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Series Solution of Three-
Dimensional Unsteady Laminar
Viscous Flow Due to a Stretching
Surface in a Rotating Fluid
An analytic technique, namely the homotopy analysis method, is applied to solve the
Navier–Stokes equations governing unsteady viscous flows due to a suddenly stretching
surface in a rotating fluid. Unlike perturbation methods, the current approach does not
depend upon any small parameters at all. Besides contrary to all other analytic tech-
niques, it provides us with a simple way to ensure the convergence of solution series. In
contrast to perturbation approximations which have about 40% average errors for the
considered problem, our series solutions agree well with numerical results in the whole
time region 0� t� +�. Explicit analytic expressions of the skin friction coefficients are
given, which agree well with numerical results in the whole time region 0� t� +�. This
analytic approach can be applied to solve some complicated three-dimensional unsteady
viscous flows governed by the Navier–Stokes equations. �DOI: 10.1115/1.2723816�

Keywords: unsteady, Navier–Stokes equation, series solution, rotating fluid, homotopy
analysis method
Introduction
The flow of a rotating fluid past a stretching surface is encoun-

ered in many technical and industrial applications which include
he cooling of an infinite metallic plate in a cooling bath, the
oundary layer along material handling conveyers, the aerody-
amic extrusion of plastic sheets, the boundary layer along a liq-
id film and condensation processes, the cooling and drying of
aper and textiles, the glass filer production, etc. In particular, in
xtrusion of a polymer in a melt-spinning process, the extrusion
rom the die is generally drawn and simultaneously stretched into
sheet, which is then solidified throughout quenching or gradual

ooling by direct contact with water.
Wang �1� first considered the two-dimensional stretching of a

urface in a rotating fluid. However, relatively little work has been
one on unsteady boundary layer flow due to impulsive starting
rom rest of a stretching sheet in a viscous fluid �2,3�. Nazar et al.
4� solved the unsteady boundary layer flows due to a stretching
urface in a rotating fluid by means of both the Keller-box nu-
erical method �5� and the perturbation technique. However, the

erturbation approximations given by Nazar et al. �4� have about
0% average error, and are not accurate enough in the whole time
egion, as shown in Figs. 4 and 5. Besides, it becomes more and
ore difficult to get higher-order perturbation approximations.
his is mainly because perturbation techniques depend too
trongly upon small parameters.

An analytical method for strongly nonlinear problems, namely
he homotopy analysis method �HAM� �6–11�, has been devel-
ped since 1992. In contrast to perturbation techniques, the homo-
opy analysis method is independent of any small parameters at
ll. Besides, it provides us with a simple way to ensure the con-
ergence of the solution series, so that we can always get accurate
nough approximations. Furthermore, it provides us with freedom
o choose better basis functions to approximate nonlinear prob-
ems. Finally, as proved by Liao �7,9�, the homotopy analysis
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method logically contains the so-called nonperturbation methods
such as Lyapunov’s artificial small parameter method, the
�-expansion method, and Adomian’s decomposition method. Us-
ing the relationship between the homotopy analysis method and
Adomian’s decomposition method, Allan �12� investigated the ac-
curacy of approximations given by the Adomian’s decomposition
method. Currently, Hayat et al. �13�, Sajid et al. �14�, and Ab-
basbandy �15,16� pointed out that the so-called “homotopy pertur-
bation method” �17� proposed in 1999 is also a special case of the
homotopy analysis method �6,7� propounded in 1992. Thus, the
homotopy analysis method is rather general. The homotopy analy-
sis method has been successfully applied to many nonlinear prob-
lems in science and engineering, such as the similarity boundary-
layer flows �9,18–21�, nonlinear heat transfer �15�, nonlinear
evaluation equations �22�, nonlinear waves �16�, viscous flows of
non-Newtonian fluid �13,14,23,24�, Thomas–Fermi atom model
�7�, Volterra’s population model �7�, etc. It has been applied in
many fields of research. For example, Zhu �25,26� applied the
HAM to give, for the first time, an explicit series solution of the
famous Black–Scholes type equation in finance for American put
option, which is a system of nonlinear partial differential equa-
tions �PDEs� with an unknown moving boundary. Besides, the
HAM has been successfully applied to solve some PDEs in fluid
mechanics and heat transfer, such as the unsteady boundary-layer
viscous flows �10�, the unsteady nonlinear heat transfer problem
�27�, etc. In this paper, we further employ it to give much more
accurate analytic approximations �with less than 0.5% error in the
whole time region� of the unsteady nonlinear problem at hand.

