1.

r of approx. Uð�1Þ Uð�0:5Þ Uð�0:25Þ UðHwÞ f0ð0þÞ

0.07222 0.06570 0.05762 0.04289 �0.04690
0.06833 0.06236 0.05466 0.04205 �0.04859
0.06796 0.06219 0.05489 0.04213 �0.04823
0.06799 0.06221 0.05490 0.04213 �0.04823
0.06799 0.06221 0.05490 0.04213 �0.04823
0.06799 0.06221 0.05490 0.04213 �0.04823
0.06799 0.06221 0.05490 0.04213 �0.04823
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Secondly, let us consider the case with k ¼ 1 and Hw ¼ �1=20, with the same dimensionless phase velocity
a ¼ c=

ffiffiffiffiffiffi
gD

p
� 1:24796. It is found that the corresponding series of analytic approximations given by c/ ¼ �1 and cg ¼ �1

converge quickly in the domain x P 0, as shown in Table 2 for f0ð0þÞ and the horizontal velocity UðzÞ ¼ uð0; zÞ at crest
(x ¼ 0) when z ¼ �1;�0:5;�0:25 and z ¼ Hw, respectively. Besides, the corresponding velocity potential /ðx; zÞ converges
quickly in the domain x 2 ð0;þ1Þ and z 6 fðxÞ, as shown in Fig. 5 for the horizontal velocity profile UðzÞ ¼ uð0; zÞ at crest.
This confirms that the peaked solitary wave in the form of depression is also a solution of the UWM, too.

Similarly, in the case of k ¼ 1=2 and Hw ¼ �1=20, with the corresponding dimensionless phase speed a � 1:04528, we
gain convergent series solutions of /ðx; zÞ and fðxÞ in the domain x 2 ð0;þ1Þ and z 6 fðxÞ by means of c/ ¼ �1 and
cg ¼ �1, respectively.

Note that, using the symmetry conditions (13) and (14), we can expand all of these convergent series solutions into the
whole domain �1 < x < þ1. Thus, the UWM indeed admits the peaked solitary waves! In other words, the UWM unifies
both of the smooth and peaked waves, for the first time, to the best of the author’s knowledge. Mathematically, it reveals
that the peaked solitary waves are consistent with the traditional smooth waves and thus are as acceptable as them in
the frame of inviscid fluid.

Furthermore, let us consider the case of k ¼ 1 and Hw ¼ 0:1, with the corresponding dimensionless phase velocity
a � 1:24796. Since the wave weight increases to 10% of water depth, the nonlinearity becomes stronger. As suggested by
Liao & Cheung [47] and Tao et al. [50], we should choose the convergence-control parameters c/ and cg with smaller absolute
values for high nonlinearity. It is found that the series of the analytic approximations given by c/ ¼ �1=2 and cg ¼ �1 con-
verges quickly, as shown in Table 3 and Fig. 6 for the horizontal velocity profile UðzÞ ¼ uð0; zÞ at crest. Similarly, in the case of
k ¼ 1 and Hw ¼ �0:1, we gain convergent series solution by means of c/ ¼ �3=4 and cg ¼ �1, as shown in Table 4 and Fig. 7.
This illustrates that the two convergence-control parameters c/ and cg indeed provide us a convenient way to guarantee the
convergence of approximation series. Note that the absolute value of the horizontal velocity on bottom in the case of
Hw ¼ �0:1 is 44% larger than that in the case of Hw ¼ 0:1. So, due to the nonlinearity, there does not exist a symmetry be-
tween these two wave elevations for Hw ¼ þ0:1 and Hw ¼ �0:1, respectively.
Table 2
Analytic approximations of UðzÞ ¼ uð0; zÞ and f0ð0þÞ in the case of Hw ¼ �1=20 and k ¼ 1 by means of c/ ¼ �1 and cg ¼ �1.

Order of approx. Uð�1Þ Uð�0:5Þ Uð�0:25Þ UðHwÞ f0ð0þÞ

1 �0.07047 �0.06377 �0.05101 �0.03840 0.05248
3 �0.08133 �0.06737 �0.05218 �0.03779 0.05220
5 �0.08140 �0.06749 �0.05218 �0.03772 0.05192

10 �0.08145 �0.06750 �0.05218 �0.03772 0.05183
20 �0.08145 �0.06750 �0.05218 �0.03772 0.05183
25 �0.08145 �0.06750 �0.05218 �0.03772 0.05183
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Table 3
Analytic approximations of UðzÞ ¼ uð0; zÞ and f0ð0þÞ in the case of Hw ¼ 1=10 and k ¼ 1 by means of c/ ¼ �1=2 and cg ¼ �1.

Order of approx. Uð�1Þ Uð�0:5Þ Uð�0:25Þ UðHwÞ f0ð0þÞ

1 0.1696 0.1543 0.1347 0.09362 �0.08561
3 0.1246 0.1180 0.1090 0.08837 �0.09332
5 0.1270 0.1196 0.1098 0.08813 �0.09142

10 0.1254 0.1183 0.1090 0.08788 �0.09285
15 0.1254 0.1183 0.1090 0.08789 �0.09299
20 0.1254 0.1183 0.1090 0.08789 �0.09299
25 0.1254 0.1183 0.1090 0.08789 �0.09299
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Fig. 6. Analytic approximations of the dimensionless horizontal velocity profile UðzÞ ¼ uð0; zÞ beneath the crest in the case of k ¼ 1 and Hw ¼ 0:1 given by
c/ ¼ �1=2 and cg ¼ �1. Dashed-line: zeroth-order approx.; Dash-dotted line: 2nd-order approx.; Solid line: 6th-order approx.; Symbols: 25th-order
approximation.
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Table 4
Analytic approximations of UðzÞ ¼ uð0; zÞ and f0ð0þÞ in the case of Hw ¼ �1=10 and k ¼ 1 by means of c/ ¼ �3=4 and cg ¼ �1.

