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1. Introduction

The distinctive feature of an American put option is its early exercise privilege. The possibility of the early exercise leads to
a moving boundary problem in mathematics. Numerical methods are the most common methods nowadays to seek the
approximation solutions. Some prominent methods include the binomial/trinomial methods [1,2], the Monte Carlo simula-
tion [3], the least squares method [4], the variational inequalities [5,6], and the techniques based on solving partial differential
equations [7-12]. However, since a majority of market practitioners are not familiar with numerical methods, the duplication
of many numerical methods is not an easy job. Therefore, analytical solutions (or approximations) are extremely valuable.

Kim [13] and Carr et al. [14] derived a close-form solution of the American option value. They regarded the optimal exer-
cise boundary as a known function, and hence the option value problem could be solved by means of the regular technique of
the linear partial differential equations. From this point of view, the unknown optimal exercise boundary is the key point of
an American option. In the past two decades, it has lured the interest of numerous market practitioners and mathematicians.

Qualitative analysis by Van Moerbeke [15] shows that the exercise boundary of an American option has a continuous time
derivative except at the maturity, and its value on the expiry date equals the strike price. Blanchet [16] further proved that
the exercise boundary of an American option is Holder continuous with exponent 1/2 in time for all time.

Traditional analytic approaches are based on the perturbation or asymptotic methods, such as Barles [17], Kuske and
Keller [18], Alobaidi and Mallier [19], Evans et al. [20], Zhang and Li [21], Knessl [22]. Chen et al. [11] and Chen and Chadam
[23] made a careful comparison and analysis of some of the above works. They reported that these approximations were
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valid for very short time prior to expiry, usually on the order of days and weeks. Due to the limitation of the traditional meth-
ods, we need some new methods.

In this paper, we employ the homotopy analysis method (HAM) [24-27], which was first proposed and widely applied in
the circle of mechanics [28-34]. Different from the perturbation or asymptotic methods, this method is independent of any
small parameters, therefore we are able to obtain solutions valid for long time. Second, the HAM is a unified method for some
other non-perturbation methods, such as Lyaounv artificial small parameter method, Adomian’s decomposition method and
J-expansion method. It is a more general method. Third, the HAM can be well combined with many other mathematical
method, such as Padé method, series expansion method, integral transform methods and the numerical methods. Zhu
[35] first applied the HAM to the problem of an American put option. He gave a solution in the form of infinite recursive
series involving double integrals. Then he performed Simpson’s rule for the spatial integration the trapezoidal rule for the
temporal integration in each order recursive solution. This is a remarkable contribution to find an analytic formula with
no extra parameters involved. With a 30th-order approximation through numerical integration, Zhu [35] numerically dem-
onstrated the convergence of his results, indicating the correctness of his formula.

The aim of this paper is to revisit the American put option problem by means of the HAM. There are two major differences
between our paper and Zhu [35]. First, we do not use numerical integration in the recursive procedure, instead, we use the
series expand method, therefore, we derive a series approximation solution in the form of power series of /7, where 7 is the
time to expiry. It can meet the needs of market practitioners who are not familiar with numerical methods. Second, we do
not use the Landau transform [36]: x = In[B(7)/S], where B(7) is the optimal exercise boundary and S is the underlying assert
price, to reformulate the moving boundary problem into a fixed boundary problem before it is solve by the HAM. Instead, we
directly solve the moving boundary problem in the frame of the HAM. Therefore, for some other American type option prob-
lems when the Landau transform (or the equivalent transform) cannot be found, our approach is still applicable.

This paper is organized in five sections. In Section 2, the mathematical description of an American put option is presented.
In Section 3, the application of the HAM is described in detail. In Section 4, the validity and accuracy of the explicit formula
for the optimal exercise boundary are shown in comparison with some analytical approximations and numerical benchmark
values. In Section 5, conclusions and discussions are given.

