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a b s t r a c t

In this paper, the class-I Bragg resonant waves are investigated in the case that a primary surface
wave propagates obliquely over the bottom with ripples distributed in a very large area. Two kinds of
equilibrium-state resonant wave systems with time-independent wave spectrum are found. In all cases,
the primary and resonant wave components contain most of the wave energies. For the first kind, the
primary and resonant wave components have the same amplitude. However, for the second kind, they
contain different wave energies. Especially, the bifurcations of the equilibrium-state resonant waves with
respect to the wave propagation angle, the water depth, bottom slope and nonlinearity are found for the
first time. To the best of our knowledge, these two kinds of equilibrium-state class-I Bragg resonantwaves
and especially the bifurcations have never been reported. All of these might deepen and enrich our un-
derstanding about the Braggwave resonance.Mathematically, unlike previous analytic approacheswhich
regard the considered problem as an initial-value one, we search for the unknown equilibrium-state res-
onant waves from the viewpoint of boundary-value problem, using an analytic method that has nothing
to do with small/large physical parameters at all.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

In his pioneering work, Phillips [1] found the resonance crite-
rion of a quartet of progressive waves in deep water:

k1 ± k2 ± k3 ± k4 = 0, ω1 ± ω2 ± ω3 ± ω4 = 0, (1)

where ki denotes the wave number, ωi =
√
gki with ki = |ki| be-

ing the angular frequency given by the linear wave theory in deep
water, g is the acceleration due to gravity, respectively. Phillips [1]
found that the amplitude of the resonant wave component, if it is
zero initially, grows linearly with time. When Phillips’ resonance
criterion (1) is fully or nearly satisfied, Benney [2] established the
evolution equations of wave mode amplitudes, and demonstrated
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the well-known time-dependent periodic exchanges of wave en-
ergy governed by Jacobian elliptic functions.

Same as the Stokeswave [3–5], therewere some attempts to ob-
tain the equilibrium states of this quartet resonance with the time-
independent wave amplitude, angular frequency andwavenumber.
In the context of perturbation techniques, the equilibrium states
of the quartet resonance have not been found at an order higher
than three, because perturbation results (mostly at the third or-
der of approximation) contain the secular termswhen Phillips’ cri-
terion is satisfied so that ‘‘the perturbation theory breaks down
due to singularities in the transfer functions’’, as currently pointed
out by Madsen and Fuhrman [6]. However, using an analytic ap-
proximation method for highly nonlinear problems, namely the
homotopy analysis method (HAM) [7–13], Liao [14] successfully
gained, for the first time, the equilibrium states of the quartet res-
onant progressive waves in deep water, which have no exchange
of wave energy at all between different wave components. In ad-
dition, Liao [14] found that there exist multiple equilibrium states
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of this quartet resonance in deep water, and especially the reso-
nant wave component may contain much less wave energy than
the primary ones.

Based on the homotopy, a basic concept of topology, the HAM
has many advantages over other analytic approximation tech-
niques for nonlinear problems. First, unlike perturbation tech-
niques, it has nothing to do with small/large physical parameters,
and thus is valid for more problems in science and engineering.
Besides, it provides us great freedom to choose the base-function
and equation-type of equations for high-order approximations.
Especially, different from all other analytic approximation meth-
ods, the HAM provides us a simple, convenient way to guarantee
the convergence of solution series. In addition, the HAM has been
proved to logically include some traditional analytic approxima-
tion methods, such as ‘‘the Lyapunov artificial small parameter
method’’ proposed by the famous Russian mathematician Alek-
sandr Mikhailovich Lyapunov (1857–1918), ‘‘the Adomian decom-
position method’’ which was developed from the 1970s to the
1990s by George Adomian, the chair of the Center for Applied
Mathematics at the University of Georgia, USA, and so on. Thus,
the HAMhas rather generalmeanings in theory. The HAMhas been
successfully applied to solvemany nonlinear problems in fluidme-
chanics, applied mathematics, physics, finance and so on. Espe-
cially, somenew solutionswere found bymeans of theHAM,which
had never been reported and neglected by other analytic approx-
imation methods and even by numerical techniques. All of these
illustrate the validity and novelty of the HAM. For details about
the HAM, please refer to the two books of Liao [8,11]. It should be
emphasized that the multiple equilibrium states of resonant wave
systems in deep water were first discovered by Liao [14] using the
HAM.