Order of approx. Uð�1Þ Uð�0:5Þ Uð�0:25Þ UðHwÞ f0ð0þÞ

1 �0.1418 �0.1191 �0.09328 �0.07474 0.1091
3 �0.1704 �0.1343 �0.09684 �0.07211 0.1130
5 �0.1768 �0.1368 �0.09664 �0.07070 0.1107

10 �0.1801 �0.1379 �0.09650 �0.07016 0.1079
15 �0.1805 �0.1380 �0.09649 �0.07013 0.1075
20 �0.1806 �0.1380 �0.09648 �0.07012 0.1075
25 �0.1806 �0.1380 �0.09648 �0.07012 0.1075
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Fig. 7. Analytic approximations of the dimensionless horizontal velocity profile UðzÞ ¼ uð0; zÞ beneath the crest in the case of k ¼ 1 and Hw ¼ �0:1 given by
c/ ¼ �3=4 and cg ¼ �1. Dashed-line: zeroth-order approx.; Dash-dotted line: 1st-order approx.; Solid line: 10th-order approx.; Symbols: 25th-order
approximation.
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It should be emphasized that, in the case of k ¼ 1, we gain convergent series solutions of the peaked solitary waves with
the same phase speed but different positive and negative values of Hw, such as Hw ¼ �0:05 and Hw ¼ �0:1, respectively. This
confirms that the phase speed of the peaked solitary waves indeed has nothing to do with the wave height. As mentioned in
Section 4.1, for a given wave height, the value of k determines the decay length, which is the characteristic length of the
peaked solitary waves in the horizontal direction, corresponding to the so-called ‘‘actual wavelength’’ ka defined by (46).
Thus, unlike the traditional smooth waves that are dispersive with wave height, the peaked solitary waves are dispersive
(for a fixed wave height) with the ‘‘actual wavelength’’, although their phase speed has nothing to do with the wave height.
This is an unusual characteristic of the peaked solitary waves.

Finally, using the symmetry (13), it is straightforward to gain the wave elevation in the whole interval �1 < x < þ1. As
shown in Figs. 8–11, the wave elevations fðxÞ also converge quickly in all of above-mentioned cases. In case of k ¼ 1, the
wave elevations for Hw ¼ �0:1 are compared with those for Hw ¼ �0:05, as shown in Figs. 8 and 9. It is found that, for
the same value of k, the larger the value of jHwj, the faster fðxÞ decays to zero. Note also that the wave elevation fðxÞ with
larger k decays to 0 more quickly, as shown in Figs. 10 and 11. In other words, the larger the value of k, the faster
fðxÞ ! 0. This provides us a physical meaning of the parameter k. For this reason, we call k the decay-parameter, which
determines the so-called decay-length ka, defined by (46).

Note that, according to the convergence theorem generally proved by Liao [16,19] in the frame of the HAM, each series
solution of the peaked solitary waves given by the HAM satisfies its original equations, as long as it is convergent. So, all of
these convergent series of /ðx; zÞ and fðxÞ are solutions of the unified wave model (UWM) based on the symmetry and the
fully nonlinear wave Eqs. (3)–(12), as further confirmed below.

4.2.3. Validation check of analytic approximations
Note that the velocity potential /ðx; zÞ is expressed in the form (57), which automatically satisfies the Laplace Eq. (3) in the

interval 0 < x < þ1, the bottom condition (6), and the bounded condition (12). Thus, it is only necessary for us to check the
two nonlinear boundary conditions (4) and (5) defined on the unknown wave elevation fðxÞ.
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cg ¼ �1; Dashed line: 5th-order approximation when Hw ¼ �0:05 given by c/ ¼ �1 and cg ¼ �1; Open circles: 25th-order approximation when Hw ¼ �0:05
given by c/ ¼ �1 and cg ¼ �1.
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Fig. 10. Analytic approximations of fðxÞ of the peaked solitary waves when Hw ¼ 0:05 by means of c/ ¼ �1 and cg ¼ �1. Solid line: 5th-order
approximation when k ¼ 1=2 (corresponding to c=

ffiffiffiffiffiffi
gD

p
¼ 1:04528); Filled circles: 25th-order approximation when k ¼ 1=2; Dashed line: 5th-order

approximation when k ¼ 1 (corresponding to c=
ffiffiffiffiffiffi
gD

p
¼ 1:24796); Open circles: 25th-order approximation when k ¼ 1.
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To check the validation of our analytic approximations, we define the averaged residual squares of the two free surface
boundary conditions
E/
mðc/; cgÞ ¼

1
M

XM

n¼1

N �/ðx; zÞ
� �
 �2

���
x¼xn ;z¼fðxnÞ

; ð98Þ

Ef
mðc/; cgÞ ¼

1
M

XM

n¼1

�fðxÞ � a
@�/
@x
þ 1

2
r�/ � r�/

� �2
�����
x¼xn ;z¼fðxnÞ

; ð99Þ
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Fig. 11. Analytic approximations of fðxÞ of the peaked solitary waves when Hw ¼ �0:05 by means of c/ ¼ �1 and cg ¼ �1. Solid line: 5th-order
approximation when k ¼ 1=2 (corresponding to c=

ffiffiffiffiffiffi
gD

p
¼ 1:04528); Filled circles: 25th-order approximation when k ¼ 1=2; Dashed line: 5th-order

approximation when k ¼ 1 (corresponding to c=
ffiffiffiffiffiffi
gD

p
¼ 1:24796; Open circles: 25th-order approximation when k ¼ 1.
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where
Table 5
Average
the cor

Orde

1

3

5

10

15

20

25
�/ðx; zÞ ¼
Xm

n¼0

/nðx; zÞ; �f ¼
Xm

n¼1

fnðxÞ
are the mth-order approximation of /ðx; zÞ and fðxÞ, respectively, and
xn ¼ n
xR

M

� �
; 1 6 n 6 M;
with large enough xR and M. For all results given below, we choose xR ¼ 10 and M ¼ 100, if not mentioned. Since the poten-
tial velocity /ðx; zÞ and the wave elevation fðxÞ decay exponentially in the horizontal direction, xR ¼ 10 is large enough.

