
International Journal of Heat and Mass Transfer 86 (2015) 174–182
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Unsteady mixed nano-bioconvection flow in a horizontal channel
with its upper plate expanding or contracting
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.003
0017-9310/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ammarah@sjtu.edu.cn, ammarah_rafiqu@hotmail.com

(A. Raees), hangxu@sjtu.edu.cn (H. Xu), sjliao@sjtu.edu.cn (S.-J. Liao).
Ammarah Raees a, Hang Xu a,⇑, Shi-Jun Liao a,b

a State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University (KAU), Jeddah, Saudi Arabia

a r t i c l e i n f o
Article history:
Received 9 June 2014
Received in revised form 18 February 2015
Accepted 1 March 2015
Available online 17 March 2015

Keywords:
Unsteady flow
Bioconvection
Nanofluid
Gyrotactic microorganisms
a b s t r a c t

This article describes the unsteady flow of liquid containing nanoparticles and motile gyrotactic microor-
ganisms between two parallel plates while keeping one moving and other fixed. The passively controlled
nanofluid model is used to describe the nanoparticles concentration. Some instances of direct application
of this nanofluid bioconvection study can be found in pharmaceutical industry, microfluidic devices,
microbial enhanced oil recovery, modeling oil and gas-bearing sedimentary basins and many more.
The governing partial differential equations are transformed to ordinary differential equations using
the similarity transformations. The mathematica package based on homotopy analysis method is used
to solve this problem. The physical phenomenon is explained by drawing the graphs for the temperature,
nanoparticles concentration and density of motile microorganisms profiles. Also the tables are given
which completely depicts the convergence of gained results.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The unsteady squeezing flow of a viscous fluid between parallel
plates is of significant importance in the hydrodynamical machi-
nes, polymer processing, compression and injection moulding
and lubrication equipment. Such type of flow is basically caused
by the moving boundary under the influence of external normal
stresses or vertical velocities. The earlier research work on squeez-
ing flow by using the lubrication approximation was carried out by
Stefan [1] and with the passage of time the researchers analyzed
the squeezing flow in many different ways. Some numerical solu-
tions of squeezing flow between parallel plates had been con-
ducted by Verma [2] and later by Singh et al. [3]. Further, Hamza
[4] had considered suction and injection effects on flow between
plates reflecting squeezing flow. In addition to this the 2nd grade
fluid flow between the rotating parallel plates was investigated
in the papers by Rajagopal & Gupta [5] and Dandapat & Gupta
[6]. Duwairi et al. [7] examined the effects of heat transfer on the
squeezing flow of a viscous fluid. Khaled & Vafai [8] investigated
the influence of magnetohydrodynamic effects on the squeezing
flow and heat transfer over a sensor surface. Siddiqui et al. [9] ana-
lyzed the hydromagnetic squeezing flow of a viscous fluid between
parallel plates. Mustafa et al. [10] studied the heat and mass trans-
fer in the unsteady squeezing flow between parallel plates. They
also considered the dissipation effects and chemical reaction.
Rashidi et al. [11,12] examined and solved the hydrodynamic
squeezing flow of a viscous fluid and unsteady squeezing flow of
a 2nd grade fluid between circular plates by homotopy analysis
method.