In 2012, Xu et al. [15] further applied the HAM to solve this
quartet resonance of progressive waves in finite water depth d
with flat bottom, when Phillips’ resonance criterion (1) with ωi =√
gki tanh kid is exactly satisfied. They confirmed that the multiple

equilibrium states of resonant waves also exist in finite water
depth. Meanwhile, the resonant wave component might contain
a small proportion of wave energy, too. Besides, they verified all
of their conclusions using the Zakharov equation. In addition, Liu
et al. [16] verify that the multiple equilibrium states also exist in
the resonance of multiple waves. Current, Liu et al. [17] confirmed
the existence of the steady-state resonant waves by experiments:
their experimental results agree quite well with the theoretical
ones reported in [16]. All of these confirmed the generality of the
multiple equilibrium-states of resonant wave systems in deep and
finite water.

A simple pendulum without damping, as plotted in Fig. 1, is a
good analogy for the equilibrium-states of resonant wave systems.
When the pendulum is at the lowest position initially, it will stay
at this equilibrium position forever. When the pendulum is dis-
turbed away from this equilibrium position, it oscillates periodi-
cally around it, with the periodic exchange of its potential energy
and kinetic energy. Thus, equilibrium-states of a dynamic system
are fundamental and important for us to have a global understand-
ing of it. Some complicated dynamic systems have multiple equi-
librium positions. The resonant waves as dynamical systems are
muchmore complicated than a simple pendulum: they havemulti-
ple equilibrium states. The equilibrium states of the resonant wave
systems found by Liao [14] in deep water and Xu et al. [15] in fi-
nitewater depth are like the equilibriumpositions of a complicated
dynamical system. Such kind of equilibrium states determine the
global characteristics of the dynamic system and thus belong to
a kind of fundamental property. Therefore, it is very important to
determine these equilibrium states of resonant waves, which are
helpful to deepen and enrich our understandings about resonant
waves. Note that such kind of equilibrium states are rather special
Fig. 1. Equilibrium state of dynamical systems.

Fig. 2. Sketch map of the class-I Bragg resonant waves.

in practice. Inmost cases, there often exist the time-dependent pe-
riodic exchanges of wave energy around these equilibrium states,
which can be described by the evolution equations of wave mode
amplitudes given by Benney [2]. However, Benney [2] did not re-
port the existence of the multiple equilibrium states of resonant
waves, which were first found by Liao [14] in deep water, con-
firmed by Xu et al. [15] in water of finite depth and Liu et al. [16]
for multiple wave interactions by means of the HAM.

Therefore, the equilibrium states of resonant waves are impor-
tant in physics for a better understanding of global characteristic
of a given resonant wave system. Domultiple equilibrium states of
resonant wave systems exist generally in other more complicated
cases? The answer is positive, as revealed in this article.

It is well-known that the resonance occurs for nonlinear
wave–bottom interaction, too. The simplest case is known as the
class-I Bragg resonance. It occurs when a primary surface wave
propagates over an undulated bed that contains ripples with a
single wavenumber kB. Without loss of generality, let kA denote
the wavenumber of the primary wave and kC that of the resonant
one, respectively. Note that the names of the so-called primary
and resonant waves can be interchanged, since there exists a
kind of symmetry on the perpendicular bisector of the bottom
wavenumber kB, as shown in Fig. 2 and illustrated later. So,without
loss of generality, we can simply call themwave A andwave C, too.

The corresponding class-I Bragg resonance criterion reads

kA − kB = kC , ωA = ωC , (2)

where

ωA =

g|kA| tanh |kA|d, ωC =


g|kC | tanh |kC |d

denote the wave angular frequency in the linear theory and d is
the water depth, respectively. The resonant wave results from the
resonant interaction between the primary wave and the bottom.
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This criterion is derived from Phillips’ criterion (1) at a lower order
when the bottom is fixed (say,ωB = 0). The resonance criterion (2)
reveals

|kA| = |kC | = k,

i.e. both of thewave A and thewave C have the samewave number,
denoted by k. Meanwhile,

|kB| = 2|kA| cosα = 2 k cosα, (3)

as shown by Fig. 2, where α is the angle between the wavenumber
kA and the x-axis, since kB is assumed in the x-axis direction.

The class-I Bragg resonance has been studied a lot in the past
decades. Heathershaw [18] did an experiment when an incident
wave normally propagates over a patch of fixed sinusoidal ripples
and the class-I Bragg resonance occurs. In this experiment, the
amplitude of the resonant wave component was zero initially
beyond the rippled patch, and grew linearly with the propagation
distance over the ripples. Several studies [19–24] have verified this
result in theory.