In case of k ¼ 1 and Hw ¼ �0:05, the averaged residual squares E/
m and Ef

m of the corresponding analytic approximations
obtained by c/ ¼ �1 and cg ¼ �1 decay quickly to the level 10�25 as the order of approximation increases to 25, as shown in
Table 5. In other words, our 25th-order approximation of /ðx; zÞ and fðxÞ satisfies the Laplace Eq. (3) in the interval
0 < x < þ1, the bottom condition (6) and the bounded condition (12) exactly, and besides the two nonlinear free surface
boundary conditions (4) and (5) very accurately (to the level 10�25). In addition, uð0; zÞ determined by (10) converges quickly
so that UðzÞ is uniquely determined. Therefore, our convergent analytic approximation is a very accurate solution of the
UWM based on the symmetry and the fully nonlinear wave Eqs. (3)–(12). Similarly, E/

m and Ef
m decays to the level 10�13

in the case of k ¼ 1 and Hw ¼ �0:1, and to the level 10�18 in the case of k ¼ 1=2 and Hw ¼ �0:05, respectively, as shown
in Tables 6,7. Theses guarantee that the corresponding analytic approximations of /ðx; zÞ and fðxÞ are indeed quite accurate
solutions of the UWM, respectively. All of these confirm once again the convergence theorem generally proved by Liao
[16,19] in the frame of the HAM: each convergent series solution given by the HAM satisfies its original equations.

In fact, one can choose the optimal values of c/ and cg by the minimum of E/
mðc/; cgÞ and Ef

mðc/; cgÞ, say,
@E/
mðc/; cgÞ
@c/

¼ 0;
@Ef

mðc/; cgÞ
@cg

¼ 0: ð100Þ
It is found that, by means of the optimal values of c/ and cg, the corresponding series of analytic approximations often con-
verge more quickly.

All of these demonstrate that the convergent series of the peaked solitary waves obtained by our HAM-based approach
are indeed the solutions of the unified wave model (UWM) based on the symmetry and the fully nonlinear wave Eqs. (3)–
(12).
d residual squares of the two nonlinear free boundary conditions (4) and (5) in the case of k ¼ 1 and Hw ¼ �0:05 by means of c/ ¼ �1 and cg ¼ �1, with
responding dimensionless phase speed c=

ffiffiffiffiffiffi
gD

p
¼ 1:24796.

r of approx. Hw ¼ 0:05 Hw ¼ �0:05

E/
m Ef

m E/
m Ef

m

6:59� 10�7 9:21� 10�9 2:25� 10�6 9:39� 10�9

1:40� 10�8 1:57� 10�9 8:09� 10�9 5:90� 10�10

3:32� 10�11 2:90� 10�12 7:80� 10�11 1:53� 10�11

9:71� 10�15 7:00� 10�16 8:96� 10�16 2:42� 10�16

7:33� 10�19 1:68� 10�19 6:97� 10�20 1:05� 10�20

4:43� 10�22 4:83� 10�23 2:40� 10�24 6:45� 10�25

2:23� 10�25 2:09� 10�27 4:56� 10�28 3:96� 10�29



Table 7
Averaged residual squares of the two nonlinear free boundary conditions (4) and (5) in the case of k ¼ 1=2 and Hw ¼ �0:05 by means of c/ ¼ �1 and cg ¼ �1,
with the corresponding dimensionless phase speed c=

ffiffiffiffiffiffi
gD

p
¼ 1:04528.

Order of approx. Hw ¼ 0:05 Hw ¼ �0:05

E/
m Ef

m E/
m Ef

m

1 2:75� 10�8 1:04� 10�6 3:74� 10�7 9:09� 10�7

3 3:76� 10�10 4:85� 10�8 4:48� 10�10 9:61� 10�9

5 4:13� 10�12 2:00� 10�9 4:85� 10�13 4:18� 10�12

10 1:80� 10�14 2:21� 10�12 1:08� 10�16 3:16� 10�17

15 5:23� 10�15 1:55� 10�15 7:93� 10�20 1:06� 10�19

20 1:86� 10�16 1:50� 10�16 1:67� 10�23 1:52� 10�24

25 2:56� 10�18 9:46� 10�18 3:87� 10�29 2:57� 10�28

Table 6
Averaged residual squares of the two nonlinear free boundary conditions (4) and (5) in the case of k ¼ 1 and Hw ¼ �0:1, with the corresponding dimensionless
phase speed c=

ffiffiffiffiffiffi
gD

p
¼ 1:24796.

Order of approx. Hw ¼ 0:1 ðc/ ¼ �0:5; cg ¼ �1Þ Hw ¼ �0:1 ðc/ ¼ �0:75; cg ¼ �1Þ

E/
m Ef

m E/
m Ef

m

1 1:48� 10�4 7:21� 10�7 5:89� 10�5 3:67� 10�7

3 1:63� 10�7 8:63� 10�8 5:84� 10�7 1:21� 10�7

5 1:39� 10�7 3:96� 10�10 6:83� 10�7 1:11� 10�8

10 5:96� 10�10 3:09� 10�11 8:63� 10�9 2:31� 10�10

15 1:30� 10�12 3:70� 10�14 3:29� 10�11 1:95� 10�12

20 4:34� 10�13 1:88� 10�15 1:17� 10�12 3:69� 10�14

25 2:25� 10�13 4:52� 10�16 2:51� 10�14 8:11� 10�16
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4.3. Characteristics of peaked solitary surface waves

Based on the so-called evanescent base-functions (26), the peaked solitary waves governed by the exact UWM have some
unusual characteristics that are quite different from those of the traditional smooth waves.