The concept of enhancing the thermal conductivity of base flu-
ids by adding the nanoparticles was first introduced by Choi [13].
After this a large number of research work and experiments were
carried out to investigate the characteristics and heat transfer phe-
nomenon in nanofluid such as Kakać and Pramuanjaroenkij [14],
Wong and Leon [15], Saidur et al. [16], Wen et al. [17] and
Buongiorno [18]. Ellahi et al. [19] considered the natural convec-
tion nanofluids flow along an inverted cone using Hamilton–
Crosser model for the effective thermal conductivity. Ellahi [20]
presented an analytical solution for a non-Newtonian nanofluid
flow in a pipe with consideration of the effects of MHD and tem-
perature dependent viscosity. Sheikholeslami et al. [21] studied
the natural convection heat transfer in a nanofluid filled enclosure
with elliptic inner cylinder. Ellahi et al. [22] made an analysis on
non-Newtonian nanofluids flow through a porous medium
between two coaxial cylinders with heat transfer and variable vis-
cosity. Other important works relating to the theoretical and
computational aspects can be found in Ellahi et al. [23], Akbar
et al. [24], Sheikholeslami et al. [25], Sheikholeslami et al. [26],
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Fig. 1. The physical sketch and the coordinate system.
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Akbar et al. [27]. Later on Kuznetsov and Nield [28] revised the
Cheng–Minkowycz problem [29] by considering the passive
boundary condition rather than active boundary condition. One
of the most advancement in the heat transfer studies of nanofluid
is the addition of microorganisms. Adding the microorganisms in
base fluids such as algae and bacteria develops/generate the pro-
cess of bioconvection [30] which is caused by their up swimming
usually towards the source of light, gravity and oxygen and their
density tends to be slightly higher than that of the ambient fluid,
this can lead to an unstable density profile, with resultant over-
turning of the fluid. The suspension of microorganisms into
nanofluids enhances its thermal conductivity significantly. The
suspension of microorganisms in nanofluid was investigated in a
series of papers published by Kuznetsov and Avramenko [31],
Geng and Kuznetsov [32,33] and Kuznetsov [34–36]. Recently, Xu
& Pop [37] examined the mixed convection flow in the horizontal
channel filled by nanofluid containing both nanoparticles and
gyrotactic microorganisms.

Several scientific problems are modeled by nonlinear ordinary
or partial differential equations which can be solved by numerical
and analytical techniques. Both of these techniques have some pros
and cons. Numerical solutions can only be obtained for a set of dis-
crete points on a curve which is often time consuming. Whereas
analytical solutions are given at each point within the domain of
interest. For this purpose researchers have been engaged in obtain-
ing analytical solutions of various nonlinear problems in science
and engineering. In this regard, the homotopy analysis method
(HAM) proposed by Liao [38] in 1992 gives the analytic solutions
for a variety of nonlinear problems. The new advancement in
HAM is the development of a Mathematica package BVPh 2.0
[39] by Zhao & Liao. This analytic tool can be used to solve the sys-
tem of linear/nonlinear ordinary differential equations. Moreover,
the convergence of the results obtained by BVPh 2.0 is guaranteed
by convergence-control parameter because it chooses the optimal
value of convergence-control parameter at the minimum of
squared residual at the desired order of approximation.

In this work, the unsteady squeezing flow of fluid containing
both nanoparticles and gyrotactic microorganisms between the
parallel plates is analyzed. Though in the literature survey, several
aspects of nanofluid bioconvection has been presented but it still
needs to be analyzed at fundamental level. So, it seems worthwhile
attempt to compute the analytic solution for such an unsteady
problem which is the extension of the work done by Kuznetsov
[36]. Here in particular, we have considered passively controlled
nanofluid model to formulate the problem and the fluid is consid-
ered between two parallel plates, one of which is moving and other
is kept fixed. Also this is first such study in which the time-depen-
dent mixed nano bioconvection flow has been investigated in a
horizontal channel. Then the obtained governing nonlinear partial
differential equations are transformed to nonlinear ordinary dif-
ferential equations by using the similarity transformation and
afterwards the problem is solved by applying the BVPh 2.0.
Several aspects of the problem are investigated and shown graphi-
cally with respect to the physical parameters involved in it.
2. Mathematical formulation

