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In this paper the SIR and SIS epidemic models in biology are solved by means of an analytic
technique for nonlinear problems, namely the homotopy analysis method (HAM). Both of
the SIR and SIS models are described by coupled nonlinear differential equations. A one-
parameter family of explicit series solutions are obtained for both models. This parameter
has no physical meaning but provides us with a simple way to ensure convergent series
solutions to the epidemic models. Our analytic results agree well with the numerical ones.
This analytic approach is general and can be applied to get convergent series solutions of
some other coupled nonlinear differential equations in biology.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Epidemiology is the branch of biology which deals with the mathematical modeling of spread of diseases. Many problems
arising in epidemiology may be described, in a first formulation, by means of differential equations. This means that the
models are constructed by averaging some population and keeping only the time variable. To the best of our knowledge
the first mathematical model of epidemiology was formulated and solved by Daniel Bernoulli in 1760. Since the time of Ker-
mack and McKendrick [1], the study of mathematical epidemiology has grown rapidly, with a large variety of models having
been formulated and applied to infectious diseases [2–4].

Unfortunately, sometimes even the simplest mathematical models of natural phenomena with sets of first-order ordinary
differential equations are non-integrable. Nucci and Leach [5] have discussed these features and obtained an integrable SIS
model by applying Lie analysis. Many other mathematical tools such as stability theory [6], bifurcation theory [7], Lyapunov
method [8], Poincaré–Bendixson type theorems [9], index and topological concepts can be used to study these differential
equations arising in biology. There is an extensive literature concerning SIR and SIS models. Considerable attention has been
given to these models by several authors see [2–14]. As far as we know, there is no analytic solution of these models, as men-
tioned by Singh [13].

Consider a population which remains constant and which is divide into three classes: the susceptibles, denoted by S, who
can catch the disease; the infectives, denoted by I, who are infected and can transmit the disease to the susceptibles, and the
removed class, denoted by R, who had the disease and recovered or died or have developed immunity or have been removed
from contact with the other classes. Since from the modeling perspective only the overall state of a person with respect to
the disease is relevant, the progress of individuals is schematically described by
S! I ! R:
. All rights reserved.
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These types of models are known as SIR models. This model is deterministic.
In the SIS model, the infectives, I, return to the susceptible class, S, on recovery because the disease confers no immunity

against reinfection. Such models are more effective for diseases caused by bacteria or helminth agents and also for most sex-
ually transmitted disease. The progress of individuals in this model is schematically described by
S! I ! S:
Kermack and McKendrick [1] provided the mathematical models for SIR and SIS.
In this paper our main interest is to obtain explicit series solutions of the SIR and SIS epidemic models provided by Ker-

mack and McKendrick [1] with the help of the homotopy analysis method (HAM) [15,19]. This is a newly developed tech-
nique, which works for strongly nonlinear problems [15–28]. In Sections 2 and 3 of the paper we shall study the HAM
analysis of SIR and SIS models, respectively. By means of the HAM, the convergent series solutions for SIR and SIS models
are obtained. Our HAM results agree well with the results given by Singh [13] qualitatively, and also with the numerical ones,
as shown in Sections 2 and 3.

2. HAM analysis of SIR model

The classic SIR model [1] is described by
s0ðtÞ ¼ �rsðtÞiðtÞ; ð1Þ
i0ðtÞ ¼ rsðtÞiðtÞ � aiðtÞ; ð2Þ
subject to the initial conditions,
sð0Þ ¼ S0; ið0Þ ¼ I0; ð3Þ

where sðtÞ and iðtÞ denote the susceptibles and the infectives, respectively, r > 0 is the infectivity coefficient of the typical
Lotka–Volterra interaction term, and a > 0 is the recovery coefficient. Here, I0 > 0 and S0 > 0 are given constants.

Let us write
I1 ¼ iðþ1Þ; S1 ¼ sðþ1Þ:
It is known from the previous publications [1–13] that iðtÞ decreases monotonously from I0 to 0 when rS0=a < 1. However, in
case of rS0=a > 1; iðtÞ first increases to the maximum value and then decreases to zero. Thus, it always holds I1 ¼ 0. Besides,
it is known [1–13] that
S1 þ I1 �
a
r

ln S1 ¼ S0 þ I0 �
a
r

ln S0: ð4Þ
Thus, from the given values of I0 and S0, one can find S1 from the above equation.