First, the peaked solitary waves have a peaked wave crest, since f0ðxÞ is discontinuous at x ¼ 0, i.e., f0ð0þÞ ¼ �f0ð0�Þ – 0,
where 0þ and 0� denote x! 0 from the right and left along the x axis, respectively. For example, in the case of Hw ¼ þ0:1 and
k ¼ 1, we have f0ð0þÞ ¼ �0:09299, but f0ð0�Þ ¼ 0:09299, respectively. This is quite different from traditional smooth periodic
and solitary waves which are infinitely differentiable everywhere.

Secondly, the peaked solitary waves may be in the form of depression, which has been reported for internal waves but
never for surface ones, to the best of the author’s knowledge. Mathematically, it is straightforward to gain such kind of sol-
itary waves in a depression form even by means of the linear UWM, as shown in Section 4.1.

Third, unlike traditional smooth periodic and solitary waves which are dispersive with wave height, the dimensionless
phase speed of the peaked solitary waves has nothing to do with the wave height, but depends only upon the so-called de-
cay-parameter k. For a fixed wave height, the decay-parameter k determines the decay-length ka, which is a characteristic
length of the peaked solitary waves in the horizontal direction, called the ‘‘actual wavelength’’. Thus, unlike the traditional
smooth waves, the peaked solitary waves are dispersive (for a fixed wave height) with ‘‘actual wavelength’’ ka, defined by
(46). So, in the same water depth D, the peaked solitary waves with the same k but different wave height Hw may propagate
with the same phase speed, where Hw may be either positive or negative. For example, it is found that, in the case of k ¼ 1, all
of the peaked solitary waves with Hw ¼ �0:1 or Hw ¼ �0:5 propagate with the same phase speed c � 1:24796

ffiffiffiffiffiffi
gD

p
: in these

cases, we gain different series solutions with the same phase speed, as shown in Section 4.2.2. On the other side, the peaked
solitary waves with the same wave height Hw but different decay-parameter k (corresponding to different ‘‘actual wave-
lengths’’) may propagate with different phase speed! These are completely different from the traditional periodic and soli-
tary waves with smooth crest. In summary, unlike the traditional smooth periodic and solitary waves which are dispersive
with wave height that is a characteristic length in the vertical direction, the phase speed of the peaked solitary waves has
nothing to do with wave height: in fact, they are dispersive (for a fixed wave height) with ‘‘actual wavelength’’, a character-
istic length in the horizontal direction.

Furthermore, as shown in Tables 1–4 and Figs. 2–7, the horizontal bottom velocity of the peaked solitary waves is always
larger than that on free surface. For example, in the case of k ¼ 1 and Hw ¼ 0:1, the bottom horizontal velocity at crest is 43%
larger than that on free surface, as shown in Table 3. Especially, as shown in Table 4, in the case of k ¼ 1 and Hw ¼ �0:1, the
horizontal bottom velocity at crest is even 158% larger than that on free surface! In general, for the same x, the horizontal
bottom velocity uðx;�1Þ has always a larger absolute value than uðx; fÞ on the free surface, as shown in Figs. 12 and 13. This is
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quite different from the traditional smooth periodic and solitary waves, whose horizontal bottom velocity always decays
exponentially from free surface to bottom. The similar characteristic was reported for the peaked solitary waves given by
the linear UWM in Section 4.1.

In addition, as mentioned in Section 4.1, the kinetic energy of peaked solitary waves given by the linear UWM is indepen-
dent of z. Using the exact UWM, we obtain the similar conclusions. For example, in case of k ¼ 1, it is found that the kinetic
energy of peaked solitary waves on bottom may be 13.1% larger than that on free surface when Hw ¼ �1=20, and is at most
only 10.4% smaller when Hw ¼ 1=20. Therefore, from free surface to bottom, the kinetic energy of peaked solitary waves
either increases or decays a little. This is quite different from the traditional smooth waves whose kinetic energy decreases
exponentially from free surface to bottom.

All of these unusual characteristics clearly indicate the novelty of the peaked solitary waves. Note that the peaked solitary
waves given by the linear UWM in Section 4.1 have the rather similar characteristics as mentioned above.

4.4. Kelvin’s theorem for the peaked solitary waves

As mentioned above, at crest, the peaked solitary waves given by the unified wave model (UWM) have a discontinuous
vertical velocity and the discontinuous 1st-derivative of wave elevation. Does Kelvin’s theorem still hold for them?.

Without loss of generality, let us consider the interface of two fluids in general. Let ui and qi denote the velocity vector
and density of the two fluids, where i ¼ 1;2. Taking a closed curve C moving with the fluid, we have the circulation
Fig. 12
uðx;�1

Fig. 13.
uðx;�1
C ¼
I
C

u � dr: ð101Þ
Obviously, it holds the Kelvin’s theorem dC=dt ¼ 0 in each fluid. Then, consider a closed curve C cross the interface of the two
fluids. Let Q 1 and Q2 denote the two points of intersection of the curve C and the interface. The circulation reads
C ¼
Z
C1

u1 � drþ
Z
C2

u2 � dr; ð102Þ
where Ci denotes the part of the curve in the ith fluid. Then, using the Euler equation in each fluid, it holds
x
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. Horizontal velocity at bottom and on free surface when k ¼ 1 and Hw ¼ 0:05 by means of c/ ¼ �1 and cg ¼ �1. Solid line: 3rd-order approx. of
Þ (at bottom); Dashed line: 3rd-order approx. of uðx; fðxÞÞ (on free surface); Symbols: the corresponding 25th-order approximations.
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dC
dt
¼
Z
C1

du1

dt
� drþ u1 � du1

� 	
þ
Z
C2

du2

dt
� drþ u2 � du2

� 	
¼ p

q1
þ gzþ ju1j2

2

 !�����
Q2

Q1

þ p
q2
þ gzþ ju2j2

2

 !�����
Q1

Q2

¼ pðQ 2Þ � pðQ 1Þ½ � 1
q2
� 1

q1

� �
þ 1

2
u1ðQ 2Þj j2 � u2ðQ2Þj j2

� �
� u1ðQ 1Þj j2 � u2ðQ1Þj j2
� �n o

; ð103Þ
where pðQ iÞ denotes the pressure at Qi, and ujðQ iÞ denotes the velocity of the jth fluid at the point Q i, respectively, where
i; j ¼ 1;2.