2. Analytic approach
2.1. Mathematic description

Consider an American put option with strike price X that expires at time T. Let V (S, t) denote the value of an American put
option, where S is the price of the underlying asset and t is the time. Let ¢ be the volatility of the underlying, r the risk-free
interest rate. Both are assumed constants for this study for the illustration purpose. At any moment, there exists an optimal
exercise boundary B(t) such that it is optimal to exercise the put option when S is at or below B(t). Hence, when S < B(t) the
put option is of value

V(S,t)=X-S, (1)
where X is the strike price. When S > B(t), V(S, t) satisfies the Black-Scholes equation

%—‘;+%azsz%+r52—‘;—rvzo. (2)
The smooth pasting conditions at the exercise boundary B(t) are

Sligr(lt) V(S,t) =X —B(t), Sligr(}) %(5, t)=-1, (3)
the upper boundary condition is

Slirgc V(s,t) —0. (4)
The terminal condition is

ltlzl;l V(S,t) = max{X - S, 0}, (5)

Usually, the variable T = T — t is introduced. When r > 0, it is know B(T) = X (see [15]), and hence the terminal condition (5)
can be further simplified as

limV(s,7) = 0. (6)

in the range X, = {(S5,7)| B(t1) < S < +o0, 0 < T < T}
Eqgs. (1), (2), (4) and (5) can be solved by regular linear PDE skills. Kim [13] and Carr et al. [14] derived the following for-
mula for the option price

V(S, 1) = Xexp(—rT)N(—d;) + SN(—d;) + /T rXexp(—r¢&)N(—d;,)d¢, (7)
JOo
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where
2
d, :ln(S/X) +(r+o /2)‘[7 d—d - o7
VT
In[S/B(T — &)] + (r + a2 /2)¢

doy = [S/B( 2-]\/2( /)c’ iy =dsy — 01/

and N(x) was a cumulative distribution function for a standardized normal random variable defined by
1 X w2
Nx)=— exp (—— ) dw. 8
® \/Zn[m p( 2> ®)

Hence, according to (7), it is very easy to get the option price V (S, 7), as long as the optimal exercise boundary B(t) is known.
So, the optimal exercise boundary B(7) is the key point of this problem. In this paper, we give an explicit series expression of
the optimal exercise boundary B(t) and then calculate the option price by (7).

It is mathematically convenient to adopt dimensionless variables. When ¢+#0, we introduce the following dimensionless
variables:

, vV , S ;o a? _ 2r
V=g S=5. T=571 7=5. 9)
With all primes dropped from now on, the dimensionless system becomes
PV oV
= — 2 —_ =
LV = 8r +S oE +7S 5 V=0, (10)
( (1),7) =1-B(1), (11)
(B(T) ) (12)
( 7) -0 as S— +oo, (13)
V(s,0) = (14)

3. The analytic approach based on the HAM

The homotopy analysis method (HAM) is based on the concept of continuous variation in algebraic topology. Let us define
these (jointly continuous) maps @(S, t; q)—V(S, T) and A(t; q)—B(t), where the homotopy parameter g € [0, 1], such that, as q
increases from 0 to 1, &(S,t;q) and A(t;q) vary from the initial solutions to the exact solutions given by V(S, 1) and B(7),
respectively. To ensure this, the zero-order deformation equations are constructed:

29S,1,9) =0, (23) (15)

Y[A(1;9), 159 = (16)

&(+00,T;q) — 0, (17)

@(S,0;q) =0, (18)
and

(1—q) [A(7;q) — Bo(7)] = —q {A(7; q) + P[A(7;q),T;9] — 1}, (19)

where the prime represents differentiation with respect to S hereafter, X, is a new domain, and By(7) is an initial guess of
B(7). Clearly, when q = 1, the zero-order deformation Eqgs. (15)-(19) give rise to

oS, 1:1) =V(S,1), A1) =B(1). (20)
When q = 0, we have

A(1;0) = By (7). (21)
We can also let

(S, 7;0) = Vo (S, 1), (22)
where V (S, 7) satisfies

LVo=0, (23) (23)

Vo(Bo,T) = —1, (24)

Vo(400,T) — 0, (25)

Vo(5,0) = 0. (26)

Thus, Vo (S, ) and V(S, 1), Bo(7) and B(t) are homotopic.
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Let us determine the domain X, and initial guess By(7) now. Suppose we define X, = X;. In this case, the problem is still
defined in an unknown domain. Since the main purpose of the deformation equations is to fix the unknown domain, such a
definition of X, is certainly unappropriate. We note that the boundary condition (24) is given on S = By(7), also it is known
that B(t) < B(0) for an American put option, therefore, it is reasonable to use a diminished domain X; =
{(5,7) | Bo(T) < S < +00, 0 < T < Texp} and a straightforward value By(t) = B(0) = 1. Thus the fixed boundary problem
(23)-(26) is well posed.

