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Abstract

An analytic method, namely the homotopy analysis method (HAM), is applied to solve solitary waves governed by

Camassa–Holm equation. Purely analytic solutions are given for soliton waves with and without continuity at crest.

This provides with a new analytic approach to solve soliton waves with discontinuity.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It is difficult to solve nonlinear problems, especially by analytic techniques. Currently, an analytic method for

strongly nonlinear problems, namely the homotopy analysis method (HAM) [1,2], has been developed. Different from

perturbation techniques [3], the homotopy analysis method does not depend upon any small or large parameters, and

thus is valid for most of nonlinear problems in science and engineering. Besides, as pointed out by Liao [1], it log-

ically contains other non-perturbation techniques such as Lyapunov�s small parameter method [4], the d-expansion
method [5], and Adomian�s decomposition method [6], and therefore is more general. The homotopy analysis method

was successfully applied to solve many nonlinear problems such as the nonlinear waves [7], the magnetohydrody-

namic flows of non-Newtonian fluids viscous flow past a porous plate [9], flows of an Oldroyd 6-constant fluid

[10], soliton wave with one-loop [11], unsteady boundary-layer flows caused by an impulsively stretching plate

[12], and so on.

All of the previous applications of the homotopy analysis method deal with solutions without discontinuity. How-

ever, many nonlinear problems have different types of discontinuity. In this paper, in order to verify the validity of the

homotopy analysis method for nonlinear problems with discontinuation, we further apply it to solve shallow water

solitary wave problems governed by Camassa–Holm equation
0960-0

doi:10.

* Co

E-m
ut þ 2kux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx; ð1Þ
779/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

1016/j.chaos.2004.12.016

rresponding author.

ail addresses: wan0724@sjtu.edu.cn (W. Wu), sjliao@sjtu.edu.cn (S.-J. Liao).

mailto:wan0724@sjtu.edu.cn
mailto:sjliao@sjtu.edu.cn


178 W. Wu, S.-J. Liao / Chaos, Solitons and Fractals 26 (2005) 177–185
where k is a constant related to the critical shallow water wave speed, c is the phase speed, u denotes the velocity, x and t

denote the spatial and temporal variables, respectively. Camassa and Holm [13,14] pointed out that the solitary wave

solution exists when 0 6 k < 1/2. Especially, when k = 0, the solitary wave can be simply expressed by
uðx; tÞ ¼ c expð�jx� ctjÞ; ð2Þ
whose first derivative is discontinue at the crest. But, when k 5 0, the solitary wave is continuous at the crest. This is

rather interesting.

In this article, we employ the homotopy analysis method to solve this solitary wave problem so as to provide a new

analytic approach for nonlinear problems with discontinuity.
2. Mathematical formulation

Under the definition h = x � ct and u(h) = aw(h), Eq. (1) reads
2kw0 � cw0 þ cw000 þ 3aww0 ¼ 2aw0w00 þ aww000; ð3Þ
where c is the wave speed, a is the wave amplitude, and the prime denotes the derivative with respect to h, respectively.
Writing K = k/c, we have
cðw000 � w0 þ 2Kw0Þ þ 3aww0 � 2aw0w00 � aww000 ¼ 0: ð4Þ
According to Camassa and Holm [13,14], the solitary waves exist for 0 6 K < 1
2
. Due to the symmetry of the solitons,

we consider the wave profile only for h P 0.

Write
wðhÞ � B expð�lhÞ; as h ! þ1; ð5Þ
where l > 0 and B are constants. Substituting it into Eq. (4) and balancing the main terms, we have
l2 ¼ 1� 2K: ð6Þ
Writing g = lh, Eq. (4) becomes
cð1� 2KÞðw000 � w0Þ þ aw½3w0 � ð1� 2KÞw000� � 2að1� 2KÞw0w00 ¼ 0; ð7Þ
where the prime denotes the derivative with respect to g. For simplicity, we choose c = 1.

2.1. Solutions with continuity of derivative at crest

First of all, let us consider the solitary waves with continuous first derivative at crest, corresponding to 0 < K < 1/2.