Let us first consider the traditional smooth interfacial waves of two layer flows with q2 > q1. It is well-known [34–37]
that, on the free surface of the interfacial waves, although the velocity normal to the interface is continuous, the tangential
velocity is discontinuous, so that
u1ðQiÞj j– u2ðQ iÞj j; i ¼ 1;2: ð104Þ
Besides, it holds pðQ1Þ– pðQ 2Þ in general. Thus, for the traditional interfacial waves with smooth crest, it holds dC=dt – 0
when the closed curve C crosses the interface. Therefore, the Kelvin theorem does not hold everywhere for the traditional
interfacial waves with smooth crest.

However, for the peaked solitary waves governed by the UWM, we have q1 ¼ q2 so that the pressure term in (103) van-
ishes. Besides, due to the symmetry (13), it holds
u1ðQiÞj j ¼ u2ðQ iÞj j; i ¼ 1;2; ð105Þ
so that the last term in (103) vanishes, too! Therefore, the Kelvin’s theorem is still valid everywhere for the peaked solitary
waves given by the UWM, although there exists the discontinuity at crest! This is indeed a little surprise: from the viewpoint
of Kelvin’s theorem, the peaked solitary waves are even more acceptable than the traditional interfacial waves of two-layer
fluids with smooth crest!
5. Concluding remarks and discussions

Many wave models such as the Camassa–Holm (CH) equation [6] admit peaked solitary waves, and thousands of articles
about peaked solitary waves have been published. However, it was an open question whether or not the fully nonlinear wave
equations admit peaked solitary waves. This is rather strange, since most of wave models such as the CH equation [6] were
derived from the fully nonlinear wave equations under some assumptions.

In this paper, we propose a unified wave model (UWM) for progressive gravity waves with symmetric and permanent
form in a finite water depth. The UWM is based on the symmetry and the fully nonlinear wave equations. Especially, unlike
other wave models, its flow is unnecessary to be irrotational at crest (x ¼ 0). Thus, the UWM is more general: it admits not
only all traditional periodic and solitary waves with infinitely differential surface (see Section 3), but also the peaked solitary
waves (see Section 4) which include the famous peaked solitary wave (2) of the CH Eq. (1) and process many unusual char-
acteristics. In addition, it is proved (see Section 4.4) that Kelvin’s theorem still holds everywhere for the peaked solitary
waves, although there exists a vortex sheet at crest (x ¼ 0). Therefore, the UWM unifies the traditional smooth waves and
the peaked solitary ones, for the first time, to the best of the author’s knowledge. In other words, the peaked solitary waves
are consistent with the traditional smooth waves: they are as acceptable as the traditional smooth waves! It is fantastic that
the two completely different types of waves can be derived from the same wave model, i.e., the UWM.

These peaked solitary waves expressed by the evanescent base-functions (26) have many unusual characteristics quite
different from the traditional periodic and solitary waves expressed by the smooth base-functions (17). First, it has a peaked
crest with a discontinuous vertical velocity at crest (x ¼ 0). Secondly, it may be in the form of depression, corresponding to a
negative wave height Hw, which has been reported for interfacial solitary waves but never for free-surface solitary waves, to
the best of author’s knowledge. Third, from free surface to bottom, its horizontal velocity always increases, and besides its
kinetic energy either increases or decays a little. Especially, unlike the traditional smooth waves, which are dispersive with
wave height that is a characteristic length of smooth wave in the vertical direction, the phase speed of the peaked solitary
waves has nothing to do with wave weight: in fact, they are dispersive (for a fixed wave height) with ‘‘the actual wavelength’’
ka, defined by (46), which is a characteristic length of peaked solitary wave in the horizontal direction. All of these are so
different from the smooth periodic and solitary waves that they clearly indicate the novelty of the peaked solitary waves
reported in this article.

All of these unusual characteristics come from the so-called evanescent base-functions (26) of the peaked solitary waves,
which are essentially different from the smooth base-functions (17) for the traditional periodic and solitary waves, although
both of them automatically satisfy the Laplace Eq. (3) in 0 < x < þ1, the bottom condition (6) and the bounded condition
(12). It should be emphasized that both of them are widely used and can be found in the textbook of water waves [22],
although the smooth base-functions (17) are currently more familiar and thus regarded as the mainstream. Note that the
traditional base-functions (17) are infinitely differentiable everywhere, and automatically satisfy the symmetry conditions
(13) and (14). However, the evanescent base-functions (26) have a discontinuous 1st-derivative (with respect to x) at crest
x ¼ 0, and besides do not automatically satisfy the symmetry conditions (13) and (14). Mathematically, these essential
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differences of the two kinds of base-functions (17) and (26) are the origin of the completely different characteristics between
the smooth and peaked waves.

Unlike traditional smooth waves, the peaked solitary waves admit not only the discontinuous 1st-derivative of eleva-
tion at crest but also the discontinuous velocity there: the vertical velocity v changes sign as we cross the plane x ¼ 0.
Thus, there exists a vorticity sheet at crest x ¼ 0. However, such kind of discontinuity of velocity is acceptable even in
the frame of the traditional wave theories for smooth waves, since it also exists for the traditional interfacial waves
expressed by the smooth base-functions (17): ‘‘the tangential velocity changes sign as we cross the surface’’ of interfacial
waves, and ‘‘in reality the discontinuity, if it could ever be originated, would be immediately abolished by viscosity’’, as
mentioned by Lamb [38] (Section 231, page 371). Similarly, in reality, the discontinuity of the vertical velocity (at
x ¼ 0) of the peaked solitary waves, if it could ever be originated, would be immediately abolished by viscosity. So, in
the frame of the inviscid fluid, the peaked solitary waves should be as reasonable as the widely accepted interfacial waves
with smooth crest.