Expanding &(S,7;q) and A(t;q) in Taylor series with respect to the homotopy parameter g, we obtain

B(S,1:q) = Vol(S,7) + 3 Va(S,7) ', 27)
n=1
A(t:q) = Bo(t) + > Bal1) 4", (28)
n=1
where
Va(S,T) = %%@(s 7,0), By(1) = %%A(r 0). (29)

Also, we expand ®[A(t;q),T;q] and &'[A(t;q),T;q] in Taylor series with respect to q:

PA(7.q).T:q) = Vo(1,T +Z o B ‘Méz :0) aas} (1,7;0), (30)
D'[A(t,q),T;q) =V, +i n': {8 aA(Z 0 ;S} @'(1,7;0). (31)

Assuming that above series are convergent at g = 1, we have

o0

VD) = Va(S0) + Va5 (32)

B(t) = Bo(7) + 2 By (1), (33)
and :

V[B(1),1 +Z[V ) +ful0)], (34)

V'[B(7). 7] = V5(1,7) +Z[V' T) +8a(7)]: (35)

Eqgs. (30), (31), (34) and (35) play the role to transfer the values on the unknown variable to those on the known one. Math-
ematically, we use the Taylor expansion of a composite function. Financially, Eq. (34) can be interpreted to state that the
value of an American option on the optimal exercise boundary can be split into two parts: the at-the-money option value
and the “modifying” value of the price, namely > ,f.. Clearly, the “modifying” value of the price is negative for all time
before the expiry date. Eq. (35) can be interpreted in the same way. The delta for an American option on the optimal exercise
boundary can be split into two parts: the at-the-money option delta and the “modifying” value of the delta. Explicitly, the
“modifying” values of the price and delta at each other, namely f,(7) and g,(t) can be expressed by

Lo | Lot eaoN 19 040N
T (n=1)18g1\oq 8S) ' 2!(n—2)! dg2 \ Hq S
R B (7 A S W7 AN

(n—=1)! og \ 9q 0S n!' \ oq 9S o

(T)_ 1 anfl %ﬁ N ] (r.)an %ﬁ 2+
&l =\ -1y agn T \aq 85) T 2in—2) ag 2 \aq a5

L1 o o400\ 1 (a4 0)

(n—1)!oq \ 9q oS n!'\ oq oS

By means of symbolic computational softwares, such as Mathematica, it is easy to express them explicitly. The first several
fa(7) and g, (1) are

o(1,7;0), (36)

‘ ¥'(1,7;0). (37)
q=0
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fl (‘E) =B V{)(lv T)?
1

f2(t) =By Vi(1,7) + BV, (1,7) +§Bf Vy(1,71),
f3(t) = B3 Vy(1,7) + B, Vi (1,7) + By V5, (1,7)

+ By B, Vy(1,7) +% B2V/(1,7) +% BvYa,1),
(38)
and
81(1) = B1 V5(1,7),
£(1) = B Vy(1.0) + BVI(1.1) + 2B V) (1.0)
g5(t) = B3 Vi(1,7) + B, V) (1,7) + By Vy(1,7)
+B, B, VY1, )+; B2V (17r)+% B v(,1),
(39)

Differentiating the zero-order deformation Eqs. (15)-(19) n times with respect to the homotopy parameter ¢, then setting
q = 0, and finally dividing by n!, we obtain the following high-order deformation equations:

£V, =0, (40)
V;(l,‘[) = _gn(r)v (41)
Va(S,7) = 0 as S — oo, (42)
Va(S,0) =0, (43)
and
- -Vo(1,71), n=1;
B = { =V (171—) 7fn—1 (T), n>1. (44)

Adding the definition fy(7) = 0 and g, (t) = 1, the Eqgs. (23)-(26) is thus included in Eqgs. (40)-(43). Also, the case of n =1 in
Eq. (44) is included in the case n > 1. Note that the differential system (40), (40)-(42) can be solved by Laplace Transform in
2,. Taking the Laplace transform with respect to 7, and with X denoting the Laplace transform of x, we can express the solu-
tions in the Laplace space as

V,(S.p) = /0 " exp(—pT)V,(S. 1) dT = R(S.p) & (p). (45)
and

Ba(p) = ~fa1(p) — K(1,P) &1 (p), (46)

- R 4p+(1+7)°

K(S,p)=— , = 47
S.p)= 5 AP - (47)
When S = 1 the inverse Laplace transforms, K(1,7) and K™ (1, 1) are given by

