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Abstract

An analytic approach based on the homotopy analysis method is proposed to solve a nonlinear model of combined convective and
radiative cooling of a spherical body. An explicit series solution is given, which agrees well with the exact or numerical solutions. Our
series solutions indicate that, for the nonlinear model of combined convective and radiative cooling of a spherical body, the temperature
on the surface of the body decays more quickly for larger values of the Biot number Bi and/or the radiation–conduction parameter Nrc.
Different from traditional analytic techniques based on eigenfunctions and eigenvalues for linear problems, our approach is independent
of the concepts of eigenfunctions and eigenvalues, and besides is valid for nonlinear problems in general. This analytic method provides
us with a new way to obtain series solutions of unsteady nonlinear heat conduction problems, which are valid for all dimensionless times
0 6 s < +1.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Transient heat conduction in a solid with combined
convective and radiative cooling on the surfaces has
received relatively little attention in the literature despite
its relevance in various technological applications such as
aerothermodynamic heating of spaceships and satellites,
nuclear reactor thermohydraulics and glass manufacturing
[1–3].

Haji-Sheikh and Sparrow [4] used the Monte Carlo tech-
nique to obtain solutions for a plate subjected to simulta-
neous boundary convection and radiation. Crosbie and
Viskanta [5] analysed transient cooling and heating of a
plate by combined convection and radiation. The transient
heat conduction equation and the boundary conditions are
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transformed into a nonlinear Volterra integral equation of
the second kind for the surface temperature. Davies [6]
applied the heat balance integral technique to obtain an
approximate solution for the general conditions of a plate
in a non-zero temperature environment. Sundén [7] pre-
sented numerical solutions based on the finite difference
method of the thermal response of a composite slab sub-
jected to a time-varying incident heat flux on one side
and combined convective and radiative cooling on the
other side. Sundén [8] applied the same technique to assess
the thermal response of a circular cylindrical shell due to a
time-varying incident surface heat flux while cooled by
combined convection and radiation. Parang et al. [2] solved
the problem of inward solidification of a liquid in cylindri-
cal and spherical geometries due to combined convective
and radiative cooling by the regular perturbation method.

The special limiting case of transient radiative cooling
of a spherical body has been analyzed recently by
using improved lumped-differential formulations obtained
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through two-point Hermite approximations for integrals
[9–11]. The same approximate analytic approach has been
applied in various transient heat conduction problems sub-
jected to convective boundary conditions [12–14]. An expli-
cit series solution is given here for the first time (to the best
of our knowledge) for the combined convective and radia-
tive cooling, which is valid for all dimensionless times.

2. Basic equations

Consider transient combined convective and radiative
cooling of a spherical body of radius R, initially at a
uniform temperature Ti. At t = 0, the spherical body is
suddenly exposed to an environment of a constant fluid
temperature Tf and a constant radiation sink temperature
Ts. It is assumed that the spherical body is homogeneous,
isotropic and opaque. The thermal conductivity k is
temperature-dependent, while the density q and specific
heat cp are assumed to be constant.

The mathematical formulation of the problem is given
by

qcp
oT
ot
¼ 1

r2

o

or
r2kðT Þ oT

or

� �
; in r < R; for t > 0; ð1aÞ

with initial and boundary conditions taken as

T ðr; 0Þ ¼ T i; in r 6 R; at t ¼ 0; ð1bÞ

� kðT Þ oT
or
¼ hðT � T fÞ þ �rðT 4 � T 4

s Þ; at r ¼ R;

for t > 0; ð1cÞ
oT
or
¼ 0; at r ¼ 0; for t > 0; ð1dÞ

where T denotes the temperature, t the time, r the spatial
coordinate, h the convective heat transfer coefficient, �
the surface emissivity, and r the Stefan–Boltzmann con-
stant, respectively.

It is convenient to introduce the adiabatic surface tem-
perature Ta, defined by

hðT a � T fÞ þ �rðT 4
a � T 4

s Þ ¼ 0; ð2Þ

which gives

hT f þ �rT 4
s ¼ hT a þ �rT 4

a.

Substituting it into (1c), the corresponding boundary con-
dition can be rewritten as

�kðT ÞoT
or
¼ hðT �T aÞþ �rðT 4�T 4

aÞ; at r¼R; for t> 0.