Besides, as shown in Section 4.4, for the traditional interfacial waves with smooth crest, a circulation (expressed by C)
along a closed curve crossing the interface of two-layer fluids disobeys the Kelvin’s theorem, i.e., dC=dt – 0. However, it is
proved that the Kelvin’s theorem still holds everywhere for the peaked solitary waves in general cases. Therefore, from
the viewpoint of Kelvin’s theorem, the peaked solitary waves are even more reasonable and thus more acceptable than
the traditional interfacial waves with smooth crest.

In a sense, such kind of discontinuity (or singularity) of the peaked solitary waves can be removed. Let UðzÞ denote
the horizontal velocity of a progressive wave (with symmetry and permanent form) at crest (x ¼ 0), governed by the
UWM based on the symmetry and the fully nonlinear wave Eqs. (3)–(12). Assume that, in the frame moving with the
solitary wave, one could instantaneously replace the boundary x ¼ 0 by a porous vertical plate, and at the same time
could enforce a horizontal velocity UðzÞ ¼ uð0; zÞ through the porous plate. Then, the corresponding velocity potential
/ and wave elevation fðxÞ are governed by the same fully nonlinear wave Eqs. (3)–(12), but only in the domain
x 2 ð0;þ1Þ. Therefore, for a properly given UðzÞ, one gains either the traditional periodic/solitary waves with smooth
crest, if the smooth base-functions (17) are used, or the peaked solitary waves, if the evanescent base-functions (26)
are employed, respectively.1 In this case, the Laplace Eq. (3) is satisfied in the total physical domain x 2 ð0;þ1Þ so that
no discontinuity (or singularity) exists at all, since x ¼ 0 becomes a physical boundary. For this wave propagation problem,
the peaked solitary waves (although only in the region 0 6 x < þ1) have very clear physical meanings and are physically
as reasonable as the traditional smooth waves.

The peaked solitary surface waves found in this paper may provide us not only new explanations of some natural phe-
nomenon but also a few theoretical predictions. First, the peaked solitary waves have an unusual and interesting character-
istic: its phase speed has nothing to do with the wave height Hw. It should be emphasized that, according to the
transcendental Eq. (28), the peaked solitary waves with a small wave height Hw may propagate very quickly, since
tanðkÞ=k! þ1 as k! npþ p=2 for an integer n P 0. Thus, all of these peaked solitary waves with small wave height
but different phase speed may create a huge solitary surface wave somewhere: this gives a new theoretical explanation
about the so-called ‘‘rogue wave’’ that can suddenly appear on ocean, even when ‘‘the weather was good, with clear skies
and glassy swells’’, as reported by Graham [54] and mentioned by Kharif [55]. Secondly, our peaked solitary waves predict
free surface in the form of depression, corresponding to a negative wave height Hw. To the best of the author’s knowledge,
solitary waves of depression have been reported only for interfacial waves with smooth crest, but never for surface gravity
waves. Such kind of peaked solitary surface waves of depression might be more difficult to create in practice and/or by
experiment than the traditional ones with smooth crest. However, if this theoretical prediction would be physically correct,
we should observe it in laboratory and/or in practice, sooner or later. This is an interesting but challenging work: it could
enrich and deepen our understanding about solitary waves, no matter whether the conclusions are positive or not. Thirdly,
according to the traditional wave theories, the kinetic energy of traditional waves decreases exponentially from free surface
to bottom, thus a submarine far beneath surface is safe even if there are huge waves on ocean. However, different from
traditional smooth periodic and solitary waves, the horizontal velocity of the peaked solitary waves always increases
from free surface to bottom. Besides, its kinetic energy either increases or decays a little from free surface to bottom. Note
that, due to the viscosity of fluid in practice, the horizontal velocity of water waves must be zero at bottom so that such
kind of the peaked solitary waves might not exist exactly in its theoretical form as reported in this article, since there always
exists a thin viscous boundary layer near bottom. However, if such kind of peaked solitary waves with large horizontal
velocity and kinetic energy near bottom would indeed exist in practice, they should be quite dangerous to submarines,
platforms and equipments in underwater engineering, even though they are not exactly in the same form as found in this
paper.

Possibly, the new kind of peaked solitary waves might change some traditional view-points. For example, solitary waves
are often regarded as a nonlinear phenomenon. However, we illustrate in Section 4.1 that solitary surface waves may exist
even in a system of linear differential equations. Besides, it is widely believed that solitary water waves exist only in shallow
water. But, we indicate here that solitary waves can exist even in a finite water depth, say, D is unnecessary to be small. For
1 Note that the corresponding horizontal velocities UðzÞ at x ¼ 0 for the traditional smooth progressive waves with permanent form are different from that
for the peaked solitary ones.
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instance, in the case of D ¼ 100 (meter), k ¼ 1 and the dimensionless wave height Hw ¼ 0:05, the corresponding peaked sol-
itary wave propagates with the 5 meter wave-height in the phase speed c ¼ 1:24796

ffiffiffiffiffiffi
gD

p
� 39:1 meter per second, which is

not very dangerous. However, in the case of D ¼ 1000 (meter) with the same dimensionless parameters (i.e., k ¼ 1 and
Hw ¼ 0:05), the corresponding peaked solitary wave propagates with the 50 meter wave-height and the phase speed
c ¼ 123:5 meter per second, which is destructive if it could indeed occur on the earth! Here, it may be worth mentioning
that, the peaked solitary waves contain large kinetic energy only in a small domain near crest, since the kinetic energy either
increases or decays a little from free surface to bottom, but decays exponentially in the horizontal direction. Thus, the peaked
solitary waves should be more dangerous than the traditional smooth waves, if they could indeed exist in practice.