) ()

K(1,7) = (1 —7p)exp(—y7) N — T)+4/=N|-"—VT|,

(10 = (1= pexp(- (-T2 vE) o 2 (-1

K'(1,7) = —d(1),

1 /+] 1 ,( ')/-‘r] )

K'(1,7 (1) — N( - T,

(10 =Tg700 - o N (-1 Ve
(48)

where N(x) is the cumulative distribution function for a standardized normal random variable, given by (8), N'(x) is its prob-
ability density function, and () is the DiracDelta function.
Thus, the formal solution to the optimal exercise boundary at each order is

Bo(T) = —foa (T /K TN gt dn =1, (49)

and the mth derivative V™ (1, 1) gives
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v = [ KA g oy 0> (50)
0

From (33), the exact solution can be expressed by
B(1) = Bo(T) + B1(T) + Bo(T) + -+ - + Bu(T) + - - - (51)

Note that we use only one assumption here. That is, the series solutions (32) and (33) are convergent. Though we can not
prove their convergence theoretically so far, we can show the convergence in §4 through examples. As long as the series
solutions are convergent, they must be the exact solutions, as proved by Liao [25].

The formal solution (51) is in a recursive form of expression like Zhu [35]. Zhu [35] employed numerical integral method
to approximate each order solutions. In this paper, we use an analytic approximation approach. We note that the square of
the volatility ¢2 is small, therefore the dimensionless variable T = (T — t) 62/2 is small, too. Thus, it is possible to approxi-
mate B(7) in powers of the time about the expiry date T = 0 with the first several terms.

Expanding K(1, 7), the derivatives K™ (1,7) (m = 1,2, ---) and g,(t) in powers of /T about T = 0 to order 7°, and proceed-
ing to the 19th-order solution, we derive the 19th-order o(7®) approximation solution in the dimensional form:

B(7)

2
~ ~ 1-2.019866/7 + (6.12896r + 1.5195202)7 + <713.7479r— —1.81983r0 — 0.3979303>‘L’%

+ (—-12.3587r2 + 16. 8429——070605r0' —0085176>

+ (56.8554r° — 29. 6402— —45. 7453i —4.56807r?a* — 2.304r¢* + 0.11624 )

r4

31. 0928— —74. 9166— —128.206 — + 57.2904r%¢ + 6.8062r*¢> — 5.2708ra° — 1.41270’7>‘c%

+ ( 0. 15721—+47 5953—74 8808912 + 0.60758ra> + 0.296080 ) 7
i

< 219.119r% + 13. 936 + 209. 41 31 4659—+ 29.1287r362 + 43.3385r%¢*
4+9.7450ra5 — 1.99850’8) 4 <749.9243 % _ 88.19% " 529.484% n 195.793% _272.421%¢
~148.624r3 ¢ + 4.9690r%¢° + 36.7671r0” + 3.094209> 7
r9 rS r7 rG
+ <652.402r5 +20.4282 — — 249.753 — — 675.724— + 668.602 —
o o o o
+143.516r*¢% — 262.579r3¢* — 220.4r*¢° + 0.21033r0® + 7.1734am> 7°
r10 T9 r8 r7 l'6
+ (35.0742 L +329.439 . — 265.481 — — 1841.11 —; — 65.3566 — + 445.2241°G + 1147.22r>
o g o o o

+530.035r°0° — 254.169r%¢7 — 94.8303r0° — 1.25670‘”)‘5%

i plo 7
< 1175.8r% — 37. 5988 o +40. 3366 5+ 1357. 33— +955. 274— 2296.]2% —2378.39r° ¢

+136.58610* + 1676.13r°¢° + 346.695r¢® — 71.8689rg"° — 11.5864612>T6 4 (52)

where T =T —t (year).

It is seen clearly that the optimal exercise boundary (52) is Holder continuous with exponent 1/2 in time, as was observed
and proved by Blanchet [16]. It should also be remarked that the reason we can obtain an approximation formula for B(t)
first and then use Eq. (7) to find the option price is because obtaining the approximation formula (52) with the HAM solution
procedure only needs the information of V, (S, t) at S = 1; a feature that can be clearly seen from Eqs. (33) and (44).