2 Mathematical Description
Let �u ,v ,w� be the velocity components in the direction of

Cartesian axes �x ,y ,z�, respectively, with the axes rotating at an
angular velocity � in the z direction. Consider the unsteady
boundary-layer flows caused by a stretching surface at z=0 in a
rotating fluid. When t�0, the surface rotates at an angular veloc-
ity � in the z direction so that the fluid is at rest relative to the

surface. At time t=0, the surface at z=0 is impulsively stretched
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n the x direction. Due to the Coriolis force, the fluid motion is
hree dimensional and is governed by the continuity equation and
he unsteady Navier–Stokes equations �4�

�u

�x
+

�v
�y

+
�w

�z
= 0 �1a�

�u

�t
+ u

�u

�x
+ v

�u

�y
+ w

�u

�z
− 2�v = −

1

�

�p

�x
+ ��2u �1b�

�v
�t

+ u
�v
�x

+ v
�v
�y

+ w
�v
�z

+ 2�u = −
1

�

�p

�y
+ ��2v �1c�

�w

�t
+ u

�w

�x
+ v

�w

�y
+ w

�w

�z
= −

1

�

�p

�z
+ ��2w �1d�

here p denotes the pressure; � the density; � the kinematic vis-
osity; and �2 the three-dimensional Laplacian, respectively. The
nitial and boundary conditions are

t � 0: u = v = w = 0 for any x,y,z �1e�

t � 0: u = ax, v = w = 0 at z = 0 �1f�

u → 0, v → 0, w → 0 as z → � �1g�

here the constant a �a	0, with the dimension of t−1� represents
he stretching rate.

Using Williams and Rhyne’s similarity transformation �28�


 = 1 − e−�, � = at �2�
nd introducing the following similarity variables

� =� a

�

z, u = axf��
,��, v = axg�
,��, w = − �a�
f�
,��

�3�
quations �1a�–�1d� become a system of two coupled nonlinear
ifferential equations

f� +
1

2
�1 − 
��f� + 
�f f� − f�2 + 2
g� − 
�1 − 
�

� f�

�

= 0 �4a�

g� +
1

2
�1 − 
��g� + 
�fg� − f�g − 2
f�� − 
�1 − 
�

�g

�

= 0

�4b�
here the prime denotes the derivation with respect to the simi-

arity variable �; and 
=� /a is a dimensionless parameter. The
orresponding boundary conditions read

f�
,0� = 0, f��
,0� = 1, f��
, + � � = 0,

g�
,0� = 0, g�
, + � � = 0 �4c�

ote that, as �→0, we have 
→�. Thus, �=�a /�
z is exactly the
ame as the traditional definition given in Ref. �4�, which has
eanings as �→0.
According to the definitions �2� and �3�, we have the dimen-

ionless skin friction coefficient in the x and y directions

Cf
x = �
 Rex�−1/2f��
,0�, Cf

y = �
 Rex�−1/2g��
,0� �5�

here Rex=ax2 /� is the local Reynolds number.

Perturbation Approximations

3.1 Initial Solution as �\0. As 
→0, corresponding to the
nitial flow, Eqs. �4a� and �4b� become

f� + 1 �f� = 0 �6a�
2
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g� + 1
2�g� = 0 �6b�

subject to the boundary/initial conditions

f�0,0� = 0, f��0,0� = 1, f��0, � � = 0,

g�0,0� = 0, g�0, � � = 0 �6c�

Its solution is given by

f�0,�� = � erfc��/2� +
2

��
�1 − e−�2/4� �7�

g�0,�� = 0 �8�

where erfc��� is the so-called complementary error function

erfc��� =
2

��
�

�

�

e−s2
ds �9�

Note that Eqs. �6a� and �6b� do not contain the parameter 
. Thus,
the result as 
→0 is independent of 
.

3.2 Steady Solution at �=1. At 
=1, corresponding to the
steady-state flow, Eqs. �4a� and �4b� read

f� + f f� − f�2 + 2
g = 0 �10a�

g� + fg� − f�g − 2
f� = 0 �10b�

subject to the same boundary and initial conditions as Eq. �6c�.
The steady-state boundary-layer flows were solved by Wang �1,2�.

