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Abstract

A powerful, easy-to-use analytic technique for nonlinear problems, namely the Homotopy analysis method, is

applied to solve the Vakhnenko equation, a nonlinear equation with loop soliton solutions governing the propagation

of high-frequency waves in a relaxing medium. By means of the transformation of independent variables, an analysis

one-loop soliton solution expressed by a series of exponential functions is obtained, which agrees well with the exact

solution. This indicates the validity and great potential of the Homotopy analysis method in solving complicated sol-

itary wave problems.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Consider the propagation of high-frequency waves in a relaxing medium [1], governed by the so-called Vakhnenko

equation [2–6]
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uþ u ¼ 0; ð1Þ
where u denotes the dimensionless pressure, x and t are spatial and temporal variables, respectively. The Vakhnenko

equation has looplike soliton solution, and thus it is not easy to solve it.

Currently, an analytical method for strongly nonlinear problems, namely the Homotopy analysis method [7–13], has

been developed and successfully applied to many kinds of nonlinear problems in science and engineering. In this paper,

the Homotopy analysis method is applied to solve such a multiple-valued nonlinear problem with the one-loop solition

solution. The soliton solution solved by the Homotopy analysis method is verified by the exact one given in [2,4]. This
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further demonstrates the validity and effectiveness of the Homotopy analysis method in solving complicated nonlinear

solitary wave problems.
2. Transformation of the Vakhnenko equation for one-loop soliton solution

Following Vakhnenko et al. [4], we introduce new independent variables X and T, defined by
x ¼ T þ
Z X

�1
Uðn; T Þdn þ x0; t ¼ X ; ð2Þ
where u(x, t) = U(X,T), and x0 is a constant. As pointed out by Vakhnenko and Parkes [14], the transformation

(2) is similar to the transformation between Eulerian coordinates (x, t) and Lagrangian coordinates (T,X).

Writing
W ðX ; T Þ ¼
Z X

�1
Uðn; T Þdn; ð3Þ
we have
W X ðX ; T Þ ¼ UðX ; T Þ: ð4Þ
From (2) it follows that
o

oX
¼ o

ot
þ u

o

ox
;

o

oT
¼ /

o

ox
; ð5Þ
where
/ðX ; T Þ ¼ 1þ W T : ð6Þ
From (1) and (2), we obtain
UXT þ /U ¼ 0: ð7Þ
Substituting (4) and (6) into (7) yields
W XXT þ W XW T þ W X ¼ 0: ð8Þ
The solution of the above equation is looked for in the form
W ðX ; T Þ ¼ W ðgÞ; g ¼ kX � xT ; ð9Þ
where k and x are constants. Substituting (9) into (8) yields
�kxW 000ðgÞ � x½W 0ðgÞ	2 þ W 0ðgÞ ¼ 0: ð10Þ
Write
W ðgÞ 
 B expðlgÞ; as g ! �1; ð11Þ
where B is a constant. Substituting (11) into (10) and balancing the main term yields
l ¼
ffiffiffiffiffiffi
1

kx

r
: ð12Þ
Under the transformation
h ¼ lg ¼
ffiffiffiffiffiffi
1

kx

r
g ¼

ffiffiffiffi
k
x

r
X �

ffiffiffiffi
x
k

r
T : ð13Þ
Eq. (10) becomes
W 000ðhÞ þ
ffiffiffi
1

v

r
½W 0ðhÞ	2 � W 0ðhÞ ¼ 0; ð14Þ
where v = k/x. According to [4], v denotes the speed of the wave propagation.
The boundary conditions of Eq. (14) are given below. Due to the definition (3), we have
W ð�1Þ ¼ 0: ð15Þ
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Considering the symmetry of U(X,T) in X � T space and the continuation of its 1st-order derivative, and taking ac-

count of (4), we have
W 0ðhÞ ¼ W 0ð�hÞ; ð16Þ

W 00ð0Þ ¼ 0: ð17Þ
Integrating (16) gives
W ðhÞ þ W ð�hÞ ¼ A; ð18Þ
where A is a constant. From (18) and (15) we obtain
W ð0Þ ¼ A
2
; W ðþ1Þ ¼ A: ð19Þ
Eqs. (15), (17) and (19) are the boundary conditions of Eq. (14).
3. Homotopy analysis method

Then, we apply the Homotopy analysis method to obtain W(h) on h > 0, because W(h) on h < 0 can be obtained
from (18) by the symmetry.

