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Abstract

In scientific computing, it is time-consuming to calculate an inverse operator
A −1 of a differential equation A ϕ = f , especially when A is a highly nonlin-
ear operator. In this paper, based on the homotopy analysis method (HAM),
a new approach, namely the method of directly defining inverse mapping
(MDDiM), is proposed to gain analytic approximations of nonlinear differen-
tial equations. In other words, one can solve a nonlinear differential equation
by means of directly defining an inverse mapping J . Here, the inverse map-
ping J is even unnecessary to be explicitly expressed in a differential form,
since “mapping” is more general concept than “differential operator”. To
guide how to directly define inverse mapping J , some rules are provided.
Besides, a convergence theorem is proved, which guarantees that a conver-
gent series solution given by the MDDiM must be a solution of problems
under consideration. In addition, three nonlinear differential equations are
used as examples to illustrate the validity and potential of the MDDiM, and
especially the great freedom and large flexibility of directly defining inverse
mappings for various types of nonlinear problems. The method of directly
defining inverse mapping (MDDiM) might open a completely new, more gen-
eral way to solve nonlinear problems in science and engineering, which is
fundamentally different from traditional methods.
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1. Motivation

For a differential equation A ϕ = f , where A is a differential operator
and f is a known function, one can quickly gain its common solution u =
A −1f , when the inverse operator A −1 is known,or if it is easy to gain.
Unfortunately, lots of CPU times (i.e. a large amount of money) are often
consumed to calculate inverse operator A −1 in general.

Can we directly define an inverse mapping for some nonlinear differential
equations to gain its convergent series solution? If there exists such kind
of possibility, lots of CPU time (and money) can be saved. This is the
motivation of this work.

Traditionally, perturbation techniques [1] are widely used to gain analytic
approximations of a nonlinear differential equation A ϕ = f . If there exists a
small physical parameter ε, and besides if the nonlinear operator A contains
a linear ones, i.e. A = L + N , one can express

ϕ = ϕ0 + ϕ1ε+ ϕ2ε
2 + · · ·

and transfer the original nonlinear equation A ϕ = f into an infinite number
of linear sub-problms

L [ϕ0] = f, L [ϕm] = Rm(ϕ0, ϕ1, · · · , ϕm−1), m = 1, 2, 3, · · · ,

where Rm is dependent upon the known terms ϕ0, ϕ1, · · · , ϕm−1 and thus is
known. Note that these linear sub-problems have a close relationship with
the original equation: they use the same linear operator L . In applied
mathematics, there exist many methods that transfer a nonlinear problem
into a series of linear sub-problems. However, traditionally, these linear sub-
problems often have rather close relationship with the original ones, which
are often difficult to solve, because it is generally time-consuming to obtain
an inverse operator even for a linear equation. However, sometimes, the lin-
ear part does not contain the highest order of derivatives so that the linear
sub-problems become “singular” since there are more boundary/initial con-
ditions. It is even worse, when A does not contain any linear parts at all!
This is mainly because perturbation techniques and other traditional ana-
lytic approximation methods can not provide freedom to choose the related
linear operators, say, equation-types, of linear sub-problems.
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Fortunately, one has such kind of freedom in the frame of the Homo-
topy Analysis Method (HAM) [2–5], an analytic approximation technique
for highly nonlinear problems. Based on homotopy, a basic concept in topol-
ogy to describe continuous variation, the HAM transfers a nonlinear equa-
tion into an infinite number of linear sub-problems. However, compared to
perturbation techniques and other traditional methods, the HAM has some
advantages. First of all, the HAM can transfer a nonlinear problem into
an infinite number of linear sub-problems without any small/large physical
parameters. In other words, the HAM works even if there do not exist any
small/large physical parameters! Secondly, the HAM provides us great free-
dom to choose the equation-type of the linear sub-problems, i.e. the freedom
to choose an auxiliary linear operator L for linear sub-problems, even if the
original nonlinear operator A does not contain any linear parts, since we have
great freedom in the frame of the HAM to construct different homotopies (or
variations). Especially, unlike perturbation techniques and other analytic
methods, the HAM provides us a convenient way to guarantee the conver-
gence of solution series by means of introducing the so-called “convergence-
control parameter” into the solution series. With these advantages, the HAM
has been widely applied to solve nonlinear problems in lots of fields [3–13].
For example, the HAM was successfully applied to give, for the first time,
the theoretical prediction of the so-called steady-state resonant waves (with
time-independent spectrum) in deep and finite depth of water[14, 15], which
was currently confirmed by the physical experiments [16]. This illustrates
the potential and novelty of the HAM.

Here, it should be emphasized that the HAM provides us great freedom
to choose the equation-type and auxiliary linear operator L of the linear
sub-problems. Such kind of freedom is so large that, in the frame of the
HAM, a 2nd-order Gelfand equation can be solved very easily by means of
transferring it into an infinite number of 4th-order (two-dimensional) or 6th-
order (three-dimensional) linear differential equations, and the convergent
series solutions were obtained with good agreement to numerical ones, as il-
lustrated by Liao and Tan [17]. Note that it was traditionally believed that a
2nd-order differential equation could be replaced only by an infinite number
of linear differential equations at the same order, if perturbation techniques
[1], Adomian Decomposition Method [18] and other traditional methods are
used. So, Liao and Tan’s approach [17] is difficult to understand from the
traditional viewpoints, although it works quite well in practice. However,
this simple example in [17] reveals something novel and unusual: the HAM
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can provide us freedom to directly define the auxiliary linear operator L of
linear sub-problems. Obviously, if we can transfer a nonlinear equation into
an infinite number of linear sub-problems whose inverse linear operators are
known or directly defined , it becomes straight-forward to solve the original
nonlinear problem. This is indeed true: in this paper, we generalize the ap-
proach in [17] and propose the “method of directly defining inverse operator”
(MDDiM) in the frame of the HAM.

Can we solve a nonlinear differential equation by means of directly defining
an inverse operator? This is an open question up to now, to the best of our
knowledge. A positive answer is given in the frame of the HAM [2–5] in this
paper. The paper is organized as follows. In § 2, the method of directly
defining inverse mapping (MDDiM) and a theorem of convergence are briefly
described. In § 3, we give the detailed derivation of the MDDiM and prove
the theorem of convergence mentioned in § 2. In § 4, three examples are
used to illustrate how to apply the MDDiM to solve nonlinear differential
equations. Some discussions and concluding remarks are given in § 5.

2. Method of directly defining inverse mapping (MDDiM)

First of all, we briefly describe the basic ideas of the method of directly
defining inverse mapping (MDDiM).

Let us consider a nth-order nonlinear differential equation

N [u(x)] = 0, x ∈ Ω, (1)

subject to the µ linear boundary conditions

Bi[u] = βi, at x = αi, i = 1, 2, 3, · · · , µ, (2)

where u(x) is a dependent function, x is an independent-variable, Ω is an
interval of x, N denotes a nonlinear operator, Bi is a linear operator, 0 <
µ ≤ n are positive integers, αi ∈ Ω and βi (1 ≤ i ≤ µ) are constants,
respectively. Note that n = µ for linear problems, but this is unnecessary for
nonlinear ones.