3.3 Perturbation Approximations for Small �. Regarding 

as a small parameter, one has the perturbation expressions

f�
,�� = f̂0��� + f̂1���
 + f̂2���
2 + ¯ �11�

g�
,�� = ĝ0��� + ĝ1���
 + ĝ2���
2 + ¯ �12�

Substituting them into Eqs. �4a�–�4c� and equating the coefficients
of the like power of 
, one has the zero-order perturbation
equations

f̂0� + 1
2� f̂0� = 0 �13a�

ĝ0� + 1
2�ĝ0� = 0 �13b�

f̂0�0� = 0, f̂0��0� = 1, f̂0���� = 0, ĝ0�0� = 0, ĝ0��� = 0

�13c�

which are exactly the same as Eqs. �6a�–�6c�, respectively. The
first-order perturbation equations are given by

f̂1� + 1
2� f̂1� − f̂1� = 1

2� f̂0� − f̂0 f̂0� + f̂0�
2 �14a�

ĝ1� + 1
2�ĝ1� − ĝ1 = 2
 f̂0� �14b�

f̂1�0� = 0, f̂1��0� = 0, f̂1���� = 0, ĝ1�0� = 0, ĝ1��� = 0

�14c�

Its solution reads

f̂1��� = �1

2
−

2

3�
�	�1 +

�2

2
�erfc��/2� −

1
��

�e−�2/4

−

1

2
�1 −

�2

2
�erfc2��/2� −

3

2��
�e−�2/4 erfc��/2� +

2

�
e−�2/2

−
1

� �1

4
� +

4
� �e−�2/4 �15�
� 3 �
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ĝ1��� = 
�2 erfc��/2� −
2

��

�e−�2/4 �16�

n general, one can transfer the original nonlinear initial/
oundary-value problem into an infinite number of linear
oundary-value problems

L f
p�fm���� = Rm

p ���, Lg
p�gm���� = Gm

p ��� �17�

here the two linear operators L f
p and Lg

p are defined by

L f
p� =

�3�

��3 +
�

2

�2�

��2 −
��

��
�18�

Lg
p� =

�2�

��2 +
�

2

��

��
− � �19�

he common solutions of the linear equations

L f
p� = 0, Lg

p� = 0

re, respectively

� = C1 + C2�� +
�3

6
� + C3	4

3
exp�− �2/4��1 +

�2

4
� + �� erf��/2�

��� −
�3

6
�
 �20�

nd

� = C1�1 +
�2

2
� + C2	� exp�− �2/4� + �� erf��/2��1 +

�2

2
�

�21�

here C1, C2, and C3 are integral constants. Note that the above
ommon solutions contain the error function erf�� /2� and are
ather complicated. Owing to this reason, it becomes more and
ore difficult to get higher-order perturbation approximations. It

hould be emphasized that these two linear operators L f
p and Lg

p

ome directly from the original governing equations. Thus, the
erturbation method does not provides us with any freedom to
hoose the linear operators of the linear subproblems.

The first-order perturbation approximation of the skin friction
oefficients reads

Cf
x Rex

1/2 � 
−1/2� f̂0��0� + 
 f̂1��0�� =
1

��
	− 
−1/2 + �−

7

4
+

4

3�
�
1/2


�22�

Cf
y Rex

1/2 � 
−1/2�ĝ0��0� + 
ĝ1��0�� = −
2

��


1/2 �23�

or details, please refer to Nazar et al. �4�. Note that, due to the
ppearance of the error function erfc�� /2�, it becomes more and
ore difficult to get higher-order perturbation approximations, as
entioned above. Note that the perturbation approximation of

f
x Rex

1/2 is independent of 
. However, for large 
, these pertur-
ation approximations are not accurate, and would have about
0% average error, as shown in Figs. 4 and 5.

Homotopy Analytic Solution
In this part, we solve Eqs. �4a�–�4c� by means of the homotopy

nalysis method �7,9�. First of all, it is well known that most of
oundary-layer flows decay exponentially at infinity �i.e., �→
��. Thus, according to the boundary conditions �4c�, f� and g
ecay to zero at infinity exponentially. Besides, Eqs. �4a� and �4b�
xplicitly contain the terms 
 and �. Thus, f�
 ,�� and g�
 ,��

hould be expressed by such a set of basis functions

ournal of Applied Mechanics
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�
k�m exp�− n��
k � 0, m � 0,n � 0� �24�

in the following forms

f�
,�� = a0
0,0 + �

k=0

+�

�
m=0

+�

�
n=1

+�

ak
m,n
k�m exp�− n�� �25�

g�
,�� = �
k=0

+�

�
m=0

+�

�
n=1

+�

bk
m,n
k�m exp�− n�� �26�

where ak
m,n and bk

m,n are coefficients. Note that the solutions ex-
pressed in the above forms decay exponentially as �→ +�. As
shown later, the above expressions are important in the frame of
the homotopy analysis method for the choice of the initial guesses
and the auxiliary linear operators. The initial guesses and auxiliary
linear operators should be chosen in such a way that the approxi-
mations must be expressed by the above two expressions: this is
so important that it is called the rule of solution expressions �7,9�.

According to the solution expressions �25� and �26� and the
boundary conditions �4c�, it is straightforward to choose the initial
guesses

f0�
,�� = 1 − exp�− �� �27�

g0�
,�� = 0 �28�

Note that the above initial guesses satisfy the initial/boundary
conditions �4c�. Let L f and Lg denote two auxiliary linear opera-
tors, which we will determine later. Here, we note that we have
great freedom to choose L f and Lg. Based on Eqs. �4a� and �4b�,
we define the following two nonlinear operators

N f�F,G� =
�3F

��3 +
1

2
�1 − 
��

�2F

��2 − 
�1 − 
�
�2F

�
 � �
+ 
	F

�2F

��2

− � �F

��
�2

+ 2
G� �29�

and

Ng�F,G� =
�2G

��2 +
1

2
�1 − 
��

�G

��
− 
�1 − 
�

�G

�

+ 
�F

�G

��
− G

�F

��

− 2

�F

��
� �30�

Then, we construct the so-called zero-order deformation equations

�1 − q��L f�F�
,�;q�� − L f�f0�
,���� = q�N f�F�
,�;q�,G�
,�;q��

�31a�

�1 − q��Lg�G�
,�;q�� − Lg�g0�
,���� = q�Ng�F�
,�;q�,G�
,�;q��

�31b�

subject to the corresponding boundary/initial conditions

F�
,0;q� = 0, � �F�
,�;q�
��

�
�=0

= 1, � �F�
,�;q�
��

�
�=�

= 0

�31c�

and

G�
,0;q� = 0, G�
, � ;q� = 0 �31d�

where q� �0,1� is the embedding parameter; � denotes a nonzero
auxiliary parameter; and F�
 ,� ;q� and G�
 ,� ;q� are unknown
functions related to f�
 ,�� and g�
 ,��, respectively.

When q=0, since the initial guesses f0�
 ,�� and g0�
 ,�� satisfy
the initial/boundary conditions �4c�, the above zero-order defor-

mation equations have the solution
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F�
,�;0� = f0�
,��, G�
,�;0� = g0�
,�� �32�

hen q=1, since ��0, the above zero-order deformation equa-
ions are equivalent to the original Eqs. �4a�–�4c�, provided

F�
,�;1� = f�
,��, G�
,�;1� = g�
,�� �33�

espectively. Thus, as q increases from 0 to 1, F�
 ,� ;q� and
�
 ,� ;q� vary �or deform� from the known initial guesses f0�
 ,��

nd g0�
 ,�� to the unknown solutions f�
 ,�� and g�
 ,�� of the
riginal Eq. �4a�–�4c�, respectively. This is the reason why Eqs.
31a�–�31d� are called zero-order deformation equations.

By Taylor’s theorem and using Eq. �32�, we have the power
eries

F�
,�;q� = f0�
,�� + �
n=1

+�

fn�
,��qn �34�

G�
,�;q� = g0�
,�� + �
n=1

+�

gn�
,��qn �35�

here

fn�
,�� =
1

n!
� �nF�
,�;q�

�qn �
q=0

, gn�
,�� =
1

n!
� �nG�
,�;q�

�qn �
q=0

�36�

ote that Eqs. �31a� and �31b� contain the auxiliary parameter �.
bviously, the convergence of the series �34� and �35� is depen-
ent not only upon the auxiliary linear operators L f and Lg but
lso the auxiliary parameter �, and more importantly, we have
reat freedom to choose all of them. Assuming that the auxiliary
arameter � and the auxiliary linear operators L f and Lg are so
roperly chosen that the series �34� and �35� converge at q=1, we
ave, using Eq. �33�, the solution series