2.1. Zeroth-order deformation equations

From (1) and (2), we are led to define the two nonlinear operators,
NS½Sðt; qÞ; Iðt; qÞ� ¼ oSðt; qÞ
ot

þ rSðt; qÞIðt; qÞ; ð5Þ

NI½Sðt; qÞ; Iðt; qÞ� ¼ oIðt; qÞ
ot

þ aIðtÞ � rSðtÞIðtÞ: ð6Þ
Let s0ðtÞ; i0ðtÞ denote the initial guesses of sðtÞ and iðtÞ;LS and LI the two auxiliary linear operators, HSðtÞ and HIðtÞ the two
non-zero auxiliary functions, and �h a non-zero auxiliary parameter, called the convergence-control parameter, respectively.
All of them will be determined later. Here, we just emphasize that we have great freedom to choose all of them, besides the
initial guess s0ðtÞ and i0ðtÞ satisfy the initial conditions (3). Let q 2 ½0;1� denote the embedding parameter. Then, we construct
the two-parameter family of the differential equations,
ð1� qÞLS½Sðt; qÞ � s0ðtÞ� ¼ q�hHSðtÞNS½Sðt; qÞ; Iðt; qÞ�; ð7Þ
ð1� qÞLI½Iðt; qÞ � i0ðtÞ� ¼ q�hHIðtÞNI½Sðt; qÞ; Iðt; qÞ�; ð8Þ
subject to the initial conditions,
Sð0; qÞ ¼ S0; Ið0; qÞ ¼ I0: ð9Þ
Obviously, when q ¼ 0, the above equations have the solution
Sð0; qÞ ¼ s0ðtÞ; Ið0; qÞ ¼ i0ðtÞ:
Since �h–0;HSðtÞ–0 and HIðtÞ–0, when q ¼ 1, Eqs. (7) and (8) are equivalent to the original ones (1) and (2), respectively.
Thus, we have
Sð1; qÞ ¼ sðtÞ; Ið1; qÞ ¼ iðtÞ:
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Thus, as q increases from 0 to 1, Sðt; qÞ varies continuously from the initial guess s0ðtÞ to the solution sðtÞ, so does Iðt; qÞ from
the initial guess i0ðtÞ to the solution iðtÞ. Such kinds of continuous variations are called deformation or homotopy in topology.
So, Eqs. (7)–(9) are called the zeroth-order deformation equations.

Expand Sðt; qÞ and Iðt; qÞ into the Taylor series with respect to q, i.e.,
Sðt; qÞ ¼ s0ðtÞ þ
Xþ1
m¼1

smðtÞqm; ð10Þ

Iðt; qÞ ¼ i0ðtÞ þ
Xþ1
m¼1

imðtÞqm; ð11Þ
where
sm ¼
1

m!

omSðt; qÞ
oqm

����
q¼0
; im ¼

1
m!

omIðt; qÞ
oqm

����
q¼0
: ð12Þ
Assuming that �h;HSðtÞ and HIðtÞ are properly chosen so that the above two series (10) and (11) converge at q ¼ 1, we have the
solution series,
sðtÞ ¼ s0ðtÞ þ
Xþ1
m¼1

smðtÞ; ð13Þ

iðtÞ ¼ i0ðtÞ þ
Xþ1
n¼1

imðtÞ: ð14Þ
2.2. High-order deformation equations

For brevity, define the vectors,
~sm ¼ fs0ðtÞ; s1ðtÞ; s2ðtÞ; . . . ; smðtÞg;
~im ¼ fi0ðtÞ; i1ðtÞ; i2ðtÞ; . . . ; imðtÞg:
Differentiating the zeroth-order deformation Eqs. (7) and (8) m times with respect to the embedding parameter q, then set-
ting q ¼ 0, and finally dividing by m!, we have the so-called mth-order deformation equations,
LS smðtÞ � vmsm�1ðtÞ
� �

¼ �hHSðtÞRS
mðtÞ; ð15Þ

LI imðtÞ � vmim�1ðtÞ
� �

¼ �hHIðtÞRI
mðtÞ; ð16Þ
subject to the initial conditions,
smð0Þ ¼ 0; imð0Þ ¼ 0; ð17Þ
where
RS
mðtÞ ¼ s0m�1ðtÞ þ r