4. Validity of the explicit formula

To show the advantages and accuracy of the HAM approximation solution, we first compare it with some previous explicit
approximation solutions. One of the simplest approximation of the optimal exercise boundary is Barles [17]:

@ ~1—0V—=tInt for T < Teyp, >
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in the dimensional form. Kuske and Keller [18] modified Barles’s expression (53) and obtained

B 8mr?
¥~1—0 —rln( 7;’?) for T < Toy. (54)

Evans, Kuske and Keller [20] pointed out an incorrect numerical factor in Kuske and Keller [18]. The above expression is the
corrected one. Knessl [22] presented the following asymptotic formula:

B(r)} <8nr2‘r> 1
In|=~4| =-0/-7l 1 for T < Texp- 55
"] =y (T gy o >

It is found that the perturbation/asymptotic approximations contain the transcendental function /a 7 In(b 7) (where a and b
are parameters), but the approximation of B(7) in series form (52) we have obtained through the HAM does not contain this
term as a result of assuming g, (7) being in powers of /7. Naturally, a correct asymptotic behavior near T = 0, as well as near
r = 0, is not contained in our approximate solution (52). However, this does not mean that our exact solution (32) and (33) in
series form is of the same asymptotic behavior near T = 0, as Eq. (52) is only a direct consequence of assuming B(t) being in
the powers of /7. This does not suggest that the S¢(7) found in Zhu [35] is of the same asymptotic behavior near T = 0 as that
displayed by (52) either, as the integration at each order was carried out in the former rather than assuming the B(7) being in
a particular form of 7. On the other hand, the perturbation/asymptotic methods are based on an expansion of the unknown
functions in small time 7 near t = 0, but they fail to provide good approximation for intermediate t values. Our current
approximation, on the other hand, can work better for much larger 7 values, in comparison with the approximation produced
by the perturbation/asymptotic methods, as we shall demonstrate later. This is mainly because the square-root-logarithm
term clearly has worse properties globally than our square-root term, in terms of approximating the behavior of B(t) for
intermediate t values. Of course, both of them fail to provide correct B(t) behavior for very large t values; the only way
to ensure that B(t) values are correctly calculated everywhere would be to calculate the analytic series solution without
any approximation at all, as did in Zhu [35]. However, that process of calculation would be too time consuming and it is
not the objective of this paper. For illustration purposes, we compare the HAM approximation (52) with the above pertur-
bation solutions and the numerical benchmark solutions. In Example 1 which is the case used by Wu and Kwok [8], Carr and
Faguet [37] and also Zhu [35], we compare the 19th-order o(7%) HAM approximation (52) with the perturbation approxima-
tion and the numerical solutions. We also show the convergence of the HAM through this example for illustration. Example 2
is an option of long term. We use this example to show the validity region of the HAM approximation (52). Also we give a
method to extend the validity region. In Example 3, the option values are computed in comparison with Bunch and Johnson
[38].

Example 1. This is a sample case discussed in Wu and Kwok [8], Carr and Faguet [37] and also Zhu[35]:

# strike price X = $100,

# risk-free interest rate r = 0.1,
& volatility o = 0.3,

& time to expiration T = 1 (year).

Fig. 1 shows a comparison of the 19th-order o(t%) HAM approximation (52) with Kuske and Keller’s [18] approximation
(54), Knessl’s [22] approximation (55), and Zhu [35]. It is seen that the 19th-order HAM approximation agrees well with Zhu
[35], indicating the accuracy of the HAM approximation. Knessl’s singular perturbation solution (55) looks an order higher
than Kuske and Keller’s approximation (54), but it does not seem better than Kuske and Keller’s. Neither of them is valid for
more than a couple of weeks prior to expiry. To show the convergence of the HAM approximation in a clearer way. Table 1
shows the optimal exercise prices on the selected time among different order HAM approximations. From Fig. 1 and Table 1,
we can see that the HAM approximation is indeed convergent. At the expiration time, t = T = 1 (year), the optimal exercise
boundary in Wu and Kwok’s [8] numerical solution is B(T) = $ 76.25, Zhu's [35] is B(T) = $ 76.11 and the 19th-order o(7%)
approximation (52) gives B(T) = $ 76.11, too.

Example 2. The second example (Chen and Chadam et. al [11]) is a long term option with the following characteristics:

& strike price X = $1,

& risk-free interest rate r = 0.08,
& volatility ¢ = 0.4,

& time to expiration T = 3 (year).

