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An analytical solution for a nonlinear time-delay model in biology
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a b s t r a c t

In this paper, the homotopy analysis method is applied to develop a analytic approach for
nonlinear differential equations with time-delay. A nonlinear model in biology is used as
an example to show the basic ideas of this analytic approach. Different from other analytic
techniques, the homotopy analysis method provides a simple way to ensure the conver-
gence of the solution series, so that one can always get accurate approximations. A new
discontinuous function is defined so as to express the piecewise continuous solutions of
time-delay differential equations in a way convenient for symbolic computations. It is
found that the time-delay has a great influence on the solution of the time-delay nonlinear
differential equation. This approach has general meanings and can be applied to solve other
nonlinear problems with time-delay.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear delay differential equations (DDE) arises when the evolution of a system not only depends on its present state
but also on its history. These nonlinear DDE are more complicated than traditional linear differential equation. Recent stud-
ies in various fields such as population dynamics, epidemiology, physiology, immunology, neural networks, economy, the
navigational control of ships and air crafts, electrodynamics, etc, have shown that delay differential equations play an impor-
tant role in explaining many different phenomenon. In particular, they turn out to be fundamental when traditional ODEs-
based models fail.

Note that traditional ODEs are only the first approximation to reality while dependence on past is very important in many
situations. For example, in dynamics of disease, the past history plays an important role which is described by �s < t < 0,
where s is the length of the time-delay. Several models with time-delay were analyzed by Hethcote [1] and Cooke [2]. Neeta
[3] has discussed some time-delay epidemic models qualitatively. Lenoid [4] established some oscillation and non-oscilla-
tion conditions for nonlinear equations arising in population dynamics. Baker et al. [5] has discussed in detail that why in
some cases DDEs are more important then ODEs and also provided the numerical way to deal with DDE. To the best of
our knowledge, these DDEs are only handled by numerical techniques [6]. According to Brauer et al. [7], ‘‘analytic solutions,
even for the simplest DDE, are in general hopeless”.

The present paper describes a new analytic approach to solve nonlinear time-delay differential equations. This approach
is based on the homotopy analysis method (HAM) [8–20], which does not require the assumption of small or large physical
parameters. The comparison of the HAM with other perturbation and non-perturbation techniques is discussed in detail by
Liao [11]. In this paper, we give the series solution of a nonlinear time-delay model by means of the homotopy analysis
method. The model with time-delay is given as follows,
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i0ðtÞ ¼ riðtÞ 1� iðt � sÞ
j

� �
; ð1Þ

subject to the initial condition

iðtÞ ¼ a; �s 6 t 6 0; ð2Þ

where r > 0 and j > 0 are given physical parameters and s is the delay-time, the prime denotes the differentiation with re-
spect to t.

When s = 0, the solution can be expressed in a closed form

iðtÞ ¼ j
1þ ðj=a� 1Þ expð�rtÞ ; ð3Þ

which tends to j as t ? +1. When s ? +1, it holds iðt � sÞ ¼ a, and then the original equation becomes

i0ðtÞ ¼ riðtÞ 1� a
j

� �
; ið0Þ ¼ a;

which has the solution

iðtÞ ¼ a exp �r
a
j
� 1

� �
t

h i
; ð4Þ

with the property

iðþ1Þ !
0; when a > j > 0;
a; when a ¼ j;
þ1; when 0 < a < j:

8><
>: ð5Þ

Note that, without the time-delay, i(+1) is only dependent upon j and has nothing to do with the initial value i(0) = a.
However, when the time-delay exists, i(+1) depends not only on j but also on the initial condition. Therefore, the value of
the time-delay s greatly influences the behavior of i(t).

Write i1 = i(+1). In this paper, we consider the case a > j with the time-delay s > 0. So, i1 have two possible values i1 = j
or i1 = 0, dependent upon the value of the time-delay s.