Let
S∞ = {ϕ1(x), ϕ2(x), · · · }

denote a complete set of an infinite number of base functions that are linearly
independent. All functions that are expressed by S∞ form a set of functions,
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denoted by

V =

{
+∞∑
k=1

akϕk(x)

∣∣∣∣∣ ak ∈ R

}
. (3)

Besides, let
S∗ = {ϕ1(x), ϕ2(x), · · · , ϕµ}

denote a set, consist of the first µ simplest base functions of S∞. All functions
that are finitely expressed by S∗ form a set of functions, denoted by

V ∗ =

{
µ∑
k=1

akϕk(x)

∣∣∣∣∣ ak ∈ R

}
. (4)

Assume that u(x) ∈ V and the µ unknown coefficients of the expression

u∗(x) =

µ∑
n=1

an ϕ(x) ∈ V ∗

can be uniquely determined by the µ linear boundary conditions (2), i.e.

Bi

[
µ∑
n=1

an ϕ(x)

]
= βi, at x = αi, i = 1, 2, 3, · · · , µ.

Then, we call u∗ ∈ V ∗ the primary solution. Write

Ŝ = {ϕµ+1(x), ϕµ+2(x), · · · } . (5)

All functions that are expressed by Ŝ form a set of functions, denoted by

V̂ =

{
+∞∑

k=µ+1

bkϕk(x)

∣∣∣∣∣ bk ∈ R

}
. (6)

Obviously, V = V̂ ∪ V ∗. Similarly, let

SR = {ψ1(x), ψ2(x), · · · } (7)

be an infinite set of base functions that are linearly independent, and all
functions expressed by SR form a set of functions, denoted by

U =

{
+∞∑
m=1

cmψm(x) |cm ∈ R

}
. (8)
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Assume that N [u(x)] ∈ U , say, N is a kind of mapping from V to U , i.e.
N : V → U .

In the frame of the MDDiM, the series solution of u(x) is given by

u(x) = u0(x) +
+∞∑
k=1

uk(x), (9)

where u0(x) is an initial guess that satisfies all linear boundary conditions
(2), and besides we have great freedom to choose it. Here, uk(x) ∈ V is given
by

uk(x) = χk uk−1(x) + c0 J [δk−1(x)] +

µ∑
n=1

ak,nϕn(x), (10)

with the definitions

δn(x) = Dn

{
N

[
u0(x) +

+∞∑
j=1

uj(x) qj

]}
∈ U, (11)

and

χk =

{
0, k ≤ 1,

1, k > 1,
(12)

where c0 is the so-called “convergence-control parameter” which we have
great freedom to choose, J is a directly defined inverse mapping, the oper-
ator Dn is the so-called nth-order homotopy-derivative, defined by

Dnφ =
1

n!

∂nφ

∂qn

∣∣∣∣
q=0

, (13)

whose properties were proved by Liao [19] and are briefly listed in the Ap-
pendix of this paper. Note that

ûk(x) = χk uk−1(x) + c0 J [δk−1(x)]

is a special solution of u(x), and

u∗k(x) =

µ∑
i=1

ak,iϕi(x) ∈ V ∗
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is a primary solution of uk(x), respectively. According to (13), δn defined
by (11) can be regarded as the coefficient of Taylor series of the governing
equation with respect to q, the embedding parameter, say,

N

[
+∞∑
n=0

un(x)qn

]
=

+∞∑
n=0

δn(x) qn. (14)

This provides us a simple way to gain δn(x) for n ≥ 0.
In (10), the unknown coefficients ai (1 ≤ i ≤ µ) are determined by the

boundary conditions

Bi [uk(x)− χk uk−1(x)] = ci ∆i,k−1(x), at x = αi, 1 ≤ i ≤ µ, (15)

with the definition

∆i,n(x) = Bi[un(x)]− (1− χn+1)βi, (16)

where ci (1 ≤ i ≤ µ) is the so-called “convergence-control parameters” which
we have great freedom to choose.

In (10), J denotes a directly defined mapping from U → V , with the
following rules:

(I) J is linear, i.e

∀α, β ∈ R,∀x, y ∈ U,J (αx+ βy) = αJ (x) + βJ (y);

(II) J is injective, say, the kernel of J is {0}, i.e

{x|x ∈ U,J (x) = 0} = {0};

(III) J [δm(x)] contains each base function ϕi ∈ Ŝ (µ + 1 ≤ i < +∞) as
m→ +∞ ;

(IV) there exists such a finite constant K that for any ϕ ∈ V it holds

||J [N [ϕ]]||
||ϕ||

≤ K.

Here, V, Ŝ, U are defined by (3), (5) and (8), respectively.
It should be emphasized that there exist an auxiliary parameter c0 in (10)

and the µ auxiliary parameters c1, c2, · · · , cµ in the boundary conditions (22).
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In many cases, if c0 and ci (1 ≤ i ≤ µ) are properly chosen, one can guarantee
the convergence of the series solution (9), as illustrated later. This is the
reason why we call c0, c1, c2, · · · , cµ “the convergence-control parameters”.
In addition, the following theorem can be proved.

Theorem of Convergence. If the convergence-control parameters c0,
c1, · · · , cµ and the directly defined inverse mapping J are properly chosen
so that the series (9) is absolutely convergent, then it must be a solution of
the original equation (1) and (2).

According to the above theorem, we only need choose proper mapping J
and proper convergence-control parameters c0, c1, c2, · · · , cµ so as to guaran-
tee the convergence of solution series. The proof of the convergence theorem
and the detailed derivation of the MDDiM will be given below.

3. The detailed derivations and proof

The MDDiM mentioned above is based on the homotopy analysis method
(HAM) [2–5], a analytic approximation technique for highly nonlinear differ-
ential equations.

The HAM is based on homotopy, a fundamental concept in topology,
which describes a continuous variation (or deformation) between an initial
guess and an exact solution of an equation. Without loss of generality, let us
take the nonlinear differential equation (1) and (2) as an example. Let u0(x)
denote an initial guess of the solution u(x) that satisfies the µ linear boundary
conditions (2), c0, c1, c2, · · · , cµ are the (µ+ 1) non-zero auxiliary parameters
without physical meaning (called “convergence-control parameters”), L :
V → U is an auxiliary linear operator with the property L [0] = 0, and
q ∈ [0, 1] an embedding parameter of homotopy, respectively. To build a
continuous variation (or deformation) from the initial guess u0(x) to the
exact solution u(x), denoted by Φ(x; q), we construct the so-called zeroth-
order deformation equation

(1− q)L [Φ(x; q)− u0(x)] = q c0 N [Φ(x; q)], q ∈ [0, 1], (17)

subject to the linear boundary conditions

(1− q)Bi [Φ(x; q)− u0(x)] = q ci {Bi[Φ(x; q)]− βi} , at x = αi, (18)

where 1 ≤ i ≤ µ. Obviously, Φ(x; 0) = u0(x) when q = 0, since L [0] = 0.
Besides, Φ(x; 1) = u(x) when q = 1, since ci 6= 0 for 0 ≤ i ≤ µ. In other
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words, Eqs. (17) and (18) define a continuous variation Φ(x; q) from the
initial guess u0(x) to the solution u(x) of the original equations (1) and (2),
as the homotopy parameter q increases from 0 to 1. Assuming that the
solution Φ(x; q) is analytic at q = 0, the Maclaurin series of Φ(x; q) with
respect to q reads

Φ(x; q) = u0(x) +
+∞∑
k=1

uk(x)qk, (19)

where

uk(x) =
1

k!