ð3Þ

The above mathematical formulations can now be rewrit-
ten in dimensionless form as

oh
os
¼ 1

g2

o

og
kðhÞg2 oh

og

� �
; in g < 1; for s > 0; ð4aÞ
subject to the initial and boundary conditions

hðg; 0Þ ¼ 1; in g 6 1; at s ¼ 0; ð4bÞ

� kðhÞ oh
og
¼ Biðh� haÞ þ N rcðh4 � h4

aÞ; at g ¼ 1;

for s > 0; ð4cÞ
oh
og
¼ 0; at g ¼ 0; for s > 0; ð4dÞ

where the dimensionless parameters are defined by

h ¼ T
T i
; g ¼ r

R
; s ¼ a0t

R2
; Bi ¼ hR

k0

;

N rc ¼
�rRT 3

i

k0

; a0 ¼
k0

qcp
; k ¼ k

k0

;

in which k0 is a reference thermal conductivity and a0 is a
reference thermal diffusivity.

Without loss of generality, we consider the case in which
the thermal conductivity varies linearly with the temper-
ature, given by

k ¼ k0ð1þ bT Þ. ð5Þ
The dimensionless thermal conductivity can be written as

kðhÞ ¼ 1þ bh; ð6Þ
where b = bTi/k0. The mathematical model for this case is
as follows:

oh
os
¼ 1

g2

o

og
ð1þ bhÞg2 oh

og

� �
; in g < 1; for s > 0; ð7aÞ

subject to the initial and boundary conditions:

hðg; 0Þ ¼ 1; in g 6 1; at s ¼ 0; ð7bÞ

� ð1þ bhÞ oh
og
¼ Biðh� haÞ þ N rcðh4 � h4

aÞ; at g ¼ 1;

for s > 0; ð7cÞ
oh
og
¼ 0; at g ¼ 0; for s > 0. ð7dÞ

It can be seen that the problem is governed by four dimension-
less parameters, ha, b, Bi and Nrc. The radiation–conduction
parameter, Nrc, is conceptually analog to the Biot number,
Bi, which is the governing parameter for convective cooling.

When b = 0 and Nrc = 0, the above equations become
linear and have the exact solution expressed by a series of
eigenfunctions and eigenvalues, i.e.

hðg; nÞ ¼
Xþ1
m¼1

am
sinðkmgÞ
ðkmgÞ expð�k2

mnÞ; ð8Þ

where

am ¼
2ðsin km � km cos kmÞ
ðkm � sin km cos kmÞ

and the eigenvalue km satisfies the algebraic equation

cos xþ ðBi� 1Þ sin x
x
¼ 0. ð9Þ
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However, the concept of eigenfunctions and eigenvalues
is inherently related to linear problems. When b 5 0 and/
or Nrc 5 0, the above equations are fully nonlinear, and
thus eigenfunctions and eigenvalues have no meanings at
all. Perturbation techniques can be applied to the nonlinear
cases by regarding s as a small variable. However, such
kind of solutions are often only valid for small time s. To
the best of our knowledge, no one has reported any ana-
lytic solution of the considered problem, which would be
valid for any dimensionless times 0 6 s < +1.

Recently, a kind of analytic method, namely the homo-
topy analysis method (HAM) [15], was developed to solve
highly nonlinear problems. Homotopy [16] is a basic con-
cept in topology [17], and some numerical techniques such
as the continuation method [18] and the homotopy contin-
uation method [19] were developed. Different from pertur-
bation techniques [20], the homotopy analysis method does
not depend upon any small or large parameters and thus is
valid for most nonlinear problems in science and engineer-
ing. Besides, it logically embraces other non-perturbation
techniques such as Lyapunov’s small parameter method
[21], the d-expansion method [22], and Adomian’s decom-
position method [23], as proved by Liao in his book [15].
The homotopy analysis method has been successfully
applied to many nonlinear problems [24–37]. In this paper,
an analytic approach based on the homotopy analysis
method is proposed to solve the nonlinear model of com-
bined convective and radiative cooling of a spherical body,
and an explicit series solution valid for all dimensionless
time is given.