2. HAM approach for time-delay model

2.1. Continuous variation

The HAM is based on continuous variation from an initial trial to the exact solution. In this problem we construct a con-
tinuous mapping i(t) ? /(t,q), where q 2 [0,1] is an embedding parameter, such that as q increases from 0 to 1, /(t,q) varies
from the initial trial i0(t) to the exact solution i(t). Considering the solution (3) for s = 0 and the solution (4) for s ? +1, it is
straightforward that the solution for s > 0 can be generally expressed in the form

iðtÞ ¼
Xþ1
m¼1

ame�mbt : ð6Þ

This provides us the so-called solution expression. According to the solution expression (6) and the initial condition (2), it
is straightforward to choose the initial guess

i0ðtÞ !
a; when � s 6 t < 0;
i1 þ ða� i1Þ expð�btÞ; when t P 0:

�
ð7Þ

where i1 is either 0 or j depending upon the value of s, as discussed earlier. First, we construct the so-called zeroth-order
deformation equation,

ð1� qÞL½/ðt; qÞ � i0ðtÞ� ¼ q�hHðtÞN½/ðt; qÞ�; ð8Þ

subject to the initial condition

/ðt; qÞ ¼ a; �s 6 t 6 0; ð9Þ

where ⁄ – 0 is the so-called convergence-control parameter, H(t) – 0 is a nonzero auxiliary function, L is an auxiliary linear
differential operator at first order, N is a nonlinear operator defined by,

N½/ðt; qÞ� ¼ /0ðt; qÞ � r/ðt; qÞ 1� /ðt � s; qÞ
j

� �
: ð10Þ

To obey the solution expression (6), we choose the auxiliary linear operator
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Lu ¼ u0ðtÞ þ buðtÞ; b > 0; ð11Þ

which has the property

L½C1e�bt� ¼ 0; ð12Þ

for any integral constant C1. When q = 0, the solution of Eqs. (8) and (9) is

/ðt; 0Þ ¼ i0ðtÞ: ð13Þ

When q = 1, since H(t) – 0 and ⁄ – 0, Eqs. (8) and (9) are equivalent to the original Eqs. (1) and (2), so that it holds

/ðt; 1Þ ¼ iðtÞ: ð14Þ

Thus, as q increases from 0 to 1, /(t;q) varies from the initial guess i0(t) to the exact solution i(t) of the original Eqs. (1) and
(2). Then we expand /(t,q) in the Taylor series with respect to q i.e.,

iðtÞ ¼ i0ðtÞ þ
Xþ1
m¼1

imðtÞqm; ð15Þ

where

imðtÞ ¼
1

m!

om/ðt; qÞ
oqm

����
q¼0
: ð16Þ

Note that the above series is dependent upon ⁄,j,b,a and i1. Assuming that all parameters are chosen properly so that the
above series is convergent for q = 1, we have the solution series

iðtÞ ¼ i0ðtÞ þ
Xþ1
m¼1

imðtÞ: ð17Þ

The above expression provides a relationship between i0(t) and the exact solution i(t) by means of the unknown terms
imðtÞ.

2.2. Successive approximations

Differentiating the zeroth-order deformation Eq. (8) m times with respect to the embedding parameter q, then setting
q = 0 and finally dividing by m!, we have the so-called mth-order deformation equation,

L½imðtÞ � vmim�1ðtÞ� ¼ �hHðtÞRmðtÞ; ð18Þ

subject to the initial condition

imðtÞ ¼ 0; �s 6 t 6 0; ð19Þ

where

RmðtÞ ¼ i0m�1ðtÞ � rim�1ðtÞ þ
r
j
Xm�1

k¼0

ikðtÞim�1�kðt � sÞ
" #

; ð20Þ

with the definition

vm ¼
0; m 6 1;
1; m > 1:

�
ð21Þ

The solution of the linear differential Eqs. (18) and (19) is given by

imðtÞ ¼ vmim�1ðtÞ þ �he�bt
Z t

0
ebnHðnÞRmðnÞdn: ð22Þ

Note that we have great freedom to choose the auxiliary function H(t). It is found that the term te�bt appears if we choose
H(t) = 1. This disobeys the solution expression (6). To avoid this, we choose HðtÞ ¼ e�bt .