Xm�1

k¼0

ikðtÞsm�1�kðtÞ; ð18Þ

RI
mðtÞ ¼ i0m�1ðtÞ þ aim�1ðtÞ � r

Xm�1

k¼0

ikðtÞsm�1�kðtÞ; ð19Þ
and
vm ¼
0; m 6 1;
1; m > 1:

�
ð20Þ
Note that the mth-order deformation Eqs. (15) and (16) are decoupled, and governed by the linear auxiliary linear oper-
ators LS and LI , which we have great freedom to choose. Besides, according to (18) and (19), the right-hand side terms RS

mðtÞ
and RI

mðtÞ are always known to the unknown solutions smðtÞ and imðtÞ for m ¼ 1;2;3; . . .

2.3. Explicit series solution of SIR model

As mentioned before, we have great freedom to choose the initial guesses s0ðtÞ and i0ðtÞ, the auxiliary linear operators LS

and LI , the auxiliary functions HSðtÞ and HIðtÞ, and the convergence-control parameter �h.
First of all, as mentioned in Section 1, we have sðtÞ ! S1 and iðtÞ ! 0 as t ! þ1. So, sðtÞ and iðtÞ can be expressed by,
iðtÞ ¼
Xþ1
k¼1

ake�kbt; sðtÞ ¼ S1 þ
Xþ1
k¼1

bke�kbt ; ð21Þ
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where ak and bk are coefficients. The above formulas provide us the so-called solution expressions of iðtÞ and sðtÞ,
respectively.

From (1) and (2), we have,
i0ð0Þ ¼ I0ðrS0 � aÞ; s0ð0Þ ¼ �rS0I0:
To obey the solution expression (21), we choose such the initial guesses i0ðtÞ and s0ðtÞ:
s0ðtÞ ¼ S1 þ c0;1e�bt þ c0;2e�2bt; i0ðtÞ ¼ d0;1e�bt þ d0;2e�2bt; ð22Þ
where
c0;1 ¼ 2ðS0 � S1Þ �
rS0I0

b
; c0;2 ¼ �ðS0 � S1Þ þ

rS0I0

b
; ð23Þ

d0;1 ¼ 2I0 þ
I0ðrS0 � aÞ

b
; d0;2 ¼ �I0 �

I0ðrS0 � aÞ
b

ð24Þ
are determined by means of the initial conditions,
ið0Þ ¼ I0; sð0Þ ¼ S0; i00ð0Þ ¼ I0ðrS0 � aÞ; s00ð0Þ ¼ �rS0I0: ð25Þ
To obtain solutions in the form of (21), we choose the auxiliary linear operators,
LSu ¼ u0ðtÞ þ buðtÞ; LIu ¼ u0ðtÞ þ buðtÞ; ð26Þ
which have the property,
LS½C1e�bt � ¼ 0; LI½C2e�bt� ¼ 0; ð27Þ
where C1 and C2 are the integral constants. Substituting the initial guesses i0ðtÞ and s0ðtÞ into (18) and (19), we get,
RI
1ðtÞ ¼

X4

k¼1

a1;ke�kbt ; RS
1ðtÞ ¼

X4

k¼1

b1;ke�kbt ;
where
a1;1 ¼ �
I0ða� rS0 � 2bÞða� rS1 � bÞ

b
; ð28Þ

b1;1 ¼ S0ðrI0 � 2bÞ þ 2S1ðrI0 þ bÞ � rI0S1ða� rS0Þ
b

; ð29Þ

..

.

are coefficients. Note that
u0ðtÞ þ buðtÞ ¼ Ae�bt
;

has the general solution,
uðtÞ ¼ Ate�bt þ C1e�bt;
where C1 is an integral constant. Obviously, the term te�bt does not satisfy the solution expressions (21). Fortunately, we
have freedom to choose the auxiliary functions HSðtÞ and HIðtÞ, and thus we can avoid the appearance of the term
t expð�btÞ simply by means of choosing,
HIðtÞ ¼ e�bt; HSðtÞ ¼ e�bt: ð30Þ
Then the first-order deformation equations become,
i01ðtÞ þ bi1ðtÞ ¼ �h
X4

k¼1

a1;ke�bðkþ1Þt ; i1ð0Þ ¼ 0; ð31Þ

s01ðtÞ þ bs1ðtÞ ¼ �h
X4

k¼1

b1;ke�bðkþ1Þt; s1ð0Þ ¼ 0; ð32Þ
where a1;k and b1;k are constants. It is easy to find the solutions of the above two uncoupled linear differential equations
i1ðtÞ ¼ �
�h
b