3. Series solutions given by the HAM

By means of Williams and Rhyne’s [38] similarity
transformation

n ¼ 1� expð�asÞ; ð10Þ
where a > 0 is a constant to be chosen later, the original
equation (7a) becomes

að1� nÞhn ¼ hgg þ
2

g

� �
hg þ b hhgg þ

2

g

� �
hhg þ h2

g

� �
;

ð11aÞ

subject to the initial condition

h ¼ 1; in g < 1; at n ¼ 0 ð11bÞ

and the boundary conditions

hg ¼ 0; at g ¼ 0; for 0 < n 6 1; ð11cÞ
� ð1þ bhÞhg ¼ Bi h� hað Þ þ N rcðh4 � h4

aÞ; at g ¼ 1;

for 0 < n 6 1; ð11dÞ

where the subscript denotes the derivative with respect to n
or g.

The solution h(n,g) of Eqs. (11a)–(11d) can be expressed
by a series in the form
hðn; gÞ ¼
Xþ1
m¼1

am;0n
m þ

Xþ1
m¼1

Xþ1
n¼2

am;nn
mgn; ð12Þ

where am,n is a coefficient to be determined later. The above
expression automatically satisfies the boundary condition
(11c). It is rather general and our approximations should
obey it. This expression is so important in the frame of
the homotopy analysis method that it is regarded as a rule,
called the Rule of Solution Expression for h(n,g).

Physically, it is obvious that h = 1 when n = 0, corre-
sponding to t = 0; and h = ha when n = 1, corresponding
to t! +1. These results can be also obtained directly
from Eqs. (11a)–(11d). Therefore, under the Rule of Solu-

tion Expression (12) and from the initial condition (11b)
and the boundary condition (11c), it is natural for us to
choose an initial approximation

h0 ¼ 1þ ðha � 1Þnþ cnð1� nÞg2; ð13Þ
where c is a constant to be chosen later. Under the Rule of

Solution Expression (12) and from the governing Eq. (11a),
it is natural to choose the auxiliary linear operator

L½h� ¼ o
2h

og2
þ 2

g

� �
oh
og
; ð14Þ

which satisfies

L C1 þ
C2

g

� �
¼ 0. ð15Þ

From Eq. (11d), we define at g = 1 an auxiliary linear
operator

Lb½h� ¼ hg þ Bih; at g ¼ 1; for 0 < n 6 1. ð16Þ
From Eq. (11a), we define a non-linear operator

A½Hðg; n; qÞ�

¼ o2Hðg; n; qÞ
og2

þ 2

g

� �
oHðg; n; qÞ

og
� að1� nÞ oHðg; n; qÞ

on

þ b Hðg; n; qÞ o
2Hðg; n; qÞ

og2
þ 2

g

� �
Hðg; n; qÞ oHðg; n; qÞ

og

� �

þ b
oHðg; n; qÞ

og

� �2

; ð17Þ

where q 2 [0,1] is an embedding parameter and H(g,n;q) is
a kind of mapping of h(n;g). From (11d), we define a non-
linear operator at the boundary g = 1, i.e.

B½Hðg; n; qÞ�

¼ ½1þ bHðg; n; qÞ� oHðg; n; qÞ
og

þ Bi½Hðg; n; qÞ � ha�

þ N rc½H4ðg; n; qÞ � h4
a�; at g ¼ 1. ð18Þ

Then, using the above definitions, we construct the
so-called zeroth-order deformation equation

ð1� qÞL Hðn; g; qÞ � h0ðg; nÞ½ �
¼ q�hHðg; nÞA½Hðg; n; qÞ�; q 2 ½0; 1�; ð19aÞ
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subject to the initial condition

H ¼ 1; at n ¼ 0; for g < 1 and q 2 ½0; 1� ð19bÞ
and boundary conditions

Hg ¼ 0; at g ¼ 0; ð19cÞ
ð1� qÞLb½H� h0� ¼ q�hbH bðnÞB½Hðg; n; qÞ�; at g ¼ 1;

ð19dÞ

where q 2 [0,1] is an embedding parameter, �h and �hb are
auxiliary non-zero parameters, H(g,n) and Hb(n) are auxil-
iary functions, respectively. Obviously, when q = 0, the sys-
tem of the above equations has the solution

Hðg; n; 0Þ ¼ h0ðg; nÞ. ð20Þ
When q = 1, it is equivalent to the system of the original
equations (11a)–(11d), provided

Hðg; n; 1Þ ¼ hðg; nÞ. ð21Þ
Thus, as the embedding parameter q increases from 0 to

1, the mapping H(g,n;q) varies from the known initial
approximation h0(g,n) to the unknown solution h(g,n).