Consider the unsteady two dimensional flow and heat transfer
of an incompressible viscous fluid between two infinite parallel
plates. The coordinate system is chosen such that the x-axis is
along the lower plate and y-axis is normal to the plate, respectively
as shown in Fig. 1. It is assumed that the two plates are placed at
the distance y ¼ hðtÞ while the upper plate is moving towards or
away from the lower stationary plate with the velocity
vðtÞ ¼ dh=dt. It is also assumed that both plates are impermeable.
Further, it is assumed that the lower and upper plates are main-
tained at a constant temperature T1 and T2, respectively. Here
the symmetric nature of the flow is adopted. Also passively con-
trolled nanofluid model is considered here and for this the upper
plate has the passive boundary condition whereas at lower plate
the nanoparticles distribution is a constant C0. In addition to this,
the distribution of microorganisms is also constant on lower and
upper plates denoted as N1 and N2. Here the base fluid is consid-
ered to be water because microorganisms can only survive in
water. Together with this it is also assumed that the nanoparticles
concentration is dilute and they do not agglomerate in the fluid.
Under these assumptions and using nanofluid model proposed by
[28], the governing conservation equations of mass, momentum,
energy and mass transfer, nanoparticles volume fraction and
microorganisms at unsteady state can be expressed as

r � v ¼ 0; ð1Þ

qf
@v
@t
þ v � r

� �
� v ¼ �rpþ lr2v; ð2Þ

@T
@t
þ v � rT ¼ ar2T þ s DBrT � rC þ ðDT=T0ÞrT � rT½ �; ð3Þ

@C
@t
þ ðv � rÞC ¼ DBr2C þ ðDT=T0Þr2T; ð4Þ

@N
@t
¼ �r � j; ð5Þ

where v is the velocity vector of the flow with u and v being the
velocity components in x-direction and y-direction respectively, T
is the temperature, C is the nanoparticle volumetric fraction, N is
the number density of motile microorganisms, j is the vector of
the flux of microorganisms, p is the pressure, qf is the density of
nanofluid, l is the viscosity of the suspension of nanofluid and
microorganisms, a is the thermal diffusivity of the nanofluid,
s ¼ ðqcÞp=ðqcÞf is a parameter with ðqcÞp being heat capacity of
the nanoparticle and ðqcÞf being the heat capacity of fluid, DB is
the Brownian diffusion coefficient, DT is the thermophoretic diffu-
sion coefficient, T0 is the reference temperature.

Following [36], the flux of microorganisms j which is caused
due to fluid convection, self-propelled swimming of microorgan-
isms and diffusion of microorganism, is expanded as

j ¼ Nv þ N~v � DnrN; ð6Þ

where Dn is the diffusivity of microorganisms, ~v is the average
swimming velocity vector of the oxytactic microorganism defined
by

~v ¼ ðbWc=DCÞrC; ð7Þ



Table 1
Error Analysis when hf ¼ hh ¼ h/ ¼ hs ¼ �1 for b ¼ 3=2 where w ¼ 1; Pr ¼ 1;Nt ¼ Nb ¼ 0:1; dh ¼ 1=2; d/ ¼ 0; ds ¼ 1:

Order ef eh e/ es

2 16.1477 0.0003594 0.009128 0.02845
6 0.000155 5:27037� 10�8 2:42747� 10�6 5:43077� 10�5

10 3:95449� 10�9 3:38701� 10�12 2:45993� 10�10 1:1147� 10�7

20 5:46441� 10�20 4:95039� 10�22 2:33447� 10�20 1:40039� 10�16

30 1:57101� 10�31 9:27053� 10�32 3:60348� 10�30 3:79339� 10�25

Table 2
Error Analysis when hf ¼ hh ¼ h/ ¼ hs ¼ �1 for b ¼ �3=2 where w ¼ 1; Pr ¼ 1; Nt ¼ Nb ¼ 0:1; dh ¼ 1=2; d/ ¼ 0; ds ¼ 1.