∂kΦ(x; q)

∂qk

∣∣∣∣
q=0

= Dk(Φ). (20)

Here, Dk is called the kth-order homotopy-derivative operator, defined by
(13). For properties and theorems about Dk in details, please refer to [19]
and § 4.2 of Liao’s book [4].

Applying the kth-order homotopy-derivative operator Dk to both sides of
the zeroth-order deformation equations (17) and (18), it is straightforward
to obtain the kth-order deformation equation

L [uk(x)− χkuk−1(x)] = c0 δk−1(x), k ≥ 1 (21)

subject to the µ linear boundary conditions

Bi [uk(x)− χkuk−1(x)] = ci ∆i,k−1(x), at x = αi, 1 ≤ i ≤ µ, (22)

where χn is defined by (12), and

δn(x) = Dn{N [Φ(x; q)]}, (23)

∆i,n(x) = Dn {Bi[Φ(x; q)]− βi} = Bi[un(x)]− (1− χn+1)βi. (24)

Note that δk−1(x) and ∆i,n(x) are only dependent upon u0(x), · · · , uk−1(x)
and thus are known for the unknown term uk(x). So, uk(x) is determined by
the linear differential equation (21) with the µ linear boundary conditions
(22).

It should be emphasized here that, in the frame of the HAM, one has great
freedom to choose the auxiliary linear operator L , the initial guess u0(x), and
especially the so-called convergence-control parameters c0 and c1, c2, · · · , cµ,
as pointed out by Liao [17]. Assuming that all of them are properly chosen so
that the Maclaurin series (19) converges at q = 1, one gets the series solution

u(x) = u0(x) +
+∞∑
k=1

uk(x). (25)
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The mth-order approximation of u(x) reads

u(x) ≈ u0(x) +
m∑
k=1

uk(x). (26)

Thus, in essence, the HAM transfers a nonlinear problem into an infinite
number of linear sub-problems. However, unlike perturbation methods [1],
we do not need any small/large physical parameters at all in the frame of
the HAM for such kind of transformation. In addition, unlike perturbation
methods [1], we have now great freedom to choose the auxiliary linear oper-
ator L . More importantly, the so-called “convergence-control parameters”
c0 and c1, c2, · · · , cµ provide a convenient way to guarantee the convergence
of the solution series, as illustrated by lots of successful applications of the
HAM [3–5].

3.1. Normal strategy of the HAM

In the frame of the HAM, normally, one often chooses such a proper auxil-
iary linear operator L that the linear high-order deformation equations (21)
and (22) are easy to solve, and besides that the convergence of the solution
series is guaranted by means of choosing proper convergence-control param-
eters c0 and c1, c2, · · · , cµ. This is mainly because we have great freedom to
choose L and the convergence-control parameters in the frame of the HAM.
This is completely different from perturbation techniques. To guide how to
choose L , Liao [3, 4] suggested a few rules described below.

Assume that

u(x) =
+∞∑
m=1

bm ϕm(x) ∈ V, (27)

where V is defined by (3). We call it “the solution expression” of u(x), which
plays an important role in the normal frame of the HAM. Unlike perturbation
methods, the solution expression is the starting point of the HAM, since it
greatly influences the choice of the auxiliary linear operator L . As suggested
by Liao [3, 4], L should be chosen in such a way that

(a) there exists a unique solution uk(x) of the kth-order deformation equa-
tion (Rule of Solution Existence);

(b) uk(x) ∈ V (Rule of Solution Expression);

(c) uk(x) contains all base functions as k → +∞ (Rule of Completeness).
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In addition, due to the Rule of Solution Existence, L should be chosen
in such a way that it holds

L [ϕi(x)] = 0, ∀ϕi(x) ∈ V ∗, 1 ≤ i ≤ µ, (28)

and
L [ϕi(x)] 6= 0, ∀ϕi(x) ∈ V̂ , i > µ, (29)

where V ∗ and V̂ are defined by (4) and (6), respectively, since there exist the
µ linear boundary conditions (2). In other words, ϕi ∈ V ∗, here 1 ≤ i ≤ µ, is
the primary solution of L [u(x)] = 0. Let L −1 : U → V̂ denote the inverse
operator of L , where U and V̂ are defined by (8) and (6), respectively. We
have the common solution

uk(x) = χkuk−1(x) + c0L
−1[δk−1(x)] +

µ∑
i=1

ak,iϕi(x) (30)

of the high-order deformation equation (21), where the unknown coefficients
ak,i (1 ≤ i ≤ µ) are determined by the µ linear boundary conditions (22).

In essence, the key of this normal strategy is to search for the inverse
operator L −1 of the auxiliary linear operator L . Unfortunately, it is often
time-consuming to gain an inverse operator L −1 of a differential equation,
unless the linear operator L is simple enough. Due to this restriction, one
often chooses simple enough auxiliary linear operators L in the frame of
the HAM. This widely restricts applications of the HAM. To overcome this
limitations, a new strategy is suggested below.

3.2. New strategy of the HAM

Write J = L −1 : U → V̂ , which is an inverse linear operator of L . It
should be emphasized that, in the frame of the HAM, we have great freedom
to choose L . In theory, it means that we have great freedom to directly
choose L −1, i.e. we also have great freedom to define J : U → V̂ , directly,
without choosing the auxiliary linear operator L at all!

Then, the solution uk(x) of Eq. (21) reads

uk(x) = χkuk−1(x) + c0J [δk−1(x)] +

µ∑
i=1

ak,iϕi(x), (31)

where
ûk(x) = χkuk−1(x) + c0J [δk−1(x)]
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is a special solution,

u∗k(x) =

µ∑
i=1

ak,iϕi(x)

is a primary solution, ak,1, ak,2, . . . , ak,µ are constants to be determined by the
µ linear boundary condition (22), respectively. Here, it should be emphasized
that, according to (31), it is unnecessary to know the specific form of the
auxiliary linear operator L : V → U , since the inverse operator J : U → V̂
is defined directly. In this way, it is unnecessary to spend any CPU times to
calculate the inverse operator J , since it is know!

The new strategy of the HAM is fundamentally different from the normal
ones. In the normal HAM, one should first choose (or define) a proper (but
simple enough) auxiliary linear operator L , then solve the linear high-order
deformation equation (21), say, find out its inverse operator J = L −1 by
means of spending lots of CPU times. This is often time-consuming and
sometimes even impossible, especially when L is complicated. However,
using the new strategy of the HAM, one can neglect the auxiliary linear
operator L completely, but define the inverse linear operator J = L −1

directly! In this way, the high-order deformation equation can be quickly
solved, since it is unnecessary to calculate the inverse operator L −1 at all!

It should be emphasized that it is the HAM that provides us great freedom
to choose the auxiliary linear operator L , so that we further have the great
freedom to directly define its inverse operator J = L −1. For simplicity,
we call this approach “the method of directly defining inverse mapping”
(MDDiM).

3.3. Some rules of directly defining the inverse mapping J

Like the normal strategy, the initial guess u0(x), the primary solutions
and the inverse operator J should be chosen in such a way that

(A) there exists a unique solution uk(x) of the kth-order deformation equa-
tion (Rule of Solution Existence);

(B) uk(x) ∈ V (Rule of Solution Expression);

(C) uk(x) contains all base functions as k → +∞ (Rule of Completeness).