Under the transformation
W ðhÞ ¼ Aþ A
2
gðhÞ; ð20Þ
Eq. (14) becomes
g000ðhÞ þ c½g0ðhÞ	2 � g0ðhÞ ¼ 0; ð21Þ
subject to the boundary conditions
gð0Þ ¼ �1; g00ð0Þ ¼ 0; gðþ1Þ ¼ 0; ð22Þ
where
c ¼ A
2

ffiffiffi
1

v

r
ð23Þ
is a constant to be determined.

According to the governing Eq. (21) and the boundary conditions (22), the solution g(h) can be expressed by
gðhÞ ¼
Xþ1

m¼1
am expð�mhÞ; ð24Þ
where am(m = 1,2, . . .) is a coefficient. This provides us with the so-called Rule of Solution Expression, as mentioned by
Liao [7]. Thereafter, it is straightforward to choose
g0ðhÞ ¼ � 4
3
expð�hÞ þ 1

3
expð�2hÞ ð25Þ
as the initial guess of g(h) and
L½Uðh; qÞ	 ¼ o
3

oh3
� o

oh

� �
Uðh; qÞ ð26Þ
as the auxiliary linear operator, respectively. Then, we construct the so-called zero-order deformation equation
ð1� qÞL½Gðh; qÞ � g0ðhÞ	 ¼ �hqN½Gðh; qÞ;CðqÞ	; ð27Þ
subject to the boundary conditions
Gð0; qÞ ¼ �1; G00ð0; qÞ ¼ 0; Gðþ1; qÞ ¼ 0; ð28Þ
where q is an embedding parameter, �h is a non-zero parameter, and
N½Gðh; qÞ;CðqÞ	 ¼ G000ðh; qÞ þ CðqÞ½G0ðh; qÞ	2 � G0ðh; qÞ; ð29Þ
with primes denoting derivatives with respect to h.
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When q = 0, the solution of Eqs. (27) and (28) is
Gðh; 0Þ ¼ g0ðhÞ: ð30Þ
When q = 1, Eqs. (27) and (28) are equivalent to Eq. (21), provided
Gðh; 1Þ ¼ gðhÞ; Cð1Þ ¼ c: ð31Þ
Thus, as q increases from 0 to 1, G(h,q) varies from the initial approximation g0(h) to the exact solution g(h) of Eqs. (21)
and (22), so does C(q) from its initial approximation c0 to the exact value c. Note that we have great freedom to choose
the auxiliary parameter �h. Assume that �h is properly chosen so that the zero-order deformation Eqs. (27) and (28) have
solutions for all q 2 [0,1] and that the terms
gmðhÞ ¼
1

m!
omGðh; qÞ

oqm

����
q¼0

; cm ¼ 1

m!
omCðqÞ
oqm

����
q¼0

ð32Þ
exist for m P 1. Then, by Taylor�s theorem and using (30), we can expand G(h,q) and C(q) in power series of q as

follows
gðhÞ ¼ g0ðhÞ þ
Xþ1

m¼1
gmðhÞqm; ð33Þ

c ¼ c0 þ
Xþ1

m¼1
cmq

m: ð34Þ
Furthermore, assuming that �h are so properly chosen that the power series (33) and (34) are convergent at q = 1, we