However, it should be emphasized that the peaked solitary waves found in this article are obtained under the assump-
tions that the fluid is inviscid and incompressible, the flow is irrotational in the domain x > 0 and x < 0 (it implies that
the flow is not necessarily irrotational at x ¼ 0), the surface tension is neglected, and the wave elevation has a symmetry.
Although part of these assumptions are used for the traditional periodic and solitary waves with smooth crest, the physical
reasonableness of the peaked solitary waves should be studied deeply in future. Note that surface tension might have an
important influence on the crest of the peaked solitary waves. Especially, the viscosity of fluid might have an important influ-
ence on the discontinuous vertical velocity and the vortex sheet at crest (x ¼ 0): it is unknown whether or not viscosity of
fluid and surface tension might essentially change the properties of the peaked solitary waves. The author personally be-
lieves that these open questions cannot be answered in the frame of inviscid fluid, and thus must be studied in the frame
of viscous fluid. In the past, peaked solitary waves were investigated mainly from mathematical viewpoints. Now, it is the
time to consider them more from physical viewpoints.

Note that the peaked solitary waves found in this article by the unified wave model (UWM) logically include the famous
peaked solitary wave (2) of the CH Eq. (1). It should be emphasized that the newly found peaked solitary waves have a dis-
continuous velocity and a vortex sheet at crest, and especially their phase speed has nothing to do with wave height. These
unique characteristics are however not predicted by the traditional simplified wave models such as the CH equation. So, if
the newly found peaked solitary waves are indeed physically correct and reasonable, they could deepen our understandings
about the traditional peaked solitary waves. However, if these newly found peaked waves are physically not reasonable, the
traditional peaked/cusped solitary waves given by these simplified wave models must be checked carefully from the physical
viewpoints, although thousands of related articles have been published.

Note also that the symmetry plays an important role in the unified wave model (UWM). Such kind of symmetry has been
successfully applied to give a theoretical explanation [56] for the newly found standing solitary waves by physical experi-
ment [57]. Note that both of the odd and even symmetry were used in [56], but only even symmetry (13) is considered
in this article. In fact, it is straightforward to include both of the odd and even symmetry in the UWM. However, it is a pity
that such kind of symmetry does not exist for two or more progressive waves. This restricts the applications of the UWM
based on the symmetry and fully nonlinear wave equations. To further extend the UWM for complicated wave systems with
discontinuity, some new mathematical methods for discontinuous functions must be proposed.

Finally, this paper is a clear demonstration of the power of the homotopy analysis method (HAM) [14–20], for the discov-
ery of the new kind of peaked solitary waves with many unusual characteristics, which have never been reported, to the best
of the author’s knowledge. Indeed, a truly new method always gives something new or different. So, this paper also illus-
trates the novelty of the HAM, too. Independent of small/large physical parameters, the HAM is indeed a useful tool for lots
of nonlinear problems.

Without doubts, further theoretical, numerical and experimental studies, and especially practical/experimental observa-
tions about the solitary surface waves with peaked crest, are needed in future. Indeed, discontinuity and/or singularity are
more difficult to handle. But, they should not be evaded easily, since they might open some new fields of research, and
greatly enrich and deepen our understandings about the real world.
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Appendix. Detailed derivation of formulas (79)–(84)

Write
Xþ1
i¼1

fi qi

 !m

¼
Xþ1
n¼m

lm;n qn; ð106Þ
with the definition
l1;nðxÞ ¼ fnðxÞ; n P 1: ð107Þ
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Then,
Xþ1
i¼1

fi qi

 !mþ1

¼
Xþ1
n¼m

lm;n qn

 ! Xþ1
i¼1

fi qi

 !
¼
Xþ1

n¼mþ1

lmþ1;n qn; ð108Þ
which gives
lm;nðxÞ ¼
Xn�1

i¼m�1

lm�1;iðxÞ fn�iðxÞ; m P 2; n P m: ð109Þ
Define
wn;m
i ðxÞ ¼

@i

@xi

1
m!

@m/n

@zm

����
z¼0

� �
:

By Taylor series, we have for any z that
/nðx; zÞ ¼
Xþ1
m¼0

1
m!

@m/n

@zm

����
z¼0

� �
zm ¼

Xþ1
m¼0

wn;m
0 zm ð110Þ
and
@i/n

@xi
¼
Xþ1
m¼0

@i

@xi

1
m!

@m/n

@zm

����
z¼0

� �
zm ¼

Xþ1
m¼0

wn;m
i zm: ð111Þ
Then, on the unknown free surface z ¼ gðx; qÞ, we have using (106) that
@i/n

@xi
¼
Xþ1
m¼0

wn;m
i

Xþ1
s¼1

fs qs

 !m

¼ wn;0
i þ

Xþ1
m¼1

wn;m
i

Xþ1
s¼m

lm;s qs

 !
¼
Xþ1
m¼0

bn;m
i ðxÞ qm; ð112Þ
where
bn;0
i ¼ wn;0

i ; ð113Þ

bn;m
i ¼

Xm

s¼1

wn;s
i ls;m; m P 1: ð114Þ
Similarly, on the unknown free surface z ¼ gðx; qÞ, it holds
@i

@xi

@/n

@z

� �
¼
Xþ1
m¼0

cn;m
i ðxÞ qm; ð115Þ

@i

@xi

@2/n

@z2

 !
¼
Xþ1
m¼0

dn;m
i ðxÞ qm; ð116Þ
where
cn;0
i ¼ wn;1

i ; ð117Þ

cn;m
i ¼

Xm

s¼1

ðsþ 1Þwn;sþ1
i ls;m; m P 1; ð118Þ

dn;0
i ¼ 2wn;2

i ; ð119Þ

dn;m
i ¼

Xm

s¼1

ðsþ 1Þðsþ 2Þwn;sþ2
i ls;m; m P 1: ð120Þ
Then, on the unknown free surface z ¼ gðx; qÞ, it holds using (112) that
Uðx; f; qÞ ¼
Xþ1
n¼0