Assume that the dimensionless wave elevation w(g) arrives its maximum at the origin. Obviously, w(g) and its deriva-

tives tend to zero as g! +1. Besides, due to the continuity, the first derivative of w(g) at crest is zero. Thus, the bound-
ary conditions of the solitary waves are
wð0Þ ¼ 1; w0ð0Þ ¼ 0; wðþ1Þ ¼ 0: ð8Þ
According to the governing equation (7) and the boundary conditions (8), the solution can be expressed by a set of

base functions
fexpð�ngÞjn ¼ 1; 2; 3; . . .g
in the form
wðgÞ ¼
Xþ1

n¼1

dn expð�ngÞ; ð9Þ
where dn is a coefficient to be determined. This provides us with the so-called rule of solution expression (see [1,2]), i.e.

the solution of Eqs. (7) and (8) must be expressed in the same form as (9) and other expressions such as nmexp(�ng)
must be avoided. Furthermore, according to the governing equation (7) and the rule of solution expression (9), we

choose the linear operator
L½Uðn; qÞ� ¼ o3

og3
� o

og

� �
Uðg; qÞ; ð10Þ
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with the property
L½C1 expð�gÞ þ C2 expðgÞ þ C3� ¼ 0; ð11Þ
where C1, C2, and C3 are constants. From (7), we define a nonlinear operator
N ½Uðn; qÞ;AðqÞ� ¼ cð1� 2KÞ oU3

o3g
� oU

og

� �
þ AðqÞU 3

oU
og

� ð1� 2KÞ oU
3

o3g

� �
� 2AðqÞð1� 2KÞ oU

og
o2U

o2g
: ð12Þ
According to the boundary conditions (8) and the rule of solution expression (9), it is straightforward that the initial

approximation should be in the form
w0ðgÞ ¼ b1 expð�gÞ þ b2 expð�2gÞ:
Substituting it into (8), we have b1 = 2 and b2 = �1, which gives
w0ðgÞ ¼ 2 expð�gÞ � expð�2gÞ: ð13Þ
Using above definitions, we construct the zeroth-order deformation equation
ð1� qÞL½Uðg; qÞ � w0ðgÞ� ¼ �hqN ½Uðg; qÞ;AðqÞ�; ð14Þ
subject to the boundary conditions
Uð0; qÞ ¼ 1; Uðþ1; qÞ ¼ 0; Unð0; qÞ ¼ 0; ð15Þ
where �h is a nonzero auxiliary parameter, q 2 [0,1] is an embedding parameter, and the subscript denotes derivative

with respect to g, respectively.
When q = 0, it is obvious that the zeroth-order deformation equation (14) has the solution
Uðx; 0Þ ¼ w0ðgÞ: ð16Þ
When q = 1, Eq. (14) is the same as Eq. (7), provided
Uðx; 1Þ ¼ wðgÞ; Að1Þ ¼ a: ð17Þ
Thus as q increases from 0 to 1, the solution U(g,q) varies from the initial solution w0(g) to w0(n), so does A(q) from

the initial guess a0 to the wave amplitude a. Expand U(g,q) and A(q) in Taylor series with respect to g, i.e.
Uðg; qÞ ¼ w0ðgÞ þ
Xþ1

m¼1

wmðgÞqm; ð18Þ

AðqÞ ¼ a0 þ
Xþ1

m¼1

amqm; ð19Þ
Where
wmðgÞ ¼
1

m!
omUðg; qÞ

oqm

����
q¼0

; ð20Þ

am ¼ 1

m!
omAðqÞ
oqm

����
q¼0

: ð21Þ
If the auxiliary parameter �h is so properly chosen that these two series are convergent at q = 1, we have from (18) and

(19) that
wðgÞ ¼ w0ðgÞ þ
Xþ1

m¼1

wmðgÞ; ð22Þ

a ¼ a0 þ
Xþ1

m¼1

am: ð23Þ
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Fore the sake of simplicity, define
~wk ¼ fw0;w1;w2; . . . ;wkg; ð24Þ

~ak ¼ fa0; a1; a2; . . . ; akg: ð25Þ
Differentiating Eqs. (14) and (15) m times with respect to q, then setting q = 0, and finally dividing them by m!, we

gain the mth-order deformation equation
L½wmðgÞ � vmwm�1ðgÞ� ¼ �hRmð~wm�1;~am�1Þ; ð26Þ
subject to the boundary conditions
wmð0Þ ¼ wmðþ1Þ ¼ w0
mð0Þ ¼ 0; ð27Þ
where
vm ¼
0; m 6 1;