have from (31) the solution series
gðhÞ ¼ g0ðhÞ þ
Xþ1

m¼1
gmðhÞ; ð35Þ

c ¼ c0 þ
Xþ1

m¼1
cm: ð36Þ
For brevity, define the vectors
~gk ¼ fg0ðhÞ; g1ðhÞ; g2ðhÞ; . . . ; gkðhÞg; ~ck ¼ fc0; c1; c2; . . . ; ckg: ð37Þ
Differentiating the zero-order deformation equations (27) and (28) m times with respect to q and then dividing them by

m! and finally setting q = 0, we have the high-order deformation equation
L½gmðhÞ � vmgm�1ðgÞ	 ¼ �hRmð~gm�1;~cm�1Þ; m P 1; ð38Þ
subject to boundary conditions
gmð0Þ ¼ g00mð0Þ ¼ gmðþ1Þ ¼ 0; ð39Þ
where
Rmð~gm�1;~cm�1Þ ¼
1

ðm� 1Þ!
om�1N½Gðh; qÞ;CðqÞ	

oqm�1

����
q¼0

¼
Xm�1
n¼0

cm�1�n

Xn

k¼0
g0kðhÞg0n�kðhÞ

" #
þ g000m�1ðhÞ � g0m�1 ð40Þ
and
vm ¼
1; m > 1;

0; m ¼ 1:



ð41Þ
It should be emphasized that Eq. (38) is linear, and Rmð~gm�1;~cm�1Þ is dependent upon ~gm�1 and~cm�1 that contain the
unknown cm�1. The solution of Eq. (38) can be expressed by
gmðhÞ ¼ g�ðhÞ þ C1 expð�hÞ þ C2 expðhÞ þ C3; ð42Þ
where C1, C2, and C3 are the integral constants, g*(g) is a special solution of Eq. (38) and contains the unknown cm�1.

Due to the boundary condition (39) at infinity, C2 and C3 must be zero. The unknown cm�1 and the constant C1 are

determined by the two boundary conditions (39) at h = 0.
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We apply the symbol computation software MATHEMATICA and solve the linear Eq. (38) one after the other in

order m = 1,2,3, . . .At the Mth-order of approximation, we have the analytic solutions
gðhÞ 

XM
m¼0

gmðhÞ ¼
X2Mþ2

k¼1
bk expð�khÞ; ð43Þ

c 

XM
m¼0

cm; ð44Þ
where bk is coefficient.

By means of transformation related to the original independent u and t, the solution of the Vakhnenko equation (1)

is then given in parametric form by
uðx; tÞ ¼ W X ðhÞ ¼
ffiffiffi
v

p
W hðhÞ ¼

ffiffiffi
v

p A
2
g0ðhÞ; ð45Þ

x� vt ¼ T þ W þ x0 � vX ¼ Aþ A
2
gðhÞ þ x0 �

ffiffiffi
v

p
h; ð46Þ
where A ¼ 2c
ffiffiffi
v

p
and x0 is a constant. For the symmetry in x � t space, we have
x0 ¼ �A� A
2
gð0Þ ¼ �A

2
: ð47Þ
Therefore, the Mth-order approximation solution of the Vakhnenko equation (1) is given by a series of exponential

functions as
u 
 �vc
X2Mþ2

k¼1
kbk expð�khÞ; ð48Þ

x� vt 

ffiffiffi
v

p
c þ c

X2Mþ2

k¼1
bk expð�khÞ � h

" #
: ð49Þ
4. Result analysis

In [4], the exact one-loop soliton solution is given by
u ¼ 3v
2
sech2

ffiffiffi
v

p
f
2

� �
; x� vt ¼ 3

ffiffiffi
v

p
tanh

ffiffiffi
v

p
f
2

� �
� vf; ð50Þ
where f plays the role of the parameter in these dependences. From [4] it is easy to derive that the exact value of c equals
to 3.