f�
,�� = f0�
,�� + �
n=1

+�

fn�
,�� �37�

g�
,�� = g0�
,�� + �
n=1

+�

gn�
,�� �38�

he above series relates the initial guesses f0�
 ,�� and g0�
 ,��
ith the exact solution f�
 ,�� and g�
 ,�� by means of the un-
nown terms fn�
 ,�� and g0�
 ,��, where n=1,2 ,3 , . . .. According
o the fundamental theorem in calculus, the Taylor series �34� and
35� are unique, and are completely determined by the zero-order
eformation Eqs. �31a�–�31d�. Thus, the governing equations and
oundary/initial conditions of fn�
 ,�� and gn�
 ,�� can be de-
uced directly from the zero-order deformation Eqs. �31a�–�31d�.
ased on the definition �36� and the solution series �37� and �38�,
iao �7–11� provided a rather general approach to obtain the equa-

ions governing fn�
 ,�� and gn�
 ,��. For the sake of simplicity,
efine the vectors

f�m = �f0, f1, f2, . . . , fm� �39�

g�m = �g0,g1,g2, . . . ,gm� �40�

ifferentiating the zero-order deformation Eqs. �31a�–�31d� n
imes with respect to the embedding parameter q, then setting q
0, and finally dividing by n!, we have the so-called nth-order
eformation equation

L f�fn�
,�� − �nfn−1�
,��� = �Rn
f �f�n−1,g�n−1,
,�� �41a�

Lg�gn�
,�� − �ngn−1�
,��� = �Rn
g�f�n−1,g�n−1,
,�� �41b�
ubject to the boundary/initial conditions

014 / Vol. 74, SEPTEMBER 2007
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fn�
,0� = 0, � � fn�
,��
��

�
�=0

= 0, � � fn�
,��
��

�
n=�

= 0

�41c�
and

gn�
,0� = 0, gn�
, � � = 0 �41d�
where

Rn
f �f�n−1,g�n−1,
,�� =

�3fn−1

��3 +
1

2
�1 − 
��

�2fn−1

��2 − 
�1 − 
�
�2fn−1

�
 � �

+ 
	�
j=0

n−1 � fn−1−j

�2f j

��2 −
� fn−1−j

��

� f j

��
� + 2
gn−1


�41e�
and

Rn
g�f�n−1,g�n−1,
,�� =

�2gn−1

��2 +
1

2
�1 − 
��

�gn−1

��
− 
�1 − 
�

�gn−1

�


+ 
	�
j=0

n−1 � fn−1−j

�gj

��
− gn−1−j

� f j

��
� − 2


� fn−1

�� 

�41f�

under the definition

�k = �0, k � 1

1, k 	 1
�42�

As proved by Sajid et al. �13� and Hayat et al. �14�, directly
substituting the series �34� and �35� into zero-order deformation
Eqs. �31a�–�31c�, and then equating the coefficients of the like
power of q, one can obtain exactly the same equations as Eqs.
�41a�–�41f�, no matter whether q is regarded as a small parameter
or not. This is mainly because the Taylor series �34� and �35� are
unique.

The original Eq. �4a� is third order with respect to the similarity
variable � and first order with respect to the dimensionless time 
,
and Eq. �4b� is second order with respect to � and first order with
respect to 
, respectively. In general, it is more difficult to solve
these kinds of combined initial-boundary-value problems than
pure boundary-value ones, even if they are linear. Fortunately, the
homotopy analysis method provides us with great freedom to
choose the auxiliary linear operators L f and Lg: we can choose L f
and Lg in such a way that the high-order deformation equations
are pure boundary-value ones. To do so, L f may be a third-order
linear differential operator with respect to �, and Lg a second-
order linear operator with respect to �, respectively. Therefore,
without loss of generality, we write

L f���
,��� =
�3�

��3 + A2���
�2�

��2 + A1���
��

��
+ A0���� �43�

and

Lg���
,��� =
�2�

��2 + B1���
��

��
+ B0���� �44�

where A0���, A1���, A2���, B0���, and B1��� are real functions to
be determined below. Let fn

*�
 ,�� and gn
*�
 ,�� denote the special

solution of Eqs. �41a�–�41d�. Its general solutions read

fn�
,�� = fn
*�
,�� + C1�
�e1

f ��� + C2�
�e2
f ��� + C3�
�e3

f ���
�45�

gn�
,�� = gn
*�
,�� + C4�
�e1

g��� + C5�
�e2
g��� �46�

where C1�
�, C2�
�, C3�
�, C4�
�, and C5�
� are integral constants
determined by the boundary conditions �41c� and �41d�, the real

f f f g g
functions e1���, e2���, e3���, e1���, and e2��� are the so-called
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ernels of the two auxiliary linear operators, satisfying