X4

k¼1

a1;k

k
e�bðkþ1Þt þ �h

b

X4

k¼1

a1;k

k

 !
e�bt; ð33Þ

s1ðtÞ ¼ �
�h
b

X4

k¼1

b1;k

k
e�bðkþ1Þt þ �h

b

X4

k¼1

b1;k

k

 !
e�bt : ð34Þ
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In a similar way, it is easy to get i2ðtÞ; s2ðtÞ; i3ðtÞ; s3ðtÞ and so on, especially by means of symbolic computation software such
as Mathematica, Maple and so on.

It can be found that
imðtÞ ¼
X3mþ2

k¼1

dm;ke�kbt; smðtÞ ¼
X3mþ2

k¼1

cm;ke�kbt; ð35Þ
where dm;k; cm;k are coefficients. Substituting the above expressions into (15)–(17), we have the recurrence formulas,
dm;j ¼ vmv3m�jþ1dm�1;j �
�h
b

� �
am;j�1

ðj� 1Þ ; 2 6 j 6 3mþ 2; ð36Þ

cm;j ¼ vmv3m�jþ1cm�1;j �
�h
b

� �
bm;j�1

ðj� 1Þ ; 2 6 j 6 3mþ 2; ð37Þ

dm;1 ¼ �
X3mþ2

j¼2

dm;j; cm;1 ¼ �
X3mþ2

j¼2

cm;j; ð38Þ
where
am;j ¼ v3mþ1�j a� rS1 � jbð Þdm�1;j � rvjlm;j; 1 6 j 6 3mþ 1; ð39Þ

bm;j ¼ v3mþ1�j rS1dm�1;j � jbcm�1;j

� 	
þ rvjlm;j; 1 6 j 6 3mþ 1; ð40Þ
and
lm;j ¼
Xm�1

k¼0

Xminf3kþ2;j�1g

i¼maxf1;jþ3k�3mþ1g
ck;idm�1�k;j�i; 2 6 j 6 3mþ 1: ð41Þ
Using the above recurrence formulas, we can obtain, one by one, all coefficients from (23) and (24). Thus, we have the ex-
plicit series solution
iðtÞ ¼
Xþ1
m¼1

X3mþ2

k¼1

dm;ke�kbt ; sðtÞ ¼ S1 þ
Xþ1
m¼1

X3mþ2

k¼1

cm;ke�kbt : ð42Þ
The mth-order approximation is given by
iðtÞ �
XM

m¼1

X3mþ2

k¼1

dm;ke�kbt ; sðtÞ � S1 þ
XM

m¼1

X3mþ2

k¼1

cm;ke�kbt : ð43Þ
Note that we have freedom to choose a proper value of the auxiliary parameter b. It is known that sðtÞ decreases from S0 to
S1. When r S0=a < 1; iðtÞ also decreases from I0 to 0. However, in case of r S0=a > 1; iðtÞ first increases to the maximum value
and then decreases to zero. So, it is important to approximate iðtÞ efficiently. Note that RI

1ðtÞ denotes the residual error of (8).
To ensure that the residual error of (8) decays quickly for large t, we enforce a1;1 ¼ 0, i.e.,
ða� rS0 � 2bÞða� rS1 � bÞ ¼ 0; ð44Þ
which gives,
b ¼ a� rS1: ð45Þ
The other algebraic solution
b ¼ a
2

1� rS0

a

� �
is neglected because b must be positive but rS0=a can be greater than 1.

2.4. Solution analysis of the SIR model with examples

Singh [13] has provided a qualitative analysis of the SIR model and defined a threshold quantity R0 ¼ S0r
a . It is assumed that

s0 < 0 for all t and i0 > 0 when R0 > 1. This means I will initially increase to some maximum if R0 > 1, but eventually de-
creases and approaches zero, since S is always decreasing. Our series solution for the SIR model provides results that agrees
with Singh’s [13] qualitative analysis.