Order ef eh e/ es

2 278.036 0.00504677 0.261258 0.313662
6 2:32217� 10�4 7:36379� 10�7 5:38212� 10�5 1:59413� 10�2

10 2:89185� 10�9 1:94317� 10�10 9:80332� 10�9 2:61172� 10�5

20 7:20342� 10�21 3:32857� 10�19 8:23022� 10�18 3:71041� 10�12

30 3:81939� 10�32 7:37875� 10�28 1:34633� 10�26 6:72858� 10�19
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Fig. 2. Streamlines in the case of t ¼ 0:1; w ¼ 1; b ¼ 1:5; Nt ¼ Nb ¼ 0:1;
Le ¼ Pe ¼ Sc ¼ 1; Pr ¼ 1.
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Fig. 3. Velocity component u in x-direction for different values of time t in the case
of w ¼ 1; b ¼ 1:5; Nt ¼ Nb ¼ 0:1; Le ¼ Pe ¼ Sc ¼ 1; Pr ¼ 1.
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in which b is the chemotaxis constant and Wc is the maximum cell
swimming speed relative to the nanofluid and is assumed to be con-
stant. Applying the assumptions and doing simplifications to Eqs.
(1)–(5) give rise to the following equations
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where n ¼ @v
@x � @u

@y ¼ �r
2w and ~v ¼ ðbWc=DCÞ @C

@y. The appropriate ini-

tial and boundary conditions of Eqs. (8)–(12) is

u¼0; v ¼ dh
dt
; T ¼ T2; DB

@C
@y
þDT

T0

@T
@y
¼0; N¼N2 at y¼hðtÞ;

u¼0; v ¼0; T ¼ T1; C¼C0; N¼N1 at y¼0: ð13Þ
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Fig. 4. Temperature T for different values of time t in the case of
w ¼ 1; b ¼ 1:5; Nt ¼ Nb ¼ 0:1; Le ¼ Pe ¼ Sc ¼ 1; Pr ¼ 1.
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Now we introduce the following similarity transformations

wðx;yÞ¼ bm
1�at

� �1=2

xf ðgÞ; u¼ bx
ð1�atÞ f 0ðgÞ; v ¼� bm

1�at

� �1=2

f ðgÞ

g¼ b
mð1�atÞ

� �1=2

y; hðgÞ¼ T�T0

T2�T0
; /ðgÞ¼C�C0

C0
; sðgÞ¼ N�N0

N2�N0
ð14Þ

and substitute then to Eqs. (8)–(12) together with boundary condi-
tions (13) generates the set of four ordinary differential equations

f
0000
þ ff 000 � f 0f 00 � bgf 000 � 3bf 00 ¼ 0; ð15Þ
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Fig. 5. Nanoparticle volumetric fraction C for different values of time t in the case of
w ¼ 1; b ¼ 1:5; Nt ¼ Nb ¼ 0:1; Le ¼ Pe ¼ Sc ¼ 1; Pr ¼ 1.
h00 þ Prðf h0 � bgh0Þ þ Nbh
0/0 þ Nth

02 ¼ 0; ð16Þ

/00 þ Le f/0 � bg/0ð Þ þ Nt

Nb
h00 ¼ 0; ð17Þ

s00 þ Scðfs0 � bgs0Þ � Pe/
00s� Pe/

0s0 ¼ 0; ð18Þ

subject to following boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; hð0Þ ¼ 1; Nb/
0ð0Þ þNth

0ð0Þ ¼ 0; sð0Þ ¼ 1;

f 0ð1Þ ¼ 0; f ð1Þ ¼w; hð1Þ ¼ dh; /ð1Þ ¼ d/; sð1Þ ¼ ds; ð19Þ

where

b ¼ a
2b

; Pr ¼ m
a
; Nb ¼

sDBC0

a
; Nt ¼

sDTðT2 � T0Þ
T0a

;

Le ¼
m

DB
; Pe ¼

bcWc

Dn
; Sc ¼

m
Dn

; w ¼ Ha
2
ffiffiffiffiffiffi
bm
p ;

dh ¼
T1 � T0

T2 � T0
; d/ ¼

C1 � C0

C0
; ds ¼

N1 � N0

N2 � N0
: ð20Þ

Here, b is the unsteadiness squeeze parameter where b > 0 corre-
sponds to the accelerating plates moving apart, while b < 0 corre-
sponds to the decelerating plates moving together (the so called
squeezing flow), respectively. Also Nb; Nt ; Pr; Le; Sc , and Pe are
respectively, the Brownian motion parameter, the thermophoresis
parameter, the Prandtl number, the Levis number, the Schmidt
number, the bioconvection Peclet number and dh; d/; ds and w
are constants.