L f�e1
f ���� = L f�e2

f ���� = L f�e3
f ���� = 0, �47�

Lg�e1
g���� = Lg�e2

g���� = 0

ccording to the solution expressions �25� and �26�, the kernels
hould belong to the basis functions. If we choose e1

f ���, e2
f ���,

3
f ��� as the first three simplest basis functions among �24�, i.e.

e1
f ��� = 1, e2

f ��� = exp�− ��, e3
f ��� = exp�− 2��

hen, the boundary condition at infinity is automatically satisfied
nd the coefficient C3�
� cannot be uniquely determined. To en-
ure that the high-order deformation equations have unique solu-
ions, we should choose

e1
f ��� = 1, e2

f ��� = exp�− ��, e3
f ��� = exp�+ ��

hen, to satisfy the boundary condition fn��
 , + � �=0, we have

3�
�=0, and C1�
�, C2�
� are determined by the two boundary
onditions fn�
 ,0�=0 and fn��
 ,0�=0. Substituting the above ker-
els into Eq. �47�, we have

A0��� = 0 �48�

− �1 + A1��� − A2����exp�− �� = 0 �49�

�1 + A1��� + A2����exp�+ �� = 0 �50�

hich give

A0��� = A2��� = 0, A1��� = − 1

imilarly, choosing the kernels e1
g���=exp�−�� and e2

g���
exp�+��, we have

B0��� = − 1, B1��� = 0

hus, we have the two auxiliary linear operators

L f� =
�3�

��3 −
��

��
�51�

Lg� =
�2�

��2 − � �52�

hich have the properties

L f�C1�
� exp�− �� + C2�
� exp�+ �� + C3�
�� = 0 �53�

Lg�C4�
� exp�− �� + C5�
� exp�+ ��� = 0 �54�

ote that, in contrast to perturbation approximations, our HAM
eries solutions do not contain the error function erf�� /2�. This is
ainly because we have great freedom to choose the auxiliary

inear operators L f and Lg, which are much simpler than L f
p and

g
p appeared in the high-order perturbation Eqs. �14a� and �14b�,

espectively.
The high-order deformation Eqs. �41a�–�41d� are linear

oundary-value equations. Thus, according to Eqs. �37� and �38�,
he original nonlinear, combined initial-boundary-value problem
s transferred into an infinite number of linear boundary-value
roblems. However, in contrast to perturbation techniques, this
ind of transformation does not need any small parameters. Be-
ides, in contrast to the perturbation method, the homotopy analy-
is method provides us with great freedom to choose the auxiliary
inear operators L f and Lg. Using this kind of freedom, we can
btain results at rather high order of approximations by means of
hoosing the linear operators �51� and �52�, which are simpler
han �18� and �19�, and whose kernels do not contain the error

unctions erf�� /2�.

ournal of Applied Mechanics

aded 24 Oct 2007 to 202.120.12.24. Redistribution subject to ASME
5 Result Analysis

Liao �7� proved in general that, as long as a solution series
given by the homotopy analysis method converges, it must be one
of the solutions of the equation considered. Thus, it is important to
ensure that the HAM solution series are convergent. Note that the
solution series �37� and �38� contain one auxiliary parameter �. As
shown by Liao �7–11� and others �13–16,22�, it is the auxiliary
parameter � that provides us with a simple way to adjust and
control the convergence region of the solution series. In general,
by means of choosing a proper value of the auxiliary parameter �,
one can always ensure the convergence of the solution series
given by the homotopy analysis method. For example, let us con-
sider the case 
=1/2 for the nonlinear unsteady problem at hand.
First of all, we investigate the convergence of f��0,0� and g��0,0�
in the case of 
=1/2 by means of regarding � as a variable.
Physically, f��0,0� and g��0,0� are independent of the auxiliary
parameter �, and thus are unique. This is mainly because the
auxiliary parameter � has only mathematical meanings. Thus,
mathematically, as long as the series of f��0,0� and g��0,0� are
convergent, they must be convergent to the same values, respec-
tively. As shown in Fig. 1, all points �� , f��0,0�� with different
values of � but the same value of f��0,0� create a horizontal line
segment of the curve f��0,0��� in a region of −0.8���−0.2,
as does the curve g��0,0���. Therefore, if we choose −0.8��

�−0.2, we can ensure the convergence of the series of f��0,0�
and g��0,0�. In fact, we indeed get convergent results of f��0,0�
and g��0,0� by choosing �=−1/2. In general, by means of plot-
ting such kinds of � curves, we can always choose a proper value
of the auxiliary parameter � to get accurate HAM approximations,
as suggested by Liao �7–11�. Similarly, one can investigate the
convergence of the series solution at 
=0 in the whole region 0
��� +�. It is found that, when 
=0 and �=−1/2, the solution
series of f�0,�� and g�0,�� converge to the exact initial solutions
�7� and �8�, as shown in Fig. 2. Furthermore, it is found that when
�=−1/2, the series solution of f�
 ,�� and g�
 ,�� are even con-
vergent in the whole region 0�
�1 and 0��� +�. When 


Fig. 1 The 15th-order HAM approximation of f�„0,0… and
g�„0,0… in the case of �=1/2
=1/2, the 15th-order approximations of coefficient of skin friction
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Cf
x Rex

1/2 = 
−1/2�− 0.5744017005 − 0.4493808859


− 0.06481391332
2 − 0.01742724136
3

− 0.009296051716
4 − 0.005899366598
5

− 0.004065430821
6 − 0.002955448193
7

− 0.001917447834
8 − 0.009525724822
9

+ 0.07823876097
10 − 0.3945931407
11

+ 1.034178447
12 − 1.478649518
13 + 1.079883330
14

− 0.3178853418
15� �55�

nd

Cf
y Rex

1/2 = 
−1/2�− 0.5524842929
 + 0.008804549832
2

+ 0.004367680454
3 + 0.002135276175
4

+ 0.001719399534
5 + 0.001533164270
6

+ 0.001399929708
7 + 0.001031699397
8

+ 0.009003153919
9 − 0.09321414938
10

+ 0.5469861363
11 − 1.668879409
12

+ 2.763217719
13 − 2.335134057
14

+ 0.7942135326
15� �56�

gree well with the numerical results for all time 
� �0,1�, cor-
esponding to 0��� +�, as shown in Fig. 3.

In general, for any given value of 
, we can always choose a
roper value of the auxiliary parameter � in a similar way to
nsure that the solution series converge for all time 0��� +� in
he whole spatial region 0��� +�. For example, in cases of 

0.5 and 
=1, our HAM results of the coefficient of skin friction

f
x Rex

1/2 and Cf
y Rex

1/2 agree well with the numerical solutions, as
hown in Figs. 4 and 5. As shown in Table 1, the 25th-order HAM
pproximations have errors less than 0.5%. Note that for a larger
alue of 
, the perturbation solution becomes worse, and its av-
rage error is about 40%. However, by choosing a proper value of
he auxiliary parameter �, our HAM approximations always con-

ig. 2 Comparison of f�„0,�… with the exact solution: solid line
xact solution; filled circle: 15th-order HAM approximation;
pen circle: 20th-order HAM approximation
erge to the numerical solutions for any values of 
. Thus, the

016 / Vol. 74, SEPTEMBER 2007
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homotopy analysis method is indeed a powerful analytic tool for
nonlinear problems with strong nonlinearity.

Indeed, the homotopy analysis method provides us with a
simple way to ensure the convergence of solution series by means
of choosing a proper value of the auxiliary parameter �. This is an
advantage of the homotopy analysis method over all other analytic
techniques. By the way, as proved by Hayat et al. �13� and Sajid et
al. �14�, and illustrated by Abbasbandy �15,16�, the approxima-
tions given by the so-called “homotopy perturbation method”
�17�, which was proposed 7 years later than the homotopy analy-
sis method �6�, are only special cases for those given by the ho-
motopy analysis method when �=−1. Like other traditional ana-
lytic techniques, the “homotopy perturbation method” �17� cannot
provide such a simple way to adjust and control the convergence
of the solution series �13–16�. For example, in the cases under
consideration, the results given by the “homotopy perturbation
method” �HPM� are valid only for small time, as shown in Figs. 4
and 5.