The case with R0 > 1 is of interest as it indicates epidemic. For R0 < 1; I will simply goes to zero, indicating no epidemic.
Our examples given below illustrate that we can always find a proper value of the auxiliary parameter �h to ensure that the
explicit series solutions converge to the numerical ones.
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2.4.1. Example 1: a ¼ 2; r ¼ 1=5; I0 ¼ 25; S0 ¼ 75
In this case, we have rS0=a ¼ 7:5 > 1; S1 ¼ 0; b ¼ 2. Note that our explicit series solution (42) contains the convergence-

control parameter �h and we have freedom to choose the value of �h. Physically, for given a; r; S0 and I0, if iðtÞ is convergent,
then the integral,
Iw ¼
Z þ1

0
iðtÞdt ð46Þ
tends to a constant which has physically nothing to do with �h. However, mathematically, the above integral is dependent
upon �h, because iðtÞ is dependent upon �h. It has been proved by Liao [16] that all convergent series solution given by the
HAM converge to the true solution of the original nonlinear equations. So, there is a horizontal line segment of the curve
Iw versus �h, as shown in Fig. 1, and all values of �h in the region �0:8 6 �h < �0:2 under this horizontal line segment give
the same convergent value of Iw. For example, the series solutions are convergent to the numerical results when
�h ¼ �0:5, as shown in Figs. 2 and 3. Note that, by means of �h ¼ �0:8;�0:6;�0:4 and �0.2, we obtain the same convergent
series solutions of iðtÞ and sðtÞ. Thus, the convergence-control parameter �h indeed provides us a simple way to ensure the
convergence of solution series.

2.4.2. Example 2: a ¼ 3=2; r ¼ 1=10; I0 ¼ 10; S0 ¼ 50
In this case, we have rS0=a ¼ 3:333 > 1; S1 ¼ 0:97; b ¼ 1:403. According to the curve Iw � �h at the 15th-order of approx-

imation, the HAM series is convergent in the region �2 6 �h 6 �0:5. So, we choose �h ¼ �1, and the corresponding HAM series
converge to the numerical ones, as shown in Figs. 4 and 5.

2.4.3. Example 3: a ¼ 10; r ¼ 1=10; I0 ¼ 50; S0 ¼ 80
In this case, we have rS0=a ¼ 0:8 < 1; S1 ¼ 29:19; b ¼ 7:081. According to the curve Iw � �h at the 10th-order of approxi-

mation, the HAM series are convergent in the region �3 6 �h < 0. So we choose �h ¼ �2, and even the second-order HAM ser-
ies agree well with the numerical ones, as shown in Fig. 6.

2.4.4. Example 4: a ¼ 2:73; r ¼ 0:0178; I0 ¼ 7; S0 ¼ 254
Let us consider a practical case. Over the period from mid-May to mid-October 1966, the village of Eyam in England suf-

fered an outbreak of bubonic plague. The community was asked to quarantine itself so that the disease could be prevented
from spreading to other communities. A thorough record was kept according to which it is believed that out of an initial pop-
ulation of 350 persons only 83 survived the Eyam plague. The disease in Eyam has been used as a case study for the basic SIR
modeling. Here we try to fit the basic SIR model, measuring time in months with an initial population of 7 infectives and 254
susceptibles and a final population of 83.
h
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Fig. 1. The curve Iw � �h of Example 1 at the 15th-order approximation.
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Fig. 2. Comparison of the numerical solution of iðtÞ with the HAM series solution of Example 1. Symbols: numerical solution; Solid line: 15th-order HAM
solution by means of �h ¼ �1=2.
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Fig. 3. Comparison of the numerical solution of sðtÞ with the HAM series solution of Example 1. Symbols: numerical solution; Solid line: 15th-order HAM
solution by means of �h ¼ �1=2.
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Fig. 4. Comparison of the numerical solution of iðtÞ with the HAM series solution of Example 2. Symbols: numerical solution; Solid line: 10th-order HAM
solution by means of �h ¼ �1.
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Fig. 5. Comparison of the numerical solution of sðtÞ with the HAM series solution of Example 2. Symbols: numerical solution; Solid line: 10th-order HAM
solution by means of �h ¼ �1.
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Fig. 6. Comparison of the numerical solution of iðtÞ and sðtÞ with the HAM series solution of Example 3. Filled circles: numerical solution of iðtÞ; Solid line:
second-order HAM solution of iðtÞ given by �h ¼ �2; Open circles: numerical solution of sðtÞ; Dashed line: second-order HAM solution of sðtÞ given by
�h ¼ �2.
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Fig. 7. Comparison of the numerical solution of iðtÞ with the HAM series of Example 4. Symbols: 50th-order result by means of �h ¼ �2; Solid line: 60th-
order result when �h ¼ �1:5.
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Fig. 8. Comparison of the numerical solution of sðtÞwith the HAM series of Example 4. Symbols: 50th-order result by mens of �h ¼ �2; Solid line: 60th-order
result by means of �h ¼ �1:5.
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In this case, we have rS0=a ¼ 1:656 > 1; S1 ¼ 76:05; b ¼ 1:37631. According to the curve Iw � �h at the 20th-order of
approximation, the HAM series is convergent in the region �2 6 �h 6 �0:5. Our HAM series given in �h ¼ �2 and �h ¼ �1:5
converge to the same result, as shown in Figs. 7 and 8. This illustrates that our HAM series solution of the basic SIR model
is convergent for practical cases.
3. HAM analysis of SIS model