3. Solution method and error analysis

The nonlinear ordinary differential Eqs. (15)–(18) are solved by
applying the BVPh 2.0 [39]. This method is developed on the con-
cept of computing with functions rather than numbers and this is
why the singularities and infinite interval in the governing equa-
tions together with their boundary conditions are solved in a very
easy way by using the computer algebra system such as
Mathematica, Maple and so on. So in the frame of HAM it is reason-
able to build such a Mathematica package which can be used
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Fig. 6. Number density of motile microorganisms N for different values of time t in
the case of w ¼ 1; b ¼ 1:5; Nt ¼ Nb ¼ 0:1; Le ¼ Pe ¼ Sc ¼ 1; Pr ¼ 1.
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Fig. 7. Nanoparticle volume fraction profile sðgÞ for different values of squeeze
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efficiently to solve highly nonlinear ordinary differential equations
with multiple solutions and singularities. BVPh 2.0 also has the
potential to solve the system of nonlinear ordinary differential
equations and eigenvalue problems in finite/semi-finite/infinite
interval. As in HAM the convergence of obtained solution can be
controlled by using the optimal value of the so called conver-
gence-control parameter, which can be chosen at the minimum
of squared residual of governing equations at certain order of
approximations. In the similar manner, BVPh 2.0 guarantees the
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Fig. 8. Nanoparticle volume fraction profile sðgÞ for different values of Le in the case
of w ¼ 1; Nt ¼ Nb ¼ 0:1; Pr ¼ Pe ¼ Sc ¼ 1; b ¼ 1:5.
convergence of homotopy series by selecting the value of
convergence-control parameter at the minimum error at some
specified approximation. The error estimation functions for
f ðgÞ; hðgÞ; /ðgÞ and sðgÞ in our calculations are defined as

ef ¼
Z 1

0
f
0000
þ ff 000 � f 0f 00 � bgf 000 � 3bf 00

h i2
dg;

eh ¼
Z 1

0
h00 þ Prðf h0 � bgh0Þ þ Nbh

0/0 þ Nth
02� �2

dg;

e/ ¼
Z 1

0
/00 þ Le f /0 � bg/0ð Þ þ Nt

Nb
h00

� �2

dg;

es ¼
Z 1

0
s00 þ Scðfs0 � bgs0Þ � Pe/

00s� Pe/
0s0

� �2
dg: ð21Þ

In addition to this, the convergence of homotopy series can be
accelerated by using either the iteration approach or by applying
the homotopy-pade approximations. Both of these techniques can
also be employed to obtain the problem solution by directly using
some simple commands. Further, the convergence of homotopy ser-
ies also depends upon the selection of initial guess, the auxiliary lin-
ear operator and the auxiliary function. The chosen auxiliary linear
operators for the current problem are as follows

Lf ¼
@4

@g4 ; Lh ¼ L/ ¼ Ls ¼
@2

@g2 ; ð22Þ

whereas the initial guesses f 0ðgÞ; h0ðgÞ; /0ðgÞ and s0ðgÞ are chosen
based on the boundary conditions (19), which are given as

f 0ðgÞ ¼
5w
2

g3 � 3w
2

g5; h0ðgÞ ¼ 1þ ðdh � 1Þg;