Expanding H(g,n;q) in Taylor series with respect to the
embedding parameter q, we have

Hðg; n; qÞ ¼ Hðg; n; 0Þ þ
Xþ1
m¼1

hmðg; nÞqm; ð22Þ

where

hmðg; nÞ ¼
1

m!

o
mHðg; n; qÞ

oqm

����
q¼0

.

Obviously, it is important to ensure that the above series is
convergent at q = 1. Fortunately, there exist the two auxil-
iary parameters �h and �hb, which provide us with a simple
way to control and adjust the convergence of the series
solution, as pointed out by Liao [15]. Assume that the aux-
iliary functions H(g,n) and Hb(n), and the two auxiliary
parameters �h and �hb are properly chosen so that the series
(22) is convergent at q = 1. Then, using (20) and (21), we
have the solution series

hðg; nÞ ¼ h0ðg; nÞ þ
Xþ1
m¼1

hmðg; nÞ. ð23Þ

Note that the term hm(g,n) in the above series is
unknown at present. To deduce the governing equation
for hm(g,n) and the corresponding initial and boundary
conditions, we first differentiate the zeroth-order deforma-
tion equations (19a)–(19d) m times with respect to the
embedding parameter q, then divide by m!, and finally set
q = 0. In this way, we have the so-called high-order defor-
mation equation

L hmðg; nÞ � vmhm�1ðg; nÞ½ � ¼ �hHðg; nÞRmðg; nÞ; ð24aÞ
subject to the initial condition

hmðg; nÞ ¼ 0; at n ¼ 0; for g < 1 ð24bÞ
and the boundary conditions

ohm

og
¼ 0; at g ¼ 0; for 0 < n 6 1; ð24cÞ

Lb½hm � vmhm�1� ¼ �hbH bðnÞGmðnÞ; at g ¼ 1;

for 0 < n 6 1; ð24dÞ

where

vm ¼
0; m 6 1;

1; m > 1

�
ð24eÞ

and

Rmðg;nÞ¼
o2hm�1

og2
þ 2

g

� �
ohm�1

og
�að1�nÞohm�1

on

þb
Xm�1

n¼0

hn
o2hm�1�n

og2
þ 2

g

� �
hn

ohm�1�n

og
þohn

og
ohm�1�n

og

� �
;

ð24fÞ

GmðnÞ¼
ohm�1

og
þBihm�1�ð1�vmÞðBihaþN rch

4
aÞ

þ
Xm�1

n¼0

bhn
ohm�1�n

og
þN rcDnðnÞDm�1�nðnÞ

� �
; at g¼ 1;

ð24gÞ

in which

DnðnÞ ¼
Xn

j¼0

hjð1; nÞhn�jð1; nÞ.

Note that, substituting (22) into the zero-order deforma-
tion equations (19a)–(19d), and equating the coefficients
of the like powers of q, we can get exactly the same equa-
tions as above.

To satisfy the initial condition (24b), we choose the fol-
lowing auxiliary functions:

Hðg; nÞ ¼ H bðnÞ ¼ n. ð25Þ

Then, it is easy to solve the system of the above linear high-
order deformation equations. Let h�mðg; nÞ denote a special
solution of Eqs. (24a) and (24b). The corresponding gen-
eral solution reads

hmðg; nÞ ¼ h�mðg; nÞ þ C1 þ
C2

g
; ð26Þ

where C1 and C2 are integral constants. To satisfy the
boundary condition (24c), it holds

C2 ¼ 0.

The integral constant C1 is determined by the boundary
condition (24d).

It is found that hm can be expressed by

hmðg; nÞ ¼
Xmþ1

n¼0

bm;nðnÞg2n; ð27Þ

where bm,n(n) are dependent upon n. Substituting it into the
high-order deformation equations (24a)–(24d) and equat-
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ing the coefficients of the same power of g, we deduce the
following recurrence formulas:

bm;0ðnÞ ¼ rmðnÞ þ vmbm�1;0ðnÞ; ð28aÞ

bm;mþ1ðnÞ ¼
�hnSm;mðnÞ

ð2mþ 2Þð2mþ 3Þ ; ð28bÞ

bm;nðnÞ ¼
�hnSm;n�1ðnÞ
2nð2nþ 1Þ þ vmbm�1;nðnÞ; 1 6 n 6 m; ð28cÞ

where

Sm;nðnÞ¼ ð2nþ2Þð2nþ3Þvmþ1�nbm�1;nþ1ðnÞ�að1�nÞb0m�1;nðnÞ
þb½Am;nðnÞþvnþ1Bm;nðnÞ�; ð28dÞ