The basic SIS model [1] is given by
s0ðtÞ ¼ �rsðtÞiðtÞ þ ciðtÞ; ð47Þ
i0ðtÞ ¼ rsðtÞiðtÞ � ciðtÞ; ð48Þ
subject to initial conditions,
ið0Þ ¼ I0; sð0Þ ¼ S0; ð49Þ
where r > 0; I0 > 0 and S0 > 0. Obviously, Sþ I ¼ k, where k is the total population. From (47) and (48), we obtain the thresh-
old value rk=c for this model. There are two different cases for t approaching 1:

(A) If rk=c 6 1 for any I0, then
Iðþ1Þ ¼ 0; Sð1Þ ¼ k; ð50Þ

(B)if rk=c > 1 for any I0, then

Iðþ1Þ ¼ k� c=r; Sðþ1Þ ¼ c=r: ð51Þ

Hence, if rk=c < 1, the infection must vanish, whereas if rk=c > 1, the infection continues. So the interesting case is rk=c > 1,
the epidemic case. This model is different from the SIR model, because the recovered members return to the class S at a rate
of ci instead of moving to class R, where c is the recovery coefficient.
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3.1. Deformation equations

The SIS model can be solved in a similar way. First, we construct the zeroth-order deformation equation
ð1� qÞLS½Sðt; qÞ � s0ðtÞ� ¼ q�hHSðtÞNS½Sðt; qÞ; Iðt; qÞ�; ð52Þ
ð1� qÞLI½Iðt; qÞ � i0ðtÞ� ¼ q�hHIðtÞNI½Sðt; qÞ; Iðt; qÞ�; ð53Þ
subject to the initial conditions,

Sð0; qÞ ¼ S0; Ið0; qÞ ¼ I0; ð54Þ
where q 2 ½0;1� is an embedding parameter, and the nonlinear operators are defined by
NS½Sðt; qÞ; Iðt; qÞ� ¼ S0 þ rSI � cI; ð55Þ
NI½Sðt; qÞ; Iðt; qÞ� ¼ I0 � rSI þ cI; ð56Þ
where the prime denotes the differentiation with respect to t. And similarly, we have the solution series,
sðtÞ ¼ s0ðtÞ þ
Xþ1
m¼1

smðtÞ; ð57Þ

iðtÞ ¼ i0ðtÞ þ
Xþ1
n¼1

imðtÞ; ð58Þ
where smðtÞ and imðtÞ are governed by the high-order deformation equations
LS½smðtÞ � vmsm�1ðtÞ� ¼ �hHSðtÞRS
mðtÞ; ð59Þ

LI½imðtÞ � vmim�1ðtÞ� ¼ �hHIðtÞRI
mðtÞ; ð60Þ
subject to the initial conditions,
smð0Þ ¼ 0; imð0Þ ¼ 0; ð61Þ
with the definitions
RS
mðtÞ ¼ s0m�1 � cim�1 þ r

Xm�1

k¼0

iksm�1�k; ð62Þ

RI
mðtÞ ¼ i0m�1 þ cim�1 � r

Xm�1

k¼0

iksm�1�k: ð63Þ
The above decoupled, linear differential equations are easy to solve, especially by symbolic computation software such as
Mathematica, Maple and so on.