First of all, to obey the “Rule of Solution Expression”, we should choose
an initial guess u0(x) ∈ V . Since we have great freedom to choose u0(x) in
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the frame of the HAM, we can choose

u0(x) =

µ∑
i=1

a0,i ϕi(x) ∈ V ∗,

where V ∗ is defined by (4), and the coefficients a0,i (1 ≤ i ≤ µ) are determined
by the linear boundary conditions (2).

Secondly, since the linear differential equation (21) has the µ linear bound-
ary conditions (22), the new strategy should provide the µ primary solutions
of it. Obviously, to obey “the Rule of Solution Expression”, each primary
solution u∗k(x) must belong to V ∗. Thus, we directly define the primary so-
lution

u∗k(x) =

µ∑
i=1

ak,i ϕi(x) ∈ V ∗,

where ak,i are the unknown constants, which can be determined by the linear
boundary conditions (22).

Thirdly, to obey the “Rule of Solution Expression”, we should have

δk−1(x) ∈ U,J [δk−1(x)] ∈ V̂ ,

for k ≥ 1, and the special solution ûk(x) must belong to V , i.e.

ûk(x) = χk uk−1(x) + c0J [δk−1(x)] ∈ V.

In other words, J should be a mapping from U to V̂ . In addition, to
obey the “Rule of Completeness”, the solution uk(x) must contain all base
functions ϕm ∈ S∞, m = 1, 2, 3, · · · , as k → +∞. Therefore, J [δk(x)] as

k → ∞ should contain all elements ϕi (i ≥ µ + 1) of the set Ŝ, where Ŝ is
defined by (5).

In addition, since the high-order deformation equation (21) is linear, the
inverse operator J must be linear, too. Besides, to guarantee the uniqueness
of the solution, J must be injective. Furthermore, the mapping of the
inverse operator J should be finite.

Therefore, the inverse operator J : U → V̂ should be defined according
to the following rules:

(I) J is linear, i.e

∀α, β ∈ R, ∀x, y ∈ U,J (αx+ βy) = αJ (x) + βJ (y);
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(II) J is injective, say, the kernel of J is {0}, i.e

{x|x ∈ U,J (x) = 0} = {0};

(III) J [δm(x)] as m→ +∞ contains all base functions ϕi ∈ Ŝ (i ≥ µ+ 1);

(IV) there exists such a finite constant K that for any ϕ ∈ V it holds

||J [N [ϕ]]||
||ϕ||

≤ K.

Therefore, using the new strategy of the HAM, the common solution
uk(x) of the kth-order deformation equation (21) is the sum of the special
solution ûk(x) and the primary solution u∗k(x), expressed by

uk(x) = χkuk−1(x) + c0J [δk−1(x)] +

µ∑
i=1

ak,i ϕi(x), (32)

where the constants ak,i (1 ≤ i ≤ µ) is determined by the µ linear boundary
conditions (22). We call this new strategy “the method of directly defining
inverse mapping” (MDDiM).

This is a new strategy to solve differential equation, since we completely
neglect the auxiliary linear operator L itself, but directly define its inverse
operator J using the above rules I - IV. In this way, we could overcome
the restrictions and limitations of traditional differential operators! So, the
MDDiM might open a completely new way for solving nonlinear differential
equations.

3.4. Proof of the convergence theorem

It is generally proved [3, 4] in the frame of the HAM that, if a series
solution given by the HAM is absolutely convergent, it must be one solution of
original nonlinear equation under consideration. Since the above-mentioned
“method of direct defining inverse mapping” (MDDiM) is based on the HAM,
one can prove the convergence theorem in a rather similar way.

Since J : U → V̂ is injective and linear, its inverse operator L : V̂ → U
certainly exists and linear, say,

(i) L is linear, i.e

∀α, β ∈ R,∀x, y ∈ V,L (αx+ βy) = αL (x) + βL (y);
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(ii) the composition map L ◦J is the identity in U , i.e

∀x ∈ U,L ◦J [x] = x;

(iii) L [0] = 0, since L is injective from V̂ → U ,

where V, V̂ , U are defined by (3), (6) and (8), respectively.
Besides, recall that

u∗k =

µ∑
i=1

ak,i ϕi ∈ V ∗

is defined as the primary solution, where ϕi ∈ S∗. Thus,

L

[
µ∑
i=1

ak,i ϕi

]
= 0,

so that it holds

(iv) ∀x ∈ V ∗, L [x] = 0.

In this way, the linear operator L : V → U is well defined.
Here, a proof of the convergence-theorem in § 2 is given below.

Proof. Due to (10), it holds using (i), (ii) and (iv) that

L [uk] = L

{
χk uk−1 + c0J [δk−1] +

µ∑
i=1

ak,i ϕi

}
= χk L [uk−1] + c0δk−1,

since L ◦J [x] = x, ∀x ∈ U and L [x] = 0,∀x ∈ V ∗. Taking the sum of the
above equation from k = 1 to +∞, we have

lim
k→+∞

L [uk] = c0

+∞∑
n=0

δn.

If (9) is absolutely convergent, it holds

lim
k→+∞

uk = 0

which leads to

c0

+∞∑
n=0

δn = lim
k→+∞

L [uk] = L [ lim
k→+∞

uk] = L [0] = 0. (33)
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Here, the property (iii) of L is used. Furthermore, since c0 6= 0, we have

+∞∑
n=0

δn = 0. (34)

The Taylor series of

N

[
+∞∑
n=0

un q
n

]
at q = 0 reads

N

[
+∞∑
n=0

un q
n

]
=

+∞∑
n=0

δn q
n,

which is now convergent to zero at q = 1, since

N

[
+∞∑
n=0

un

]
=

+∞∑
n=0

δn = 0.

Here, (34) is used. Thus, the series (9) satisfies the governing equation

N

[
+∞∑
n=0

un

]
= 0.

Similarly, since uk (k ≥ 1) satisfies the boundary condition (22), we have

Bi[um(x)] = ci

m−1∑
k=0

∆i,k(x), at x = αi, 1 ≤ i ≤ µ,

by taking the sum of (22) from k = 1 to m. As m→ +∞, it becomes

lim
m→+∞

Bi[um(x)] = ci

+∞∑
k=0

∆i,k(x), at x = αi, 1 ≤ i ≤ µ.

Similarly, since the solution series (9) is absolutely convergent, we have

lim
m→+∞

Bi[um(x)] = Bi[ lim
m→+∞

um(x)] = Bi[0] = 0,

which leads to

+∞∑
k=0

∆i,k(x) = 0, at x = αi, 1 ≤ i ≤ µ,

16



since ci 6= 0. Therefore, the Maclaurin series

Bi

[
+∞∑
n=0

un(x) qn

]
− βi =

+∞∑
k=0

∆i,k(x)qk, 1 ≤ i ≤ µ,

tends to zero at q = 1, say,

Bi

[
+∞∑
n=0

un(x)

]
= βi, 1 ≤ i ≤ µ.

Thus, the series (9) satisfies the original boundary condition (2), too.
Therefore, the solution series (9) is one solution of (1) and (2).

4. Illustrative applications

Three examples are used here to illustrate the validity of the method of
directly defining inverse mapping (MDDiM).