Am;nðnÞ¼
Xm�1

n¼0

Xminfm�n;kþ1g

j¼maxf1;k�ng
2jð2jþ1Þbn;kþ1�jðnÞbm�1�n;jðnÞ;

ð28eÞ

Bm;nðnÞ¼
Xm�1

n¼0

Xminfm�n;kg

j¼maxf1;k�ng
4jðkþ1� jÞbn;kþ1�jðnÞbm�1�n;jðnÞ;

ð28fÞ

for 0 6 n 6 m, and

rmðnÞ ¼
n
Bi

� �
�hbGmðnÞ � �h

Xmþ1

n¼1

1þ Bi
2n

� �
Sm;n�1ðnÞ
ð2nþ 1Þ

" #
; ð28gÞ

GmðnÞ ¼ lm�1ðnÞ þ Bidm�1ðnÞ � ð1� vmÞðBiha þ N rch
4
aÞ

þ
Xm�1

n¼0

½bdnðnÞlm�1�nðnÞ þ N rcDnðnÞDm�1�nðnÞ�; ð28hÞ

dmðnÞ ¼
Xmþ1

n¼0

bm;nðnÞ; ð28iÞ

lmðnÞ ¼
Xmþ1

n¼1

ð2nÞbm;nðnÞ; ð28jÞ

DmðnÞ ¼
Xm

n¼0

dnðnÞdm�nðnÞ. ð28kÞ

The first two coefficients are given by the initial approxima-
tion (13), i.e.

b0;0ðnÞ ¼ 1þ ðha � 1Þn; b0;1ðnÞ ¼ cnð1� nÞ. ð29Þ

Thus, using the above recurrence formulas and the first two
coefficients (29), we can obtain all coefficients bm,n(n) of the
series solution, one by one. So, the above recurrence for-
mulas in fact provide us an explicit expression of the series
Table 1
Values of �h, �hb, a and c for different cases

b Nrc Bi ha a c �h �hb

0 0 1 0 1 �4/5 �1/3 �1/3
1 0 1/2 0 17/20 �2/5 �1/3 �1/3
1 0 1 0 13/10 �7/10 �1/3 �1/3
1 0 2 0 2 �6/5 �1/3 �1/3
1/2 0 1 0 6/5 �4/5 �1/3 �1/3
2 0 1 0 4/5 �1/2 �1/3 �1/3
1 1/4 1/2 1/2 6/5 �1/4 �1/5 �1/5
1 1/2 1/2 1/2 13/10 �3/10 �1/5 �1/5
solution of the nonlinear model of combined convective
and radiative cooling of a spherical body.

4. Result analysis

Note that, right now, there are still four parameters a, c,
�h and �hb that are unknown. The parameter c is determined
by the minimum value of the square residual error of the
guess approximation h0(g,n) for the boundary condition
at g = 1, integrated over the whole region n 2 [0, 1], i.e.

o

oc

Z 1

0

ð1þ bh0Þ
oh0

og
þ Biðh0 � haÞ þ N rcðh4

0 � h4
aÞ

� �2

dn ¼ 0.

Then, the value of a is determined by the minimum of the
square residual error of the guess approximation h0(g,n)
for the governing equation, integrated over the whole
region n 2 [0,1] and x 2 [0, 1], i.e.

o

oa

Z 1

0

Z 1

0

að1� nÞhn �
1

g2

o

og
ð1þ bh0Þg2 oh0

og

� �� �2

dndg

¼ 0.

For example, we have approximately c = �7/10, a = 13/10
when b = 1, Bi = 1, Nrc = 0 and ha = 0. The values of a and
c for different cases are listed in Table 1.

It is important to ensure that the solution series (23)
converges. Fortunately, we have freedom to choose the
values of the auxiliary parameters �h and �hb. These two
parameters provide us with a simple way to adjust and con-
trol the convergence region and rate of the solution series,
as mentioned by Liao [15]. Let �h and �hb be unknown vari-
able. Then, the square residual errors of the high-order
approximation for the governing equation and the bound-
ary condition are functions of �h and �hb. By plotting the
curves of square residual errors versus �h and �hb, it is
straightforward to choose proper values of �h and �hb so as
to ensure that the solution series converges, as suggested
by Liao [15]. It is found that �h and �hb must be negative.
Besides, the solution series diverges if the absolute values
of �h and �hb are too large. On the other hand, the solution
series converges rather slowly, if the absolute values of �h
and �hb are too small. When the solution series converges
slowly or diverges, the so-called homotopy-Padé technique
[15] can be employed to accelerate the convergence or to
gain a convergent solution.