Note that the series (35) and (36) contain the auxiliary parameter �h, which provides us with a simply way to adjust
and control the convergence region and rate of the solution series. As pointed out by Liao [7], in general, by

means of the so-called �h-curve (the c � �h curve for the considered problem), it is straightforward to choose a proper
value of �h which ensures that the solution series is convergent. In this way, it is found that our series converge when
�h = �1.
To verify the correctness of our solution given by the Homotopy analysis method, we substitute our analysis approx-

imate solution g(h) expressed by (44) and (43) into Eq. (21) to evaluate the corresponding residual error. The residual
error of our 40th-order approximation solution under �h = �1 is as shown in Fig. 1. Note that the maximum magnitude
of the residual error of the 40th-order approximation when �h = �1 is less than 5 · 10�6, as shown in Fig. 1. Our approx-
imate results of c are as listed in Table 1. Obviously, our solution series (36) converges to the exact value c = 3. Besides,
using the so-called Homotopy–Padé technique (see page 38 and Section 3.5.2 in [7]), we can greatly accelerate the con-

vergence of the series (36), as shown in Table 2.

Our approximate one-loop soliton solution of the Vakhnenko equation (1) is expressed by a series of expo-

nential functions (48) and (49). For instance, at 10th-order of approximation (when �h = �1), the coefficient bk

are as follows:
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b1 = �1.9713308559345335
Fig. 1. Residual error of the 40th-order approximat

Table 1

The analytic approximations of c by means of �h = �1
Order of approximation c

5 2.906

10 2.979

15 2.994

20 2.998

25 2.999

30 2.999

35 2.999

40 2.999

45 2.999

50 2.999

55 2.999

60 2.999
b2 = 1.8741124232730177

b3 = �1.688995582562311
 b4 = 1.4156399534626933

b5 = �1.0857623593637347
 b6 = 0.7525346878125345

b7 = �0.46677089965620133
 b8 = 0.25705676045984427

b9 = �0.1248151101756921
 b10 = 0.05307270253073546

b11 = �0.019621378720951158
 b12 = 0.006256735459929639

b13 = �0.0017046514230563638
 b14 = 0.00039234284621390814

b15 = �0.0000752258053946054
 b16 = 0.00001180559804497769

b17 = �1.4822626210812044·10�6
 b18 = 1.444037499504032 · 10�7
b19 = �1.0451783764835563·10�8
 b20 = 5.255674886127573·10�10
b21 = �1.6284562979132532·10�11
 b22 = 2.3280111040532965·10�13
ion of Eq. (21) given by means of �h = �1.

9507

5901

2622

1896

3887

7841

9212

9706

9888

9957

9983

9993



Fig. 2. Comparison of the exact one-loop solitor solution of Vakhnenko equation [4] with the 10th-order homotopy analysis

approximation when �h = �1. Solid line 10th-order appproximation; Circle: exact solution given by Vakhnenko et al. [4].

Table 2

The [m,m] Homotopy–Padé approximation of c

m c

2 2.9959286

4 2.9993598

6 2.9999717

8 2.9999997

10 2.9999997

12 2.9999999

14 3.0000000

16 3.0000000

18 3.0000000

20 3.0000000
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The comparison of our 10th-order approximation when �h = �1 with the exact solution (50) is as shown in Fig. 2. Obvi-
ously, our analytic approximation agrees well with the exact one. This verifies the validity and effectiveness of the

Homotopy analysis method to complicated nonlinear solitary wave problems.
5. Conclusion

In this paper, a powerful, easy-to-use analytic technique for nonlinear problems in general, namely the Homotopy

analysis method [7], is applied to solve to a nonlinear problem with one-loop soliton solution, i.e. the propagation of

high-frequency waves in a relaxing medium governed by the Vakhnenko equation (1). We use the independent variables

transformation mentioned in [4] to obtain a nonlinear equation and then solve it by means of the Homotopy analysis

method. By means of the transformation back to the original independent variables, an analysis one-loop soliton solu-

tion expressed by a series of exponential functions to the Vakhnenko equation is gained. Our analytic solution agrees

well with the exact solution given by Vakhnenko [2,4]. This verifies the validity and great potential of the Homotopy

analysis method in solving complicated solitary wave problems in science and engineering.
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