4.1. A nonlinear eigenvalue problem

First of all, let us consider a nonlinear eigenvalue problem

N1[u, λ] = u′′(x) + λu(x) + εu3(x) = 0, (35)

subject to the boundary conditions

u(0) = u(1) = 0, (36)

and the normalization condition∫ 1

0

u2(x)dx = 1, (37)

where ε is a physical parameter, the prime denotes differentiation with respect
to x, respectively. Here, both of the eigenfunction u(x) and the eigenvalue
λ are unknown. This problem has an infinite number of solutions. Without
loss of generality, let us consider here its simplest solution.

According to the odd nonlinearity of (35) and the boundary condition
(36), u(x) can be expressed by

u(x) =
+∞∑
n=1

an sin[(2n− 1)πx], (38)
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where n ≥ 1 is an integer. Regard a1 sin(πx) as the primary solution, where
a1 is a coefficient to be determined by the boundary condition. Then, we
have

V =

{
+∞∑
n=1

an sin[(2n− 1)πx]

∣∣∣∣∣ an ∈ R

}
, (39)

V ∗ = {a1 sin[πx]| a1 ∈ R} , (40)

V̂ =

{
+∞∑
n=2

an sin[(2n− 1)πx]

∣∣∣∣∣ an ∈ R

}
. (41)

The eigenfunction u(x) and eigenvalue λ are expressed by

u(x) =
+∞∑
n=0

un(x) ∈ V, λ =
+∞∑
n=0

λn, (42)

where u0(x) ∈ V ∗ is an initial guess. Note that un(x) ∈ V for n ≥ 1 and
λn ∈ R for n ≥ 0.

Consider the Maclaurin series

N1

[
+∞∑
n=0

un(x)qn,
+∞∑
n=0

λnq
n

]
=

+∞∑
m=0

δm(x) qm

about q at q = 0, where

δm(x) = u′′m(x) +
m∑
i=0

λium−i(x) + ε
m∑
i=0

um−i(x)
i∑

j=0

uj(x)ui−j(x). (43)

Obviously, δm(x) ∈ V . Thus, we have here U = V for the considered eigen-
value problem.

In the frame of the MDDiM, we have

um(x) = χm um−1(x) + c0Jα[δm−1(x)] + am,1 sin(πx), (44)

where c0 is the convergence-control parameter to be chosen, am,1 is a constant

to be determined by the normalization condition (37), Jα : V → V̂ is an
inverse mapping, which is directly defined here by

Jα {sin[(2m− 1)πx]} = − sin[(2m− 1)πx]

2(m− 1)(2m+ 1 + α)π2
, (45)
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where m ≥ 1 is an integer and α > 0 is an auxiliary parameter to be cho-
sen. Note that different values of α correspond to different inverse map-
pings. So, we actually define a family of inverse mappings Jα. Besides,
since Jα[sin(πx)] tends to infinity, the term sin(πx) must disappear from
δm(x) for m ≥ 0, say, its coefficient must be zero. This just provides us an
algebraic equation to determine the unknown λm.

Note that the boundary condition u(0) = u(1) = 0 is automatically sat-
isfied, since u(x) ∈ V , where V is defined by (39). Considering the normal-
ization condition (37), we choose the initial guess u0(x) =

√
2 sin(πx). Then,

it is straightforward to gain δ0(x) defined by (43). Enforcing the coefficient
of sin(πx) in δ0(x) to be zero gives an algebraic equation of λ0, from which
we gain λ0. Then, using (44) and the definition (45) of Jα, we gain u1(x),
whose unknown coefficient a1,1 is determined by the normalization condition
(37), i.e. ∫ 1

0

[
1∑

n=0

un(x)

]2
dx = 1. (46)

In this way, we can gain λ0, u1(x), λ1, u2(x), and so on, successively, without
solving any differential equations!

In general, if u0, u1, · · · , um−1 and λ0, λ1, · · · , λm−2 are known, it is straight-
forward to gain δm−1(x) defined by (43). Enforcing the coefficient of sin(πx)
in δm−1(x) to be zero gives an algebraic equation of λm−1, from which we
know λm−1. Then, using (44) and the definition (45) of Jα, we gain um(x),
whose unknown coefficient am,1 is determined by the normalization condition
(37), i.e. ∫ 1

0

[
m∑
n=0

un(x)

]2
dx = 1. (47)

In this way, we can gain the series of eigenvalue λ and the eigenfunction u(x),
without solving any differential equations.

To measure the accuracy of the mth-order approximation

ū(x) =
m∑
n=0

un(x), λ̄ =
m−1∑
n=0

λn,

we consider the squared residual error

Em =

∫ 1

0

{
N1[ū(x), λ̄]

}2
dx. (48)
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Obviously, the smaller the squared residual error Em, the more accurate the
mth-order approximation ū and λ̄.

It should be emphasized that, unlike perturbation techniques and other
traditional methods, the MDDiM contains an auxiliary parameter c0, called
the convergence-control parameter, which provides us a convenient way to
guarantee the convergence of solution series. For given α, the mth-order
approximation ū and λ̄ contain c0. So does the corresponding residual error
square Em. Obviously, the optimal value of c0 is determined by the minimum
of Em. In this example, we use the optimal value c0 gained at the 3rd order
of approximation.

Without loss of generality, let us consider the case of α = 2. Using the
optimal convergence-control parameter c0 = −5/8 obtained by the minimum
of E3, we gain a convergent series solution, with Em decreasing to 7.5× 10−39

at the 50th-order of approximation (i.e. m = 50), as shown in Table 1. This
illustrates the validity of the MDDiM.

Table 1: The residual error square Em of Eq. (35) and the relative error of the correspond-
ing eigenvalue λ/π2 by means of α = 2 with the optimal convergence-control parameter
c0 = −5/8.

m, order of approx. Em relative error of λ/π2 (%)
10 7.5× 10−6 7.0× 10−4

20 7.5× 10−14 4.8× 10−8

30 7.5× 10−22 4.8× 10−12

40 1.3× 10−30 5.6× 10−16

50 7.5× 10−39 7.0× 10−20

Note that we directly define the inverse mapping (45) by introducing an
auxiliary parameter α. It is found that we can gain the convergent series
solution for any values of α ∈ (0, 8), as shown in Figs. 1 and 2, and besides
α ≈ 2.2 gives the fastest convergent series. This further illustrates that we
have large freedom and great flexibility to directly define the inverse mapping
Jα. To confirm this viewpoint, we further consider a more general inverse
mapping

Jβ,γ[sin(mπx)] =
sin(mπx)

(1−m)(
√
m+ β)(

√
m+ γ)π2

, (49)
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where m = 2k − 1 with k ≥ 1, and also obtain convergent series solution by
any values of β ∈ (0, 4) and γ ∈ (0, 4) by means of the corresponding optimal
convergence-control parameter c0. All of these indicate that we indeed have
large freedom and great flexibility to directly define the inverse mapping J
that leads to the convergent eigenfunction u(x) and eigenvalue λ of Eqs. (35)
and (36).

α

Lo
g
[1
0,
E

50
]

0 1 2 3 4 5 6 7 8

-40

-35

-30

-25

-20

Fig. 1: The residual error square E50 of Eq. (35) versus the different values α of Jα

defined by (45).