1; m > 1

�
ð28Þ
and
Rmð~wm�1;~am�1Þ ¼ cð1� 2KÞðw000
m�1 � w0

m�1Þ þ
Xm�1

i¼0

Xi

j¼0

ajwi�j½3w0
m�i�1 � ð1� 2KÞw000

m�i�1�

� 2ð1� 2KÞ
Xm�1

i¼0

Xi

j¼0

ajw0
i�jw

00
m�i�1: ð29Þ
It is easy to solve above linear differential equation. Due to (11), the solution of wm(g) can be expressed in the form
wmðgÞ ¼ C1 expð�gÞ þ C2 expðgÞ þ C3 þ ŵmðgÞ; ð30Þ
where ŵmðgÞ is a special solution of Eq. (26) which contains the unknown term am�1. According to the boundary con-

ditions (27) and the rule of solution expression (9), we have
C2 ¼ C3 ¼ 0;
and besides the unknown am�1(g) and C1 are governed by
ŵmð0Þ þ C1 ¼ 0; ŵ0
mð0Þ � C1 ¼ 0:
Thus, the unknown am�1 is obtained by solving the linear algebraic equation
ŵmð0Þ þ ŵ0
mð0Þ
and thereafter C1 is given by
C1 ¼ �ŵmð0Þ:
2.2. Solutions with discontinuity of derivative at crest

Then, let us consider the case that the first derivative at crest of the solitary waves has not continuity, corresponding

to K = 0. In this special case, Eq. (7) reads
cðw000 � w0Þ þ awð3w0 � w000Þ � 2aw0w00 ¼ 0: ð31Þ
The corresponding boundary conditions are
wð0Þ ¼ 1; wðþ1Þ ¼ 0: ð32Þ
It should be emphasized that the boundary condition w 0(0) = 0 is invalid now. It is clear that we can choose the same

solution expression as (9). However, because we have now only one boundary condition at crest, we should choose a

new linear operator
eL½Uðg; qÞ� ¼ o3

og3
� 3

o2

og2
þ 2

o

og

� �
Uðg; qÞ; ð33Þ
with the property
eL½C1 expðgÞ þ C2 expð2gÞ þ C3� ¼ 0; ð34Þ
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where C1, C2 and C3 are constants. Similarly, from (31), the nonlinear operator is now defined by
eN ½Uðg; qÞ;AðqÞ� ¼ c
oU3

o3g
� oU

og

� �
þ AðqÞU 3

oU
og

� oU3

o3g

� �
� 2AðqÞ oU

og
o2U

o2g
: ð35Þ
And the initial approximation is chosen as
w0ðgÞ ¼ expð�gÞ � e½expð�2gÞ � expð�3gÞ�; ð36Þ
where e is a parameter to be determined later. Then, we can construct the zeroth-order deformation equation
ð1� qÞ~L½Uðn; qÞ � w0ðgÞ� ¼ �hq~N ½Uðg; qÞ;AðqÞ�; ð37Þ
subject to the boundary conditions
Uð0; qÞ ¼ 1; Uðþ1; qÞ ¼ 0; ð38Þ
where q and �h are defined as before.

Similarly, as q increases from 0 to 1, the solution U(g,q) varies from the initial solution w0(g) to w(g), so does A(q)

from the initial guess a0 to a. We can also expand U(g,q) and A(q) in Taylor series with respect to q as (18) and (19). If �h
and e are so properly chosen that these two series are convergent at q = 1, we also have (22) and (23). And in the similar

way, we have the mth-order deformation equation
~L½wmðgÞ � vmwm�1ðgÞ� ¼ �h~Rmð~wm�1;~am�1Þ; ð39Þ
subject to the boundary conditions
wmð0Þ ¼ wmðþ1Þ ¼ 0; ð40Þ
where
~Rmð~wm�1;~am�1Þ ¼ cðw000
m�1 � w0

m�1Þ þ
Xm�1

i¼0

Xi

j¼0

ajwi�j½3w0
m�i�1 � w000

m�i�1� � 2
Xm�1

i¼0

Xi

j¼0

ajw0
i�jw

00
m�i�1 ð41Þ
and ~ak , ~wk and vk are defined by (24), (25) and (28), respectively.

It is easy to get the solution of the above linear differential equation. Due to (34), its solution wm(g) can be expressed

in the form
wmðgÞ ¼ C1 expðgÞ þ C2 expð2gÞ þ C3 þ ~wmðgÞ; ð42Þ
where ~wmðgÞ is a special solution of Eq. (39), which contains the unknown term am�1. According to the boundary con-

dition (34) at infinity and the rule of solution expression (9), the constants C1, C2 and C3 must be zero. And due to the

boundary condition (34) at g = 0, the unknown term am�1 is determined by the linear algebraic equation
~wmð0Þ ¼ 0:
3. Result analysis