At the first order of approximation, we have the solution

i1ðtÞ ¼ �h a
r þ b

b

� 	
e�bt � ra2

jb
e�bt � a

r þ b
b

� 	
þ ra2

jb

� �
e�bt ð23Þ

for 0 < t 6 s, and

i1ðtÞ ¼ �h a
r þ b

b

� 	
e�bt � ra2

2jb
e�bs � ra2

2jb
e�bð2t�sÞ þ ra2

jb
� a

r þ b
b

� 	� �
e�bt ð24Þ
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for t P s. At the 2nd-order of approximation, we have

i2ðtÞ ¼ �h2e�bt ar
2b
þ ar2

2b2 �
a2r2

jb2 �
a2r
2jb

þ a3r2

2j2b2

� 	
þ �h2e�2bt �a� 2ar

b
þ 2a2r

jb
� ar2

b2 þ
2a2r2

jb2 �
a3r2

j2b2

� 	

þ �h2e�3bt aþ 3ar
2b
� 3a2r

2jb
þ ar2

2b2 �
a2r2

jb2 þ
a3r2

2j2b2

� 	
ð25Þ

for 0 6 t 6 s,

i2ðtÞ ¼ �h2e�bt ar
b

1
2
þ r

2b
� ar

2j
þ a2r

2j2b
� ar

jb

� 	
� a2r

3jb
ar
jb
� 1� r

b

� 	
e�bs

�
� a2r

2jb
1
3
� ar

4jb

� 	
e�2bs

�

þ �h2e�2bt �aþ a2r
jb
� 2ar

b
� ar2

b2 þ
a2r2

jb2 þ e�bs � a2r
2jb

� a2r2

2jb2

� 	� �

þ �h2e�3bt aþ 3ar
2b
þ ar2

2b2 þ
a3r2

4j2b2 þ
a2r
jb
� a3r2

j2b2 þ
a2r2

jb2

� 	
ebs

� �

þ �h2e�4bt �5a2r
6jb

� a2r2

2jb2

� 	
ebs þ a3r2

3j2b2 �
a2r
3jb

� a2r2

3jb2

� 	
e2bs

� �
þ �h2e�5bt a3r2

8j2b2 e2bs
� 	

; ð26Þ

for s 6 t 6 2s and

i2ðtÞ ¼ �h2e�bt ar
b

1
2
þ r

2b
� ar

2j
þ a2r

2j2b
� ar

jb

� 	
� a2r

3jb
ar
jb
� 1� r

b

� 	
e�bs

�
� a2r

2jb
1
3
� ar

4jb

� 	
e�2bs � e�4bs a3r2

24j2b2

�

þ �h2e�2bt �aþ a2r
jb
� 2ar

b
� ar2

b2 þ
a2r2

jb2 þ e�bs � a2r
2jb

� a2r2

2jb2

� 	� �

þ �h2e�3bt aþ 3ar
2b
þ ar2

2b2 þ
a3r2

2j2b2 þ
a2r
jb
� a3r2

j2b2 þ
a2r2

jb2

� 	
ebs

� �

þ �h2e�4bt �5a2r
6jb

� a2r2

2jb2

� 	
ebs þ � a2r

3jb
� a2r2

3jb2

� 	
e2bs

� �
þ �h2e�5bt a3r2

8j2b2

� 	
e2bs þ e4bs
 �

ð27Þ

for t P 2s.
Obviously, it is difficult to continue this for higher order approximations manually. To get high-order approximations, we

introduce a new function d�ðtÞ defined by

d�ðtÞ ¼
1; when t > 0;
1=2; when t ¼ 0;
0; when t < 0;

8><
>: ð28Þ

which has the following properties:

dðd�ðtÞf ðtÞÞ
dt

¼ d�ðtÞf 0ðtÞ; ð29Þ

and Z t

0
d�ðt � aÞf ðtÞdt ¼ d�ðt � aÞ

Z t

a
f ðtÞdt; ð30ÞZ t

0
d�ð�t þ aÞf ðtÞdt ¼ d�ð�t þ aÞ

Z t

0
f ðtÞdt þ d�ðt � aÞ

Z a

0
f ðtÞdt; ð31Þ

Z t

0
d�ðt � aÞd�ð�t þ bÞf ðtÞdt ¼ d�ðt � aÞd�ð�t þ bÞ

Z t

a
f ðtÞdt þ d�ðt � bÞ

Z b

a
f ðtÞdt: ð32Þ

Besides, according to the definition (28), the function d�ðtÞ has the following properties:

f ðtÞd�ðt þ aÞd�ð�t þ bÞ ¼ 0; if b < �a; ð33Þ
d�ðt þ aÞd�ðt þ bÞ ¼ d�ðt þminfa; bgÞ; ð34Þ
d�ð�t þ aÞd�ð�t þ bÞ ¼ d�ð�t þminfa; bgÞ; ð35Þ
½d�ðt þ aÞ�m ¼ d�ðt þ aÞ; ð36Þ

where f(t) is a piecewise continuous real function and m > 1 is an integer.
Then, the initial guess i0(t) satisfying the initial condition (2) can be expressed in such a uniform formula:

i0ðtÞ ¼ ad�ð�tÞ þ d�ðtÞi�0ðtÞ; ð37Þ
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where i�0ðtÞ is,

i�0ðtÞ ¼ i1 þ ða� i1Þ expð�btÞ; t P 0: ð38Þ

Using such kind of d�ðtÞ function, we can get high-order approximations by means of symbolic computation software such
as Mathematica. It is found that the solution of the time-delay problem is a piece-wise continuous function in the form

imðtÞ ¼

a �s 6 t 6 0;
im;1 0 6 t 6 s;
im;2 s 6 t 6 2s;

..

.

im;ðmþ1Þ ms 6 t:

8>>>>>>><
>>>>>>>:

ð39Þ

3. Result analysis

Eq. (1) has two fixed points at infinity: i(+1) = j and i(+1) = 0. According to (3), in case of s = 0, the solution of Eq. (1)
tends to the constant j. According to (4), in case of s = +1 and a > j > 0, the solution tends to zero as t ? +1. So, for a given
finite value of time-delay s, the value of i1 = i(+1) is dependent upon the time-delay s.

Without loss of generality, we consider here such a case: j = 1/2, r = 2, a = 1 with some different values of time-delay s.
We use this case as an example to show how to get convergent series for given physical values of j,r,a and s, and to inves-
tigate the influence of the time-delay s on the solution.

Note that our series solution (17) contains two auxiliary parameters b and ⁄. For the sake of simplicity, we choose b = 1.
Then, our mth-order approximation contains the auxiliary parameter ⁄, and thus the residual error dmðx; �hÞ of the governing
Eq. (1) is dependent upon not only x but also ⁄. Write

Dm ¼
Z þ1

0
d2

mðx; �hÞdx:

Obviously, Dm is a function of ⁄. For a convergent series solution (17) with a given ⁄, the sequence of

D0;D1;D2;D3; . . .

converges to zero. There exists such a region s of ⁄ that each series solution (17) by means of any a value of ⁄ 2 s is conver-
gent. Such kind of region of ⁄ can be found by plotting the curve Dm versus ⁄, as shown in Fig. 1. Note that, as mentioned
before, the unknown fixed point should be either i1 = j or i1 = 0. We choose i1 = 0 and i1 = j, separately, and then compare
the corresponding curves of D � ⁄ at the same order of approximation. Obviously, for a correct choice of i1, the residual error
D should decrease more quickly. For example, in case of s = 1/10, the residual error D given by the approximations with
i1 = j decreases more quickly than that by i1 = 0, as shown in Fig. 1 and Table 1, so that one can get convergent series solu-

h

Δ

-1.5 -1 -0.5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 1. The curve D � ⁄ in case of j = 1/2, r = 2, a = 1 and s = 1/10 by means of different values of i1. Solid line: 4th-order result for i1 = j; dashed line: 4th-
order result for i1 = 0.
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tion by means of i1 = j and ⁄ = �3/4, as shown in Fig. 2. In this way, we can choose a correct value of i1 and also a proper
value of ⁄ to ensure the convergence of solution series.