3.2. Explicit series solution for SIS model

Similarly, we choose the base function
e�mbt ;m P 1

 �

; ð64Þ
and the solution can be written by
iðtÞ ¼ I1 þ
Xþ1
m¼1

ame�mbt; ð65Þ

sðtÞ ¼ S1 þ
Xþ1
m¼1

bme�mbt ; ð66Þ
where S1 ¼ Sðþ1Þ and I1 ¼ Iðþ1Þ are given by (50) or (51), am and bm are coefficients to be determined. This provides us
the solution expression for sðtÞ and iðtÞ of the SIS model.

From (47) and (48), we have the additional initial conditions
s0ð0Þ ¼ �rS0I0 þ cI0; ð67Þ
i0ð0Þ ¼ rS0I0 � cI0: ð68Þ
According to the solution expression (66), it is straightforward to choose the initial solutions,
s0ðtÞ ¼ S1 þ c0;1e�bt þ c0;2e�2bt ; ð69Þ
i0ðtÞ ¼ I1 þ d0;1e�bt þ d0;2e�2bt; ð70Þ



664 H. Khan et al. / Applied Mathematics and Computation 215 (2009) 653–669
where
c0;1 ¼ 2ðS0 � S1Þ þ I0ðc� rS0Þ=b;
c0;2 ¼ S1 � S0 þ I0ðrS0 � cÞ=b;
d0;1 ¼ 2ðI0 � I1Þ þ I0ðrS0 � cÞ=b;
d0;2 ¼ I1 � I0 þ I0ðc� rS0Þ=b;
are determined by means of the initial conditions (49) and the additional conditions (67) and (68).
Similarly, to obey the solution expressions (65) and (66), we choose the same auxiliary linear operators LS and LI as

defined in (26) for the SIR model. Besides, we also choose the same auxiliary functions HSðtÞ ¼ HIðtÞ ¼ expð�btÞ as in the
SIR model. Then, similarly, we have the explicit series solutions for the SIS model
iðtÞ ¼ I1 þ
Xþ1
m¼1

imðtÞ; sðtÞ ¼ S1 þ
Xþ1
m¼1

smðtÞ; ð71Þ
with,
imðtÞ ¼
X3mþ2

k¼1

dm;ke�kbt; smðtÞ ¼
X3mþ2

k¼1

cm;ke�kbt; ð72Þ
where dm;k; cm;k are coefficients. Substituting the above expressions into (59)–(61), we have the recurrence formulas,
dm;j ¼ vmv3m�jþ1dm�1;j �
�h
b

� �
cm;j�1

ðj� 1Þ ; 2 6 j 6 3mþ 2; ð73Þ

cm;j ¼ vmv3m�jþ1cm�1;j �
�h
b

� �
dm;j�1

ðj� 1Þ ; 2 6 j 6 3mþ 2; ð74Þ

dm;1 ¼ �
X3mþ2

j¼2

dm;j; cm;1 ¼ �
X3mþ2

j¼2

cm;j; ð75Þ
where
cm;j ¼ v3mþ1�j c� rS1 � jbð Þdm�1;j � rI1cm�1;j

h i
� rvjlm;j; 1 6 j 6 3mþ 1; ð76Þ

dm;j ¼ v3mþ1�j rS1 � cð Þdm�1;j þ rI1 � jbð Þcm�1;j

h i
þ rvjlm;j; 1 6 j 6 3mþ 1; ð77Þ
and
lm;j ¼
Xm�1

k¼0

Xminf3kþ2;j�1g

i¼maxf1;jþ3k�3mþ1g
ck;idm�1�k;j�i; 2 6 j 6 3mþ 1: ð78Þ
3.3. Solution analysis for the SIS model with examples

For the SIS model, we can also get convergent series solutions with good agreement with numerical ones. Here we present
a few examples of comparison of our explicit series solutions of the SIS model with numerical results.