/nðx; fÞ qn ¼
Xþ1
n¼0

qn
Xþ1
m¼0

bn;m
0 ðxÞ qm

" #
¼
Xþ1
n¼0

Xþ1
m¼0

bn;m
0 ðxÞ qmþn ¼

Xþ1
s¼0

qs
Xs

m¼0

bs�m;m
0 ðxÞ

" #
¼
Xþ1
n¼0

�/n;0ðxÞ qn; ð121Þ
where
�/n;0ðxÞ ¼
Xn

m¼0

bn�m;m
0 : ð122Þ
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Similarly, we have
@iU
@xi
¼
Xþ1
n¼0

�/n;iðxÞ qn; ð123Þ

@i

@xi

@U
@z

� �
¼
Xþ1
n¼0

�/z
n;iðxÞ qn; ð124Þ

@i

@xi

@2U
@z2

 !
¼
Xþ1
n¼0

�/zz
n;iðxÞ qn; ð125Þ
where
�/n;iðxÞ ¼
Xn

m¼0

bn�m;m
i ; ð126Þ

�/z
n;iðxÞ ¼

Xn

m¼0

cn�m;m
i ; ð127Þ

�/zz
n;iðxÞ ¼

Xn

m¼0

dn�m;m
i : ð128Þ
Then, on the unknown free surface z ¼ gðx; qÞ, it holds using (123) and (124) that
f ¼ 1
2
rU � rU ¼ 1

2
@U
@x

� �2

þ @U
@z

� �2
" #

¼
Xþ1
m¼0

Cm;0ðxÞ qm; ð129Þ
where
Cm;0ðxÞ ¼
1
2

Xm

n¼0

�/n;1
�/m�n;1 þ �/z

n;0
�/z

m�n;0

� �
: ð130Þ
Similarly, it holds on z ¼ gðx; qÞ that
@f
@x
¼ rU � r @U

@x

� �
¼ @U
@x

@2U
@x2 þ

@U
@z

@

@x
@U
@z

� �
¼
Xþ1
m¼0

Cm;1ðxÞ qm; ð131Þ
where
Cm;1ðxÞ ¼
Xm

n¼0

�/n;1
�/m�n;2 þ �/z

n;0
�/z

m�n;1

� �
: ð132Þ
Besides, on z ¼ gðx; qÞ, we have by means of (123)–(125) that
@f
@z
¼ rU � r @U

@z

� �
¼ @U
@x

@

@x
@U
@z

� �
þ @U
@z

@2U
@z2 ¼

Xþ1
m¼0

Cm;3ðxÞ qm; ð133Þ
where
Cm;3ðxÞ ¼
Xm

n¼0

�/n;1
�/z

m�n;1 þ �/z
n;0

�/zz
m�n;0

� �
: ð134Þ
Furthermore, using (123), (131) and (133), we have on z ¼ gðx; qÞ that
rU � rf ¼ @U
@x

@f
@x
þ @U
@z

@f
@z
¼
Xþ1
m¼0

KmðxÞ qm; ð135Þ
where
KmðxÞ ¼
Xm

n¼0

�/n;1 Cm�n;1 þ �/z
n;0 Cm�n;3

� �
ð136Þ
Then, using (123), (124), (131) and (135), we have on z ¼ gðx; qÞ that
N ½Uðx; z; qÞ� ¼ a2 @
2U
@x2 þ

@U
@z
� 2a

@f
@x
þrU � rf ¼

Xþ1
m¼0

D/
mðxÞ qm; ð137Þ
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where
D/
mðxÞ ¼ a2 �/m;2 þ �/z

m;0 � 2a Cm;1 þKm ð138Þ
for m P 0.
Using (74) and (112), we have on z ¼ gðx; qÞ that
@2

@x2 U� /0ð Þ ¼
Xþ1
n¼1

@2/nðx;gÞ
@x2 qn ¼

Xþ1
n¼1

qn
Xþ1
m¼0

bn;m
2 qm

 !
¼
Xþ1
n¼1

qn
Xn�1

m¼0

bn�m;m
2

 !
ð139Þ
and similarly
@

@z
U� /0ð Þ ¼

Xþ1
n¼1

@/nðx;gÞ
@z

qn ¼
Xþ1
n¼1

qn
Xþ1
m¼0

cn;m
0 qm

 !
¼
Xþ1
n¼1

qn
Xn�1

m¼0

cn�m;m
0

 !
; ð140Þ
respectively. Then, on z ¼ gðx; qÞ, it holds due to the linear property of the operator (67) that
L U� /0ð Þ ¼
Xþ1
n¼1

SnðxÞ qn; ð141Þ
where
SnðxÞ ¼
Xn�1

m¼0

a2 bn�m;m
2 þ cn�m;m

0


 �
: ð142Þ
Then, on z ¼ gðx; qÞ, it holds
ð1� qÞL U� /0ð Þ ¼ ð1� qÞ
Xþ1
n¼1

Sn qn ¼
Xþ1
n¼1

Sn � vn Sn�1

 �

qn; ð143Þ
where
vn ¼
0; when n 6 1;
1; when n > 1:

�
ð144Þ
Substituting (143), (137) into (63) and equating the like-power of q, we have the boundary condition:
SmðxÞ � vm Sm�1ðxÞ ¼ c/ D/
m�1ðxÞ; m P 1: ð145Þ
Define
SnðxÞ ¼
Xn�1

m¼1

a2 bn�m;m
2 þ cn�m;m

0


 �
: ð146Þ
Then,
Sn ¼ a2 bn;0
2 þ cn;0

0

� �
þ Sn ¼ a2 @2/n

@x2 þ
@/n

@z

 !�����
z¼0

þ Sn: ð147Þ
Substituting the above expression into (145) gives the boundary condition on z ¼ 0:
a2 @2/m

@x2 þ
@/m

@z

 !�����
z¼0

¼ c/ D/
m�1 þ vm Sm�1 � Sm

n o���
z¼0
; m P 1: ð148Þ
Substituting the series (75), (123) and (129) into (64), equating the like-power of q, we have on z ¼ 0 that
fmðxÞ ¼ cg Dg
m�1 þ vm fm�1

� 
��
z¼0; m P 1; ð149Þ
where
Dg
m ¼ fm � a �/m;1 þ Cm;0:
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