The 19th-order o(z%) approximation (52) keeps the term of 7 up to 76. But this may not be enough for the solution of
options with very long term. One way to solve this problem is to keep more terms of 7. Another method is Padé
approximation method [39] which is a more efficient method. Many mathematical tool softwares, such as Mathematica and
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100¢-
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/ Solid: 19th-order o(t®) HAM
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Fig. 1. Optimal exercise boundary for the case in Example 1: X =$100, r=0.1, 6 =03 and T =1 (year). Solid line: the 19th-order o(7%) HAM
approximation (52); Circles: Zhu [35]; Dashed line: Kuske and Keller’s [18] approximation (54) and Knessl’s [22] approximation (55).

Maple, have the standard package of Padé approximation. Regarding /T as one variable, we obtain the [6,6] Padé
approximation:

. 1-0.48376/7 4+ 1.117877 — 0.373007% + 0.357707> — 0.081417>/? + 0.034737°
" 1+0.32418,/T + 0.646357 + 0.2151273/2 + 0.1923072 + 0.069875/2 + 0.0165973

A comparison is made among the 19th-order o(7%) approximation (52), its Padé approximation (56), Kuske and Keller’s
approximation (54), Knessl’s [22] approximation (55) and Chen et al.’s [11] front tracking and extrapolation solution, as
shown in Fig. 2. In the same plot, we also graph the perpetual optimal exercise price, 2Xr/(a? + 2r) = $ 0.5, which the opti-
mal exercise price is suppose to approach asymptotically when the time to expiry becomes infinite. In other words, this is the
exercise price that should never be reached for an American option of finite lifetime. It is seen that 19th-order o(7%) approx-
imation (52) is valid for T — t up to 1 year, while Kuske and Keller’s approximation (54) and Knessl’s [22] approximation (55)
are valid for less than 1 month prior to expiry. Also, it is evident that Padé approximation (56) can indeed enlarge the valid
region of .

B(7)

(56)

Example 3. As mentioned before, it is easy to get the option price by means of (7) as long as the optimal exercise boundary
B(7) is known. Here, we obtain the option prices by substitution of the present 19th-order o(t®) approximation (52) into the
American put option formula (7). To have a more complete assessment concerning its accuracy, a comparison is made with
several numerical solutions. Table 2 (which is from Bunch and Johnson [38]) contains computed prices for a set of 27
American puts. The market parameters are: risk-free interest rate r = 0.0488, stock price S = $40, volatility 0.2 < ¢ < 0.4 and
time to expiry 1 < T < 7 months. The benchmark for accurate put values is the binomial method with 10,000 steps (reported
in Huang et al. [40]) and the second row of each panel of our Table. Rows 1 and 3 contain results form the binomial method
with 150 steps and Huang et al. [40] recursive four-point extrapolation values, respectively. Row 4 contains values using our
HAM approximation (52). Table 3 reports accuracy for the methods from the Table 2 and for the Geske and Johnson [41]. The
root-mean-square error (RMSE) is defined by

Table 1
Comparison of the values of different orders of the approximation of the optimal exercise boundary at time 7 = T — t (month) for X = $100,r = 0.1, ¢ = 0.3 in
Example 1.

T (month) Optimal exercise boundary B(7) ($)
11th-order 13th-order 15th-order 17th-order 19th-order
0 100 100 100 100 100
3 82.65 82.61 82.60 82.61 82.62
6 79.24 79.29 79.34 79.37 79.39
9 77.37 77.44 77.47 77.49 77.49
12 76.12 76.16 76.17 76.15 76.11
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Fig. 2. The optimal exercise boundary for Example 2: X = $1, r = 0.08, ¢ = 0.4 and T = 3 (year). Solid line: the 19th-order o(7%) HAM approximation (52);
Dash-Dotted line: the Padé approximation (56); Circles: Chen et al.’s [11] front tracking and extrapolation solution; Dashed line: Kuske and Keller’s [18]
approximation (54) and Knessl’s [22] approximation (55); Dotted line: perpetual optimal exercise price $0.5.

Table 2

American put values using the 19th-order o(7%) HAM approximation and three numerical methods: the binomial methods with 150 and 10,000 time steps, and
Huang et al.’s [40] recursive four-point extrapolation. The risk-free interest rate is 0.0488, and the stock price is $40. The strike price, volatility and time to
maturity in months are denoted by X, ¢ and T, respectively.