/0ðgÞ ¼ d/ þ
Ntð1� dhÞ

Nb

� �
g; s0ðgÞ ¼ 1þ ðds � 1Þg3: ð23Þ

Thus, BVPh 2.0 is applied successfully to solve the system of nonlin-
ear ordinary differential Eqs. (15)–(18) subject to the boundary con-
ditions (19). To ensure the convergence of our obtained results, the
Tables 1 and 2 are presented in the case of b > 0 and b < 0. Note
that we have chosen dh ¼ 1=2; d/ ¼ 0; ds ¼ 1 and w ¼ 1 throughout
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Fig. 9. Nanoparticle volume fraction profile sðgÞ for different values of Nt in the case
of w ¼ 1; Nb ¼ 0:1; b ¼ 1:5; Le ¼ Pe ¼ Sc ¼ Pr ¼ 1.
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our calculations. Further, our computations shows that the obtained
series solution converges when hf ¼ hh ¼ h/ ¼ hs ¼ �1. The reduc-
tion in the residual error with the increase in the order of approx-
imations guarantees the convergence of resulting homotopy series.
4. Results and discussion

To get the better understanding of the physics of fluid flow, the
streamlines at a given instant of time are shown in the Fig. 2. Here
we have chosen t ¼ 0:1 and the case for b > 0 is taken in account.
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Fig. 11. Density of motile microorganisms profile sðgÞ for different values of
squeeze parameter b in the case of w ¼ 1; Nt ¼ Nb ¼ 0:1; Le ¼ Pe ¼ Sc ¼ Pr ¼ 1.
The dimensional velocity component and temperature are plotted
at different values of time shown in Figs. 3 and 4. The figures shows
that the velocity component decreases monotonously while the
temperature deceases continuously as the time increases.
Similarly, the nanoparticle volumetric fraction increases and num-
ber density of motile microorganisms decreases monotonously as
the time increases as given in Figs. 5 and 6. Further, the addition
of gyrotactic microorganisms in the nanofluid enhances its thermal
conductivity. The combination of microorganisms and small parti-
cles make the nanofluid more stable because the settling of parti-
cles is slowed down and the mixing(mass transfer) is enhanced due
to bioconvection [35]. Also the unstable density stratification at the
upper fluid layer caused due to the upswimming of microorganism
is compensated with the settling of small particles at the lower
fluid layer.

Now we will discuss the effect of embedding physical parame-
ters on the nanoparticles volume concentration /ðgÞ and density of
motile microorganisms sðgÞ profiles. For this purpose, the signifi-
cant influence of the squeeze parameter b, the Lewis number Le,
the thermophoresis parameter Nt , the Brownian motion parameter
Nb on nanoparticle volume fraction profile /ðgÞ are displayed in
Figs. 7–10. Fig. 7 depicts that the value of /ðgÞ becomes greater
and greater with the decreasing value of b. Here the values of
b > 0 is related to the upward motion of plate and b < 0 corre-
sponds to the downwards motion of upper plate towards the sta-
tionary lower plate. The variation of Le on the /ðgÞ is plotted in
Fig. 8. It is observed from the figure that /ðgÞ decreases continu-
ously as the value of Le evolves. Then the Figs. 9 and 10 shows
the effects of Nt & Nb which illustrates the thermophoresis effect
and Brownian motion on /ðgÞ. Physically, Brownian motion can
be observed due to the random motion of suspended nanoparticles,
while thermophoresis effect is caused by the migration of nanopar-
ticles due to the imposed temperature gradient across the fluid.
The values of Nt & Nb signifies the thermophoresis effect and
Brownian motion. So, Nt & Nb can be given any value in the range
0 6 Nt ; Nb <1. It is noticed from Fig. 9 that increment in the
value of Nt results in the enhancement of the value of nanoparticle
volume fraction profile because increase in the Nt induced by
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Fig. 12. Density of motile microorganisms profile sðgÞ for different values of Le in
the case of w ¼ 1; Nt ¼ Nb ¼ 0:1; Pr ¼ Pe ¼ Sc ¼ 1; b ¼ 1:5.
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Fig. 13. Density of motile microorganisms profile sðgÞ for different values of Nt in
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Fig. 14. Density of motile microorganisms profile sðgÞ for different values of Nb in
the case of w ¼ 1; Nt ¼ 0:1; b ¼ 1:5; Le ¼ Pe ¼ Sc ¼ Pr ¼ 1.
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Fig. 15. Density of motile microorganisms profile sðgÞ for different values of Pe in
the case of w ¼ 1; Nt ¼ Nb ¼ 0:1; b ¼ 1:5; Le ¼ Sc ¼ Pr ¼ 1.
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Fig. 16. Density of motile microorganisms profile sðgÞ for different values of Pr in
the case of w ¼ 1; Nt ¼ Nb ¼ 0:1; b ¼ 1:5; Le ¼ Pe ¼ Sc ¼ 1.
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thermal gradient causes larger mass flux which results in rise of
/ðgÞ. But Nb behaves in an opposite manner on /ðgÞ as compared
to Nt . It is displayed in Fig. 10, that as the value of Nb becomes
smaller and smaller the /ðgÞ increases. It is worth mentioning here
that nanoparticles volume concentration profile shows the devia-
tion for the values of Nb ranging from 0 6 Nb 6 2 and it remains
negligibly altered for the values of Nb > 2.