When α = 1, the corresponding auxiliary operator L of Jα can be ex-
plicitly defined in a differential form, and the considered problem was solved
by means of the normal HAM, as mentioned in § 8 of Liao’s book [3]. How-
ever, as shown in Fig. 2, the series given by the MDDiM (α = 4 and α = 2.5)
converge faster even than that given by the normal HAM (corresponding to
α = 1). It should be emphasized that, in most cases, the two families (45)
and (49) of the inverse mapping J (and its corresponding auxiliary linear
operator L ) can not be explicitly defined in a differential form. Especially, it
is unnecessary to calculate the auxiliary linear operator L at all. Therefore,
we can directly define the inverse mapping J in a more general way. In other
words, the MDDiM is more general than traditional methods that are based
on differential operators. This is the reason why the MDDiM can give faster
convergent series solution in many cases, as shown in this example. Thus,
the MDDiM is fundamentally different from the traditional methods for dif-
ferential equations that often spend lots of CPU time to calculate inverse
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Fig. 2: The residual error square Em of (35) versus m (the order of approximation) for the
different δ-mapping Jα. Solid line: α = 1 with the optimal value c0 = −1/2; Dash-dotted
line: α = 4 with the optimal value c0 = −11/13; Dashed line: α = 2.5 with the optimal
value c0 = −2/3.

operators.

4.2. Blasius flow

Secondly, let us consider the Blasius boundary-layer flow, governed by

f ′′′(η) +
1

2
f(η)f ′(η) = 0, f(0) = f ′(0) = 0, f ′(+∞) = 1. (50)

Write f(η) = F (z) +η, z = λ η, where λ > 0 is a constant to be chosen later.
We have

N2[F ] = F ′′′ +
1

2λ2
(z + λF )F ′′ = 0, (51)

subject to the boundary conditions

F (0) = 0, F ′(0) = −1

λ
, F ′(+∞) = 0, (52)

where the prime denotes the derivative with respect to z.
In the frame of the MDDiM, we have the solution series

F = F0(z) +
+∞∑
m=1

Fm(z), (53)
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where F0(z) is an initial guess satisfying all boundary conditions, and Fk(z)
is given by

Fm(z) = χm−1Fm−1(z) + c0J [δm−1(z)] + F ∗m(z), (54)

subject to the boundary conditions

Fm(0) = F ′m(0) = F ′(+∞) = 0, (55)

where c0 is the convergence-control parameter, J is a directly defined inverse
mapping, F ∗m(z) is the primary solution, and

δk(z) = Dk

{
N2

[
+∞∑
n=0

Fn(z) qn

]}

= F ′′′k (z) +
z

2λ2
F ′′k (z) +

1

2λ

k∑
n=0

Fk−n(z)F ′′n (z), (56)

respectively.
According to (55), F ′(z) tends to zero at infinity. So, define the sets

V =

{
+∞∑
n=0

an
(1 + z)n

∣∣∣∣∣ an ∈ R

}
, (57)

V̂ =

{
+∞∑
n=2

an
(1 + z)n

∣∣∣∣∣ an ∈ R

}
= U, (58)

V ∗ =

{
1∑

n=0

an
(1 + z)n

∣∣∣∣∣ an ∈ R

}
. (59)

(60)

Note that V = V̂ ∪ V ∗. Obviously, F (z) ∈ V and δk(z) ∈ V̂ = U . So, it is
straight forward to choose the initial guess

F0(z) =
1

λ

(
1

1 + z
− 1

)
∈ V ∗, (61)

which satisfies all boundary conditions (52). Besides, according to (56), δk(z)
can be expressed by

δk(z) =
+∞∑
m=2

ak,m
(1 + z)m

∈ U,
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Fig. 3: Comparison of f ′(η) between the numerical result and the 30th-order approxima-
tion given by means of the MDDiM using the directly defined inverse mapping (62) with
A0 = 1/(3π), A1 = π/30, A2 = π/3 and λ = 1/3, c0 = −9/5. Solid line: numerical result;
Symbols: analytic result given by the MDDiM.

where ak,m is a coefficient.
In the frame of the MDDiM, we directly define the inverse mapping J :

U → V̂ , i.e.

J [(1 + z)m] =
(1 + z)m

m3 + A2m2 + A1m+ A0

, m ≤ −2, (62)
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Table 2: Approximations of Blasius boundary-layer flows by means of the MDDiM using
the directly defined inverse mapping (62) with A0 = 1/(3π), A1 = π/30, A2 = π/3 and
λ = 1/3, c0 = −9/5.

m, order of approx. f ′′(0) Em
10 0.34354 2.3× 10−3

20 0.33362 8.5× 10−5

30 0.33206 2.3× 10−6

40 0.33213 9.8× 10−8

50 0.33207 2.0× 10−8

60 0.33203 3.2× 10−9

70 0.33207 7.0× 10−10

80 0.33207 3.2× 10−10

90 0.33205 1.1× 10−10

100 0.33205 2.2× 10−11

where A0, A1 and A2 are constants to be chosen. The special solution reads

F̂m = χm Fm−1 + c0J [δm−1] . (63)

and the primary solution is

F ∗m = am,0 +
am,1
1 + z

∈ V ∗, (64)

where am,0 and am,1 are coefficients. Thus, we have the solution

Fm(z) = F̂m + F ∗m = χm Fm−1 + c0J [δm−1(z)] + am,0 +
am,1

(1 + z)
, (65)

where am,0 and am,1 are determined by Fm(0) = F ′m(0) = 0 of the boundary
conditions (55), since F ′m(+∞) is automatically satisfied.

In the frame of the MDDiM, the “convergence-control parameter” c0 pro-
vides us a convenient way to guarantee the convergence of solution series. For
properly chosen parameters A2, A1, A0 of the inverse mapping J defined by
(62), one can choose an optimal value of the convergence-control parameter
c0 for a fastest convergence of the series (53). For example, we can gain the
convergent series solution by means of

λ =
1

3
, A0 =

1

3π
, A1 =

π

30
, A2 =

π

3
, c0 = −9

5
,
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as shown in Table 2. The corresponding 30th-order approximations agrees
well with the numerical ones in the whole interval η ∈ [0,+∞), as shown in
Fig. 3. It is found that such kind of inverse mapping J is not unique: one
can gain convergent series solution by means of many inverse mappings, such
as

λ =
1

3
, A0 = 0, A1 = 0, A2 =

π

3
, c0 = −3

2
,

or

λ =
1

3
, A0 =

1

10
, A1 =

π

12
, A2 =

π

3
, c0 = −3

2
,

and so on: all of them give the same results that converge to the numerical
ones!

This example illustrates that, in the frame of the MDDiM, there exists
many directly defined inverse mapping J , which lead to the same convergent
series solutions of Blasius boundary-layer flow, as long as they are properly
defined.

4.3. Gelfand equation

Finally, let us consider the two-dimensional Gelfand equation

∇2u+ λ eu = 0, x ∈ [−1, 1], y ∈ [−1, 1], (66)

subject to the boundary conditions

u(x,±1) = f(x,±1), u(±1, y) = f(±1, y), (67)

where u(x, y) is the unknown eigenfunction, λ is the unknown eigenvalue,
and f(x, y) is a given smooth even function, respectively.