=02 g=03 =04

T=1 T=4 T=17 T=1 T=4 T=17 T=1 T=4 T=7
Panel A: X = 35
Binomial, N = 150 0.0061 0.1995 0.4340 0.0775 0.6993 1.2239 0.2454 1.3505 2.1602
Binomial, N = 10,000 0.0062 0.2004 0.4328 0.0774 0.6975 1.2198 0.2466 1.3460 2.1549
Huang et al. 0.0062 0.2004 0.4337 0.0775 0.6973 1.2233 0.2467 1.3468 2.1603
HAM 0.0062 0.2008 0.4335 0.0776 0.6989 1.2219 0.2470 1.3487 2.1585
Panel B: X = 40
Binomial, N = 150 0.8512 1.5783 1.9886 1.3083 2.4799 3.1665 1.7658 3.3836 4.3480
Binomial, N = 10,000 0.8522 1.5798 1.9904 1.3099 2.4825 3.1696 1.7681 3.3874 4.3526
Huang et al. 0.8543 1.5873 1.9987 1.3116 2.4919 3.1842 1.7694 3.3970 4.3699
HAM 0.8542 1.5822 1.9922 1.3127 2.4872 3.1739 1.7715 3.3938 4.3592
Panel C: X =45
Binomial, N = 150 5.0000 5.0886 5.2677 5.0600 5.7065 6.2448 5.2875 6.5103 7.3897
Binomial, N = 10,000 5.0000 5.0883 5.2670 5.0597 5.7056 6.2436 5.2868 6.5099 7.3830
Huang et al. 5.0020 5.0594 5.2631 5.0604 5.6970 6.2303 5.2853 6.5128 7.3865
HAM 5.0038 5.0912 5.2677 5.0707 5.7141 6.2493 5.2975 6.5209 7.3921
Table 3

Root-mean-square error (RMSE) for a set of 27 American put option prices. The benchmark value is the binomial method with 10,000 time steps. Values for the
finite-difference, the Geske and Johnson [41] are those reported in Tables 1 and 2 of Huang et al. [40] and also Table 3 of Bunch and Johnson [38].

Method RMSE (cent)
Binomial-150 0.264
Huang et al. 0.860
Finite-difference 4.104
Geske and Johnson 0.534
HAM 0.528

where V; and V; are the option values by means of the corresponding method and the benchmark binomial method with
10,000 steps, respectively. Note that the effective digit number of the option prices itself is E-02 cent. The RMSE of the
19th-order o(t®) HAM approximation is 0.534 cent. From Table 3 it is seen that the HAM approximation is as accurate as
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Fig. 3. Option prices at different times to expiry by substitution of the 19th-order o(7®) HAM approximation (52) into the price formula (7). The parameters
are X = $40, r = 0.0488, ¢ = 0.3 and T = 12 months.

the numerical results by Geske and Johnson [41], and better than Huang et al.’s [40] recursive four-point extrapolation solu-
tion. Fig. 3 illustrate the value of an American put option at different times to expiry under the parameters: X = $40,
r =0.0488, 0 = 0.3 and T = 12 months.

5. Conclusions

This paper presents an analytic algorithm (51) and its power series approximation (52) to the optimal exercise boundary
of an American put option. The homotopy analysis method (HAM) is used. We do not use Laudau transform: x = In[B(7)/S]
(or equivalent transform) in the solution procedure. So, for some moving boundary problems where Laudau transform (or
equivalent transforms) is not valid, this approach can still be used. Therefore, this approach is general and can be applied
to solve many other moving boundary problems in finance and engineering.

We compare the 19th-order o(7%) HAM approximation (52) with perturbation/asymptotic solutions and numerical solu-
tions. We show that the perturbation/asymptotic solutions are valid for very short time prior to expiry, usually a couple of
weeks. In comparison, the HAM approximation can largely extend the valid region of the solutions. Thanks to its form of
series expression, the present approximation (52) can also be combined with Padé approximation method. Results show that
Padé approximation method can indeed extend the valid region. Comparison with numerical methods show that the HAM
approximations as accurate as many numerical methods. The RMSE for a set of 27 American put options is less than 1 cent.

Extending our approach could be a fruitful area for future research. First, the problem of an American put option with
continuous dividend could be directly solved. Second, other types of American style derivatives and American options de-
scribed by more complicated models could be investigated by the present approach in a similar way.
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