3.3.1. Example 5: c ¼ 3=2; b ¼ 2; r ¼ 1=10, I0 ¼ 10 and S0 ¼ 25
In this case we have rk=c ¼ 2:33 > 1. So, suing (51), we have S1 ¼ 15 and I1 ¼ 20. Similarly, according to the curve Iw � �h

at the 10th-order approximation, our HAM series are convergent for �2:5 6 �h < 0. Choosing �h ¼ �1=2, our explicit series
solution agree well with numerical ones, as shown in Figs. (9) and (10).

3.3.2. Example 6: c ¼ 1=10; b ¼ 1; r ¼ 1=15, Ið0Þ ¼ 25 and Sð0Þ ¼ 10
This is an example of epidemic because of rk=c > 1. Our HAM series are convergent for �2 6 �h 6 0. Choosing �h ¼ �1=2,

our HAM series solution agree well with the numerical ones, as shown in Figs. (11) and (12).
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3.3.3. Example 7: c ¼ 3=2; b ¼ 1; r ¼ 1=20, Ið0Þ ¼ 15 and Sð0Þ ¼ 50
Similarly, it is found that our HAM series are convergent for �3 6 �h < 0. Choosing �h ¼ �2=5, our HAM series solution

agree well with numerical ones, as shown in Figs. (13) and (14). This is also an example of epidemic for rk=c > 1.
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Fig. 10. Comparison of the numerical solution of sðtÞ with the HAM series solution of Example 5. Symbols: numerical solution; Line: 15th-order HAM
solution given by �h ¼ �1=2.

t

i(t
)

0 1 2 3 4 5
10

11

12

13

14

15

16

17

18

19

20

Fig. 9. Comparison of the numerical solution of iðtÞ with the HAM series solution of Example 5. Symbols: numerical solution; Solid line: 15th-order HAM
solution given by �h ¼ �1=2.
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Fig. 12. Comparison of the numerical solution of sðtÞ with the HAM series solution of Example 6. Symbols: numerical solution; Line: 40th-order HAM
solution given by �h ¼ �1=2.
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Fig. 11. Comparison of the numerical solution of iðtÞ with the HAM series solution of Example 6. Symbols: numerical solution; Line: 40th-order HAM
solution given by �h ¼ �1=2.
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Fig. 13. Comparison of the numerical solution of iðtÞ with the HAM series solution of Example 7. Symbols: numerical solution; Line: 30th-order HAM
solution given by �h ¼ �2=5.
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Fig. 14. Comparison of the numerical solution of sðtÞ with the HAM series solution of Example 7. Symbols: numerical solution; Line: 30th-order HAM
solution given by �h ¼ �2=5.
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Fig. 15. Comparison of the numerical solution of iðtÞ with the HAM series solution of Example 8. Symbols: numerical solution; Line: 4th-order HAM
solution given by �h ¼ �3=2.
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Fig. 16. Comparison of the numerical solution of sðtÞ with the HAM series solution of Example 8. Symbols: numerical solution; Line: 4th-order HAM
solution given by �h ¼ �3=2.
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3.3.4. Example 8: c ¼ 2; b ¼ 1; r ¼ 1=20; Ið0Þ ¼ 5, Sð0Þ ¼ 15
In this example we have rk=c ¼ 0:5 < 1 which shows no epidemic. Similarly, it is found that our HAM series are conver-

gent for �5=2 6 �h 6 0. Choosing �h ¼ �3=2, even our fourth-order results agree well with the numerical ones, as shown in
Figs. (15) and (16).

All of these examples show the validity of our explicit series solutions for the SIR and SIS models.

4. Conclusion

In this paper, the analytic method for nonlinear differential equations, namely the homotopy analysis method (HAM), is
applied to solve the SIR and SIS models in biology. By means of the HAM, the two coupled original nonlinear differential
equations are replaced by an infinite number of linear subproblems with two decoupled linear differential equations. The
explicit series solutions are given for both of the SIR and SIS models, and besides an auxiliary parameter, called the conver-
gence-control parameter, is used to ensure the convergence of the explicit series solution. It is illustrated that the convergent
analytic series agree quite well with numerical results. Note that such kind of explicit series solution has never been reported
for the SIR and SIS models. All of these verify the validity of the homotopy analysis method for the coupled differential equa-
tions in biology. It is expected that the explicit series solutions can serve as a complement to the existing literature. The same
methodology is general and can be used for some other complicated models.
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