When b = 0 and Nrc = 0, our HAM solution agrees well
with the exact solution (8), as shown in Figs. 1 and 2 for the
spatial and temporal distributions of temperature on the
surface of the body, respectively. Note that, the 30th-order
HAM approximation agrees with the exact solution (8) for
dimensionless time 0.35 6 s < +1. For small s, the series
solution converges slowly, and thus the homotopy-Padé
technique is applied to accelerate the convergence rate.
Note that the [15, 15] homotopy-Padé approximation
agrees well with the exact solution (8). This verifies the
validity of the homotopy analysis method for the unsteady
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Fig. 1. Comparison of the exact solution (8) with the analytic approx-
imation when Bi = 1, b = 0, Nrc = 0, ha = 0 by means of c = �4/5, a = 1,
�h = �hb = �1/3 at the dimensionless time s = 1/10, 1/5, 7/20, 1/2, 1. Solid
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Fig. 2. The 30th-order HAM approximations of h at the boundary g = 1
when Bi = 1, b = 0, Nrc = 0, ha = 0 by means of c = �4/5, a = 1,
�h = �hb = �1/3. Solid line: exact solution (8); dash-dotted line: 30th-order
HAM approximation; symbols: [15,15] homotopy-Padé approximation.
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solution.

2442 S. Liao et al. / International Journal of Heat and Mass Transfer 49 (2006) 2437–2445
heat transfer problem under consideration. Different from
traditional methods for linear problems, our analytic
approach does not use the concept of eigenvalues and
eigenfunctions at all, and besides is valid for nonlinear
problems, as shown below.

The spatial distributions of temperature in case b = 1
and Bi = 0.5, 1 and 2 are as shown in Figs. 3–5, respec-
tively. Similarly, our 30th-order approximation agrees well
with the numerical solutions when 0.35 6 s < +1, and the
homotopy-Padé technique is applied to accelerate the con-
vergence rate for small time. The temporal variations of the
temperature on the surface of the body are as shown in
Fig. 6, which indicates that the temperature on the surface
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decays more quickly for large values of the Biot number Bi.
For the cases of combined convective and radiative cool-
ing, for instance Nrc = 1/4 or Nrc = 1/2 with b = 1,
Bi = 1/2, ha = 1/2, our series solutions also give accurate
results, as shown in Figs. 7 and 8 for the spatial variation
of the temperature. The corresponding temporal variations
on the surface of the body are as shown in Fig. 9, which
indicates that the temperature on the surface decays more
quickly for larger value of the radiation–conduction
parameter Nrc. All of these results verify the validity of
the homotopy analysis method for the unsteady nonlinear
heat transfer problems.
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5. Conclusions and discussions

A new analytic approach based on the homotopy anal-
ysis method is proposed to solve a nonlinear model of com-
bined convective and radiative cooling of a spherical body.
An explicit series solution is given, which agrees well with
the exact (when possible) or numerical solutions. Different
from traditional analytic techniques, our approach is inde-
pendent of the concept of eigenfunctions and eigenvalues,
and besides is valid for nonlinear problems in general. Note
that the initial condition is satisfied simply by means of the
so-called auxiliary function. This analytic approach pro-
vides us with a new way to obtain explicit series solutions
of unsteady nonlinear heat transfer problems, which are
valid for all dimensionless times 0 6 s < +1.

Our series solution gives accurate spatial and temporal
variations of the temperature. They show that, for the
nonlinear model of combined convective and radiative
cooling of a spherical body, the temperature on the surface
of the body decays more quickly for large values of the Biot
number Bi and/or the radiation–conduction parameter
Nrc.

Note that it is always fine to give an explicit analytic
solution of a nonlinear problem, even if one can apply
numerical techniques to solve it. Besides, nonlinear prob-
lems are rather complicated, and it is a great challenge to
solve some of them even by means of numerical methods,
as shown by Liao [39]. Thus, it is valuable to develop
new, more powerful analytic tools for strongly nonlinear
problems. The current work might provide a new approach
for solving nonlinear partial differential equations in
general.
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