Figs. 11–16 are devoted to visualize the effect of density of
motile microorganisms on the squeeze parameter b, the Levis
number Le, the thermophoresis parameter Nt , the Brownian motion
parameter Nb, the Prandtl number Pr and the bioconvection Peclet
number Pe. The influence of squeeze parameter b on sðgÞ is pre-
sented in Fig. 11. It is noticed from the figure that initially sðgÞ
increases gradually but as the g reaches the neighborhood of 0.6
it starts to decrease when the squeeze parameter is small. But as
the value of b increases, sðgÞ shows an opposite trend because
sðgÞ decreases firstly until g < 0:6 and increases beyond this value
of g. The variation of sðgÞ with other physical parameters
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Le; Nt ; Nb; Pr and Pe is quite similar to that of sðgÞ with b. As the
value of Lewis number increases which describes the Brownian dif-
fusion of nanoparticles, the density of motile microorganisms
decreases for g < 0:6 and increases after the 0.6 value of g as plot-
ted in the Fig. 12. Similar to Le; Nt and Nb shows the same trend on
the sðgÞ as illustrated in Figs. 13 and 14. Finally, the effect of bio-
convection Peclet number and Prandtl number on sðgÞ is given in
Figs. 15 and 16. It is worth pointing here that as the microorgan-
isms can survive only in water but for the computational ease
we have chosen Pr ¼ 1 to gain all the graphical results and also
our results are quite similar for Pr ¼ 7 and Pr ¼ 1. The Prandtl
number Pr ¼ 0:72; 1:0 and 7.0 correspond to air, electrolyte solu-
tion, and water, respectively. In a liquid metal, Pr � 1 and the
energy diffusion rate greatly exceeds the momentum diffusion
rate. The opposite is true for oils, for which Pr � 1.
5. Conclusions

In the present analysis, the investigation is made on the
unsteady flow of nanofluid between parallel plates containing both
nanoparticles and gyrotactic microorganisms. In particular, pas-
sively controlled nanofluid model is considered here to deeply
understand the flow and heat transfer in the nanofluids. The gov-
erning physical problem is transformed to ordinary differential
equations by using the similarity transformation. Then this prob-
lem is solved by using a newly developed Mathematica package
BVPh 2.0 based on HAM. The gained analytic results for the mixed
nano bioconvection time-dependent flow has not been reported
before in literature. Some conclusions which we have drawn from
our convergent results are as follows

� The convergent analytic solutions are obtained which are clear
from the error analysis shown in the Tables 1 and 2.
� The non-dimensional velocity component, temperature, nano-

particle volume fraction and number density of motile microor-
ganisms decreases with the increase in time.
� The nanoparticle volume fraction increases as the value of

squeeze parameter decreases.
� The nanoparticles volume fraction decreases with an intensifi-

cation in the Brownian motion effect but opposite trend is
noticed in the case of thermophoretic effect.
� The density of motile microorganisms shows the monotonic

behavior for the positive and negative values of squeeze
parameter as well as for other parameters involved in problem.
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