3.1. The solution with continuity of derivative at crest

Note that the two series (22) and (23) contain the auxiliary parameter �h, which influences the convergent rate and

region of the two series. To ensure that these two series converge, we first focus on how to choose a proper value of �h.
Since a represents the wave amplitude, we can first investigate the influence of �h on the series of a by means of the so-

called �h-curve, i.e. a curve of a versus �h. As pointed by Liao [1], the valid region of �h is a horizontal line segment. Thus,

the valid region of �h in this case is �22 < �h < �7, as shown in Fig. 1 for K = 9/20. As proved by Liao [1], the solution

series (23) must be exact solution, as long as it is convergent. It is found that, in general, as long as the series (23) for the

amplitude a is convergent, the corresponding series (22) is also convergent. For example, when K = 9/20 and �h = �10,

our analytic solution converges, as shown in Fig. 2. Due to Liao�s proof (see [1]), the convergent series is one solution of

the considered problem. We also check the residual error of the corresponding governing equation, and find that this is

indeed true. So, the solitary waves with continuous first derivative at crest can be successfully solved by the homotopy

analysis method.



Fig. 1. The �h-curve of the wave amplitude a at the 20th-order approximation when K = 9/20.

Fig. 2. The analytic approximation of w(g) when K = 9/20 by means of �h = �10. Symbols: the 10th-order of approximation; solid line:

the 20th-order of approximation.

182 W. Wu, S.-J. Liao / Chaos, Solitons and Fractals 26 (2005) 177–185
3.2. The solution with discontinuity of derivative at crest

Camassa and Holm pointed out [13] that the solitary waves with discontinuity at crest exist in the case of K = 0, and

the corresponding exact solution is
wðgÞ ¼ expðj � tjÞ: ð43Þ
Our solution series contain the auxiliary parameter �h and the parameter e. Similarly, we could choose proper values

of �h and e to ensure that the two solution series converge. For a given �h, we can investigate the influence of e on the

convergence of a by plotting the correspondent curve of a versus e, as shown in Fig. 3. We find that the valid region

of e is �1/2 < e < 1/2. In the same way, we can plot the �h-curve for any given e, as shown in Fig. 4. Obviously, we

can choose �h = �2 and e = �1/4. The corresponding 30th-order approximation of w(g) agrees well with the exact



Fig. 3. The curves of the wave amplitude a versus e when K = 0. Solid line: 10th-order of approximation when �h = �2; dashed line:

10th-order of approximation when �h = �3; dash-dotted line: 10th-order of approximation when ⁄ = �1.

Fig. 4. The curves of the wave amplitude a versus ⁄ when K = 0. Solid line: 20th-order of approximation when e = �1/2; dashed line:

20th-order of approximation when e = �1/10; dash-dotted line: 20th-order of approximation when e = �1.
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solution, as shown in Fig. 5. The value of the first derivative at crest is as shown in Table 1. The so-called homotopy-

Padé technique (see [1,7]) is employed, which greatly accelerates the convergence. Clearly, the first derivative converges

to the exact value �1.

All of these verify that the homotopy analysis method is valid for the solitary wave problems with discontinuity.
4. Conclusion

In this paper, the homotopy analysis method [1] is applied to obtain the analytic solution of the solitary waves gov-

erned by Camassa–Holm equation. Analytic solutions are obtained for solitary waves with and without continuity at

crest. This provides us with a new analytic way to solve solitary wave problems with discontinuity.



Table 1

The analytic approximation and the [m,m] homotopy-Padé approximation of the first derivative of w(g) at crest when K = 0 by means

of �h = �2 and e = �1/4

Order of approximation w 0(0) [m,m] w 0(0)

2 �0.6517 [1,1] �0.3494

4 �0.5883 [2,2] �0.5852

6 �0.5602 [3,3] �0.5845

8 �0.5577 [4,4] �0.6565

10 �0.5712 [5,5] �1.0470

20 �0.7020 [10,10] �0.9828

30 �0.8044 [15,15] �1.0037

40 �0.8699 [20,20] �1.0008

50 �0.91213 [25,25] �1.0000

Fig. 5. Comparison of the exact solution with the analytic approximation of w(g) when K = 0 by means of ⁄ = �2 and e = �1/4. Solid

line: 30th-order of approximation; symbols: exact solution.
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The auxiliary linear operator (33) for solitary waves with discontinuous derivative at crest is different from the aux-

iliary linear operator (11) for those with continuous derivative at crest. This is the only difference for the two cases. It

should be emphasized that the homotopy analysis method provides us with such kind of freedom to choose different

auxiliary linear operators according to the different properties of solutions of considered nonlinear problems. So, this

example also shows the flexibility and potential of the homotopy analysis method for complicated nonlinear problems.
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