Define u(0, 0) = A and write u = A+ w. The above equations becomes

N3[w, λ] = ∇2w +
(
λeA

)
ew = 0, x ∈ [−1, 1], y ∈ [−1, 1], (68)

subject to the boundary conditions

w(x,±1) = −A+ f(x,±1), w(±1, y) = −A+ f(±1, y), (69)

with the restriction
w(0, 0) = 0. (70)

Obviously, for a given A, if w(x, y) and λ satisfy the governing equation
(68) and the boundary conditions (69), then all of w(−x, y), w(x,−y) and
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w(−x,−y) are its solutions, since f(x, y) is an even function. So, w(x, y) is
an even function of x and y, and thus can be expressed by

w(x, y) =
+∞∑
m=0

+∞∑
n=0

am,n x
2m y2n. (71)

Define the set

V = U =

{
+∞∑
m=0

+∞∑
n=0

am,n x
2m y2n

∣∣∣∣∣ am,n ∈ R

}
(72)

and

V̂ =

{
+∞∑
m=1

+∞∑
n=1

am,n x
2m y2n

∣∣∣∣∣ am,n ∈ R

}
. (73)

In the frame of the MDDiM, we have the mth-order approximation

w ≈ w0(x, y) +
m∑
n=1

wn(x, y), λ ≈
m∑
n=0

λn,

where w0(x, y) is the initial guess, and

wn(x, y) = ŵn + w∗n, n ≥ 1, (74)

in which
ŵ(x, y) = χn wn−1(x, y) + c0 J [δn−1(x, y)] (75)

is a special solution, w∗(x, y) is a primary solution, c0 is the “convergence-
control parameter”, and

δk = Dk

{
N3

[
+∞∑
i=0

λiq
i,

+∞∑
i=0

ui q
i

]}

= ∇2wk + eA
k∑
i=0

λk−iGk(x, y), (76)

with the definition

G0 = eu0 , Gk =
k−1∑
i=0

(
1− i

k

)
wk−iGi,
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respectively. Note that δk ∈ U . Thus, in the frame of the MDDiM, we
directly define an inverse mapping J : U to V̂ , say,

J [xm yn] =
xm+2 yn+2

(m2 +B1m+B0)(n2 +B1n+B0)
, m ≥ 0, n ≥ 0, (77)

where B0 > 0 and B1 > 0 are constants, and U and V̂ are defined by (72)
and (73), respectively.

For the sake of the completeness, we have the primary solution w∗n ∈ V ∗,
where

V ∗ =

{
+∞∑
m=0

(
am,0 x

2m + a0,m y2n
)∣∣∣∣∣ am,0, a0,m ∈ R

}
, (78)

since wn ∈ V and ŵn ∈ V̂ . The primary solution w∗n is determined by the
boundary conditions

wn−χn wn−1 = c1 [wn−1 + (1− χn)[A− f(x, y)]] , at x = ±1, y = ±1, (79)

where c1 is the 2nd “convergence-control parameter”. For simplicity, write

wn = Γn(x, y), at x = ±1 and y = ±1, (80)

where

Γn(x, y) = χn wn−1 + c1 [wn−1 + (1− χn)[A− f(x, y)]] .

Substituting wn = ŵn + w∗n into the boundary conditions (80), we have the
primary solution

w∗n(x, y) = −ŵn(x,±1)− ŵn(±1, y) + ŵn(±,±1)

+ Γn(x,±1) + Γn(±1, y)− Γn(±1,±1). (81)

Finally, we have the solution

wn(x, y) = ŵn(x, y)− ŵn(x,±1)− ŵn(±1, y) + ŵn(±,±1)

+ Γn(x,±1) + Γn(±1, y)− Γn(±1,±1), (82)

which satisfies all of the boundary conditions (80). Up to now, λk−1 is
unknown. Note that, according to the restriction condition (70), we have
wn(0, 0) = 0. This just provides us an algebraic equation for the unknown
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Fig. 4: The eigenvalue of the Gelfand equation in case of f(x, y) = 0 by means of the
MDDiM using the directly defining inverse mapping (77) with B1 = π,B0 = π/2 and
c0 = 3/4, c1 = −3/4. Solid line: 20th-order approximation; Symbols: 25th-order approxi-
mation.
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Fig. 5: The eigenvalue of the Gelfand equation in case of f(x, y) = ±(1 + x2)(1 + y2)/10
by means of the MDDiM using the directly defining inverse mapping (77) with B1 =
π,B0 = π/2 and c0 = 1/2, c1 = −1/2. Lines: 20th-order approximation; Symbols: 25th-
order approximation. Solid line: f(x, y) = (1 + x2)(1 + y2)/10; Dashed line: f(x, y) =
−(1 + x2)(1 + y2)/10.

λn−1. For simplicity, we choose the initial guess w0(x, y) = 0. Then, using
the above approach, we can gain w1, λ0, then w2, λ1, and so on, step by step.
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Fig. 6: The eigenvalue of the Gelfand equation in case of f(x, y) = ±(x2 − x2y2 + y2)/2
by means of the MDDiM using the directly defining inverse mapping (77) with B1 =
π,B0 = π/2 and c0 = 1/2, c1 = −1/2. Lines: 20th-order approximation; Symbols: 25th-
order approximation. Solid line: f(x, y) = (x2 − x2y2 + y2)/2; Dashed line: f(x, y) =
−(x2 − x2y2 + y2)/2.

Note that there exist two convergence-control parameters c0 and c1. Be-
sides, we have great freedom to choose the two auxiliary parameters B0 and
B1 in the directly defined inverse mapping (77). It is found that the conver-
gent series solution can be obtained by means of choosing proper convergence-
control parameters c0, c1 and the two auxiliary parameters B0, B1 in (77).
For example, in case of f(x, y) = 0, we gain the good approximation of
u(x, y) and λ for A ∈ [0, 12] by means of choosing B1 = π,B0 = π/2 and
c0 = 3/4, c1 = −3/4, as shown in Fig. 4. Such kind of inverse mapping is not
unique: the same convergent result can be obtained by means of choosing
B1 = 3, B0 = 2 and c0 = 1, c1 = −1. This illustrates that we indeed have
large freedom and great flexibility to directly define the inverse mapping (77)!

Similarly, in case of

f(x, y) = ±(1 + x2)(1 + y2)

10
, (83)

we gain the good approximation of u(x, y) and λ for A ∈ [0, 12] by means of
B1 = π,B0 = π/2 and c0 = 1/2, c1 = −1/2, as shown in Fig. 5.

In case of
f(x, y) = ±(x2 − x2y2 + y2)/2, (84)
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Fig. 7: The eigenvalue of the Gelfand equation in cases of f(x, y) = cosx + cos y and
f(x, y) = cos[sin(x)]− exp(y2) by means of the MDDiM using the directly defining inverse
mapping (77) with B1 = π,B0 = π/2 and c0 = 1, c1 = −1. Lines: 15th-order approxima-
tion; Symbols: 20th-order approximation. Solid line: f(x, y) = cosx+ cos y; Dashed line:
f(x, y) = cos[sin(x)]− exp(y2).

the good approximation of u(x, y) and λ for A ∈ [0, 12] are gained by means
of B1 = π,B0 = π/2 and c0 = 1/2, c1 = −1/2, as shown in Fig. 6. In case of

f(x, y) = cos(x) + cos(y), (85)

the good approximation of u(x, y) and λ for A ∈ [0, 12] are gained by means
of B1 = π,B0 = π/2 and c0 = 1, c1 = −1, as shown in Fig. 7. Here, we use

cos(x) + cos(y) ≈ 2− 1

2
(x2 + y2) +

1

24
(x4 + y4)− 1

720
(x6 + y6),

which is a good approximation for all x ∈ [−1, 1] and y ∈ [−1, 1]. In case of

f(x, y) = cos[sin(x)]− exp(y2), (86)
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the good approximation of u(x, y) and λ for A ∈ [0, 12] are gained by means
of B1 = π,B0 = π/2 and c0 = 3/4, c1 = −3/4, as shown in Fig. 7. Here, we
use

cos[sin(x)]− exp(y2)

≈ −1

2
x2 +

5

24
x4 − 37

720
x6 +

457

40320
x8 − 389

172800
x10

−
(
y2 +

1

2
y4 +

1

6
y6 +

1

24
y8 +

1

120
y10
)
, (87)

which is a good approximation for all x ∈ [−1, 1] and y ∈ [−1, 1]. Thus,
by means of the MDDiM, the two-dimensional Gelfand equation (66) and
(67) with rather complicated even function f(x, y) can be easily solved in
a straight-forward way. Note that the inverse mapping J (which leads to
convergent results) is not unique in all of these cases.