Similarly, in case of s = 4, it is found that the residual error decreases more quickly by i1 = 0, as shown in Table 2. And our
analytic approximation given by i1 = 0 and ⁄ = �3/4 agrees well with numerical ones, as shown in Fig. 3. In this way, we can
get convergent series solution for different values of time-delay, as shown in Table 3.

From Table 3, it is obvious that there exists a criterion value of the time-delay, remarked by s*, so that i1 = j when s < s*

and i1 = 0 when s > s*. In case of j = 1/2, r = 2 and a = 1, the criterion time-delay is in the region 0.85 < s* < 0.87, and its more
accurate value should be given by much higher-order approximations. Generally speaking, the criterion time-delay s* is
dependent upon the physical parameters j,r and the initial condition. This indicates that the time-delay s has indeed a great
influence on the global dynamics of the system.

4. Conclusion

The significance and importance of time-delay differential equations have attracted us to solve this problem by means of
the HAM. Mathematically speaking, it is difficult to solve nonlinear time-delay differential equations, especially analytically.
As Brauer et al. [7] has mentioned in his book, ‘‘analytic solutions, even for the simplest DDE, are in general hopeless”. In this
paper, the homotopy analysis method is successfully applied to give a analytic approach to solve nonlinear DDEs by means of
a model in biology as an example. Generally speaking, solutions of time-delay differential equations are piecewise contin-
uous. To overcome this difficulty in symbolic computation, we define a function d*(t) by (28) with the properties (29) to
(36) so as to express these piecewise continuous functions effectively. In this way, one can get high-order approximations
by means of symbolic computation software such as Mathematica, Maple and so on.

To the best of our knowledge, this is the first time that the homotopy analysis method is successfully applied to a non-
linear time-delay differential equation. Different from other analytic techniques, the homotopy analysis method (HAM) pro-
vides us with a simple way to ensure the convergence of the solution series. As shown in this paper, we can always find a
proper value of the convergence-control parameter ⁄ to ensure the convergent series solution, and our analytic results agree
well with numerical ones. This example illustrates that the analytic approach based on the HAM is indeed valid for nonlinear
time-delay differential equations. Besides, this approach has general meanings and can be applied to solve some other types
of nonlinear time-delay differential equations in a similar way.

Table 1
Residual error D for different i1 in case of j = 1/2, r = 2, a = 1 and s = 1/10 by means of ⁄ = �3/4 and b = 1.

Order of approximation i1 = 0 i1 = j

1 0.347 0.048
3 0.323 5.4 � 10�4

5 0.318 2.6 � 10�5

7 0.3176 2.8 � 10�6

t

i(
t)

0 1 2 30.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Comparison of the numerical result with the 8th-order HAM solution of i(t) in case of j = 1/2, r = 2, a = 1 and s = 1/10. Symbols: numerical solution;
solid line: the 8th-order HAM solution by means of b = 1 and ⁄ = �3/4.
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Using a special case as an example, we study the influence of the time-delay s on the global property of the biology model
under investigate. Our calculations indicate that there exists a criterion value s* dependent upon the physical parameters j,r
and a, so that i1 = j when s < s* but i1 = 0 when s > s*. This indicates that the time-delay indeed has a great influence on the
property of the nonlinear dynamic system.
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Table 2
Residual error D for different i1 in case of j = 1/2, r = 2, a = 1 and s = 4 by means of ⁄ = �3/4 and b = 1.

Order of approximation i1 = 0 i1 = j

1 0.031 2.360
3 1.2 � 10�4 2.013
5 7.2 � 10�7 2.009
7 2.4 � 10�7 2.038

t

i(
t)

-4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Fig. 3. Comparison of the numerical result with the 8th-order HAM solution of i(t) in case of j = 1/2, r = 2, a = 1 and s = 4. Symbols: numerical solution; solid
line: the 8th-order HAM solution by means of b = 1 and ⁄ = �3/4.

Table 3
Influence of the time-delay s on i1 in case of j = 1/2, r = 2, a = 1 by means of ⁄ = �3/4 and b = 1.

s i1

0 j
0.1 j
0.5 j
0.7 j
0.8 j
0.85 j
0.87 0
0.9 0
1.0 0
2.0 0
4.0 0
10 0
+1 0
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