6 Conclusion
In this paper, the three-dimensional unsteady viscous flows due

to the impulsively stretching surface of the incompressible rotat-
ing fluid, governed by the Navier–Stokes equations, are solved by
means of one analytic technique for strongly nonlinear problems,
namely the homotopy analysis method �6–11�. In contrast to the
corresponding perturbation approximations which have 40% aver-
age errors, our series solutions are uniformly valid for all time 0
��� +� in the whole spatial region 0��� +�, but with only
less than 0.5% error, as shown in Table 1. Explicit analytic ex-
pressions of coefficients of skin friction are given, which are use-
ful in engineering and for validation of numerical simulations. All
of these verify the validity and potential of our approach for com-
plicated viscous flows.

The homotopy analysis method has some advantages over other
traditional ones. First, it provides us with great freedom to choose
the auxiliary linear operators. Using this kind of freedom, we
transfer the original nonlinear, combined initial-boundary-value
problem at hand into an infinite number of linear boundary-value
subproblems, which are so easy to solve that we can get results at

Fig. 3 Comparison of numerical solutions with HAM results of
f�„� ,0… and g�„� ,0… in the case of �=1/2 by means of �=−1/2;
solid line: numerical result of f�„� ,0…; open circle: 15th-order
HAM approximation of f�„� ,0…; dash line: numerical result of
g�„� ,0…; filled circle: 15th-order HAM approximation of g�„� ,0…
rather high orders of approximations. Second, contrary to all other
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nalytic techniques, the homotopy analysis method provides us
ith a simple way to ensure convergence of solution series. Thus,
e can always get accurate enough approximations by means of

he homotopy analysis method. Third, in contrast to perturbation
echniques, the homotopy analysts method is independent of
mall/large parameters. Thus, it is suitable for more nonlinear
roblems. Finally, the homotopy analysis method logically con-
ains other nonperturbation techniques such as the Lyapunov’s
mall parameter method, the �-expansion method, and the Adomi-
n’s decomposition method, as proved by Liao �7�. Currently,
ayat et al. �13�, Sajid et al. �14�, and Abbasbandy �15,16�
ointed out that the so-called “homotopy perturbation method”
17� proposed in 1999 is also a special case of the homotopy
nalysis method �6,7� propounded in 1992. Thus, the homotopy
nalysis method is rather general.

There exist numerous three-dimensional unsteady viscous flows
nd heat transfer problems, which are often rather complicated.

ig. 4 Comparison of numerical results †4‡ of Cf
x�Rex with

nalytic approximations; symbols: numerical result; solid line:
5th-order HAM approximation: „a… �=−0.5; „b… �=−0.25; dash

ine: perturbation approximation given by Nazar et al. †4‡; dash-
otted line: 15th-order HPM approximation „�=−1…
he proposed homotopy analysis method provides us with a new

ournal of Applied Mechanics
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approach to get accurate and convergent series solutions of un-
steady three-dimensional Navier–Stokes equations, which are uni-
formly valid in the whole time 0��� +�.

Fig. 5 Comparison of numerical results †4‡ of Cf
y�Rex with

analytic approximations; symbols: numerical result; solid line:
15th-order HAM approximation „a… �=−0.5; „b… �=−0.25; dash
line: perturbation approximation given by Nazar et al. †4‡; dash-
dotted line: 15th-order HPM approximation „�=−1…

Table 1 Comparisons of HAM approximations of f�„1,0… and
g�„1,0… with numerical results given by Wang †1‡ and Nazar et
al. †4‡

f��1,0� g��1,0�


 Wang
Nazar
et al.

HAM
�25th� Wang

Nazar
et al.

HAM
�25th�

0.5 −1.138 −1.138 −1.138 −0.513 −0.513 −0.511
1.0 −1.325 −1.325 −1.323 −0.837 −0.837 −0.830
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omenclature
Cf

x � skin friction coefficient in the x direction
Cf

y � skin friction coefficient in the y direction
f ,g � real functions

F ,G � real functions
L f ,Lg � auxiliary linear operators
N f ,Ng � nonlinear operators

p � pressure
q � embedding parameter

Rex � local Reynolds number, Rex=ax2 /�
t � time

u ,v ,w � velocities in the x, y, z direction
x ,y ,z � spatial coordinates

� � similarity variable

 � non-dimensional parameter defined by 
=� /a

 � dimensionless time defined by 
=1−e−�

� � density
� � dimensionless time defined by �=at
� � kinematic viscosity

� � angular velocity in the z direction
�2 � Laplace operator
� � nonzero auxiliary parameter
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