Finally, it should be mentioned that, when B1 = 3 and B0 = 2, the
directly defined inverse mapping (77) can be expressed in a differential form

L u = J −1u =
∂4u

∂x2∂y2
, (88)

which is used by Liao and Tan [17] in the frame of the normal HAM. As
mentioned in [17], the original 2nd-order Gelfand equation is transferred
into an infinite number of 4th-order linear differential equations governed
by an auxiliary linear operator L defined above. This is very difficult to
understand in the frame of the traditional methods for differential equations,
which often transfer a nth-order differential equation to some sub-equations
but only with the same order. However, in the frame of the MDDiM, it is
easy and straight-forward to understand it, since the MDDiM is based on
a mapping that is more general than a differential operator. Especially, it
should be emphasized that, when B2 = π and B0 = π/2 (as we used in this
paper), the auxiliary linear operator L = J −1 can not be expressed in a
differential form! Fortunately, we now need not consider the auxiliary linear
operator L at all, mainly because the MDDiM is based on the directly defined
inverse mapping J , without considering its original auxiliary operator L .
This opens a completely new, more general way to solve nonlinear differential
equations, which is fundamentally different from the traditional methods.

All of these examples illustrate the validity of the MDDiM, and especially
the great freedom and large flexibility of directly defining the inverse mapping
J for various types of nonlinear problems.
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5. Concluding remarks

In scientific computation, it is time-consuming to calculate inverse opera-
tors of a differential equation. Can we solve a nonlinear differential equation
by means of directly defining an inverse mapping?

The answer is positive: we can indeed solve nonlinear differential equa-
tions by directly defining an inverse mapping J , as described in this article.
In this work, the “method of directly defining inverse mapping” (MDDiM)
is proposed based on the homotopy analysis method (HAM) [2–5], a widely
used analytic approximation technique for highly nonlinear problems. By
means of the MDDiM, one indeed can solve a nonlinear differential equation
without searching for any inverse operators at all, as illustrated in this pa-
per. From this viewpoint, the MDDiM is fundamentally different from the
traditional ones, which often spend lots of time to calculate inverse operators.

To simplify the use of the MDDiM, some rules are given to guide how
to directly define an inverse mapping J . Besides, a convergence theorem
is proved, which guarantees that a convergent series solution given by the
MDDiM must be one solution of problems under consideration. In addition,
three examples are used to illustrate the validity and potential of the MDDiM.

The MDDiM can be regarded as a generalization of the HAM and other
traditional methods: it directly uses mappings between base functions, in-
stead of differential operators. Note that a mapping is more general than a
differential operator. So, theoretically speaking, the MDDiM is more general
than the normal HAM and other traditional methods which are based on
differential operators.

In the frame of the normal HAM, the 2nd-order two-dimensional Gelfand
equation are replaced by an infinite number of the 4th-order (two-dimensional)
linear differential equations, as shown by Liao and Tan [17] who gained accu-
rate approximations with good agreement to numerical ones. However, this
is very difficult to understand in the frame of the traditional methods for
differential equations. But, from the viewpoint of the MDDiM, it is easy and
straight-forward to understand, since the MDDiM gives up the concept of
“differential operator” at all: it is based on directly defining inverse mapping
that is a concept more general than “differential operator”.

Hopefully, the MDDiM might bring us a completely new, more general
way to solve nonlinear differential equations, although further theoretical
researches and more applications are certainly needed in future.
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Appendix A. The properties of the homotopy-derivative Dm

For two series

φ(x; q) =
+∞∑
k=0

uk(x) qk, ψ(x; q) =
+∞∑
k=0

wk(x) qk,

where φ(x; q) and ψ(x; q) are analytic in q ∈ [0, a], it holds for integer m ≥ 0
that

Dm[φ] = um, (A.1)

Dm[qkφ] = Dm−k[φ] =

{
um−k when 1 ≤ k ≤ m,
0 when k > m,

(A.2)

Dm[φψ] =
m∑
k=0

Dk[φ] Dm−k[ψ] =
m∑
k=0

uk wm−k

=
m∑
k=0

Dk[ψ] Dm−k[φ] =
m∑
k=0

wk um−k, (A.3)

Dm[φn+1] =
m∑
k=0

Dk[φ] Dm−k[φ
n] =

m∑
k=0

uk Dm−k[φ
n]. (A.4)

Besides, it holds

Dm[φn] =
m∑

r1=0

um−r1

r1∑
r2=0

ur1−r2

r2∑
r3=0

ur2−r3 · · ·
rn−2∑
rn−1=0

urn−2−rn−1urn−1 , (A.5)

and
Dm[f(x) φ+ g(x) ψ] = f(x)Dm[φ] + g(x)Dm[ψ] (A.6)

for arbitrary function f and g independent of q, and

Dm [L [φ]] = L [Dm[φ]] = L [um] (A.7)
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for a linear operator L , respectively. In addition, it holds the recursion
formulas

D0

[
eαφ
]

= eαu0 , (A.8)

Dm

[
eαφ
]

= α

m−1∑
k=0

(
1− k

m

)
um−k Dk

[
eαφ
]

; (A.9)

D0[sinφ] = sin(u0), D0[cosφ] = cos(u0), (A.10)

Dm [sinφ] =
m−1∑
k=0

(
1− k

m

)
um−k Dk [cosφ] , (A.11)

Dm [cosφ] = −
m−1∑
k=0

(
1− k

m

)
um−k Dk [sinφ] (A.12)

for m ≥ 1. In general, it holds the recursion formulas

D0[f(φ)] = f(u0), (A.13)

Dm[f(φ)] =
m−1∑
k=0

(
1− k

m

)
um−k Dk [f ′(φ)]

=
m−1∑
k=0

(
1− k

m

)
um−k

∂ {Dk[f(φ)]}
∂u0

(A.14)

for m ≥ 1, where f(φ) is a smooth function.
For detailed derivation of these properties, please refer to Liao [19] and

§4.2 of Liao’s book [4].
Using the above properties, one can derive some other formulas. For

example, it holds

Dm+1 [sin(qφ)] = Dm+1

[
q

{
sin(qφ)

q

}]
= D1[q]Dm

[
sin(qφ)

q

]
= Dm

[
sin(qφ)

q

]
. (A.15)

So, using the recursion formulas mentioned above, one can get Dm[q−1 sin(qφ)].
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