Using the multiple scale perturbation method, Mei [25] solved
the linearized governing equations when an incident wave over a
bottomwith finite ripples was slightly detuned from the Bragg res-
onance. In the so-called ‘‘perfect tuning’’ case, the two dimensional
theoretical results of Mei [25] agree well with the experiment of
Heathershaw [18]. According to Mei [25], the transmission coeffi-
cient T (x) and the reflection coefficient R(x) are given by

T (x) =
A
A0

=

cosh Ω0
Cg
(L − x)

cosh Ω0L
Cg

,

R(x) =
B
A0

=

−i sinh Ω0
Cg
(L − x)

cosh Ω0L
Cg

, 0 < x < L,

(4)

respectively, where A0 is the wave amplitude of the incident wave
beyond the rippled patch (x < 0), A and B are the wave amplitudes
of the transmission and reflection wave modes over the ripples in
a finite interval 0 < x < L. Thus, as the interval of ripples tends to
infinity, i.e. L → +∞, the ratio of amplitudes of these two compo-
nents reads

lim
L→∞

BA
 = lim

L→∞

−i tanh
Ω0

Cg
(L − x)

 = 1, (5)

which reveals that the reflection and transmission wave compo-
nents have the same amplitude. In addition, Mei [25] considered
the oblique incidence of slightly detuned wave propagating over
the infinite ripples as well and the ratio of amplitudes of these two
components is given by

R =
B
A

=
cos2 α
cos 2α

 Ω

Ω0
−


Ω

Ω0

2

−


cos 2α
cos2 α

2
 1

2
 , (6)

which leads to

|R| = 1 whenΩ = 0, (7)

i.e. the reflection and transmission wave components have the
samewave amplitude and thus share the samewave energy,where
α is the angle between the x-axis and the reflection/transmission
wave component. Note that multiple resonant waves were not re-
ported in this case [25], mainly because the linearized governing
equations were solved. Notice that the so-called reflection and
transmission wave components in the paper of Mei [25] corre-
spond to the resonant and primary components of the equilibrium-
states of the class-I Bragg resonantwaves, since thewave spectrum
in the equilibrium-state is time-independent so that there is no
evolution of wave amplitude and frequency.
In addition, Ardhuin and Herbers [26] considered the Bragg
scatteringwhen the surfacewaves are random and non-stationary,
propagating over a finite patch of sinusoidal bars. Further, the
problem of random waves propagating over random bottom was
investigated by Ardhuin and Magne [27] and the effect of current
was studied as well. Yu andMei [28] studied the coupled evolution
of bars and waves through Bragg scattering. And later the linear
waves propagating over periodic topographies of arbitrary ampli-
tude andwave formwas studied by Yu and Howard [29]. However,
none of themobtained the equilibrium states and especially the bi-
furcations for the Bragg resonance.

In this paper, we investigate the class-I Bragg resonance about
the nonlinear interaction between the obliquely surface wave and
the bottom with ripples. When the bottom ripples are distributed
in a very large area, for the sake of simplicity,we can approximately
consider the bottom with an infinite number of ripples. Mitra and
Greenberg [30] solved the same problem by regarding it as an
initial value problem, and found slowly periodic energy exchanges
between the wave A and the wave C. They did not report any
multiple resonant waves, since an initial value problem has only
one solution. Their work agreed with that of Benney [2] for surface
resonantwaves. Davies [31] applied perturbationmethod to search
for equilibrium states of the class-I Bragg resonant waves, but
failed, mainly because ‘‘the perturbation theory breaks down due
to singularities in the transfer functions’’, as currently also pointed
out by Madsen and Fuhrman [6]. In this paper, we successfully
obtain two equilibrium states of the class-I Bragg resonant wave
by means of the homotopy analysis method (HAM) [7–13]. One of
them is similar to that reported by Mei [25], whose primary wave
has the same wave energy as the resonant wave. However, the
other does not process such kind of equality and has never been
reported, say, the primary and resonantwaves have different wave
amplitudes. In addition, the effects of propagation angle, water
depth, bottom slope and nonlinearity on the equilibrium states of
the class-I Bragg resonant waves are investigated in details, and
the bifurcations of the equilibrium-states solutions with respect to
these physical parameters are found, for the first time, to the best
of our knowledge.

This paper is organized as follows. The mathematical descrip-
tion of the problem is given in Section 2. The solution procedure in
the context of theHAM is described in Section 3. Themultiple equi-
librium states of the resonant wave system in a particular case are
described as an example in Section 4. The effects of the propagation
angle, water depth, bottom slope and nonlinearity on the equilib-
rium state of the class-I Bragg resonant wave system are presented
in Section 5. The bifurcations of the equilibrium states are reported
in this section, too. Concluding remarks and discussions are pro-
vided in Section 6. For the sake of simplicity, the detailed mathe-
matical formulas are given in the Appendix.

2. Mathematical description

2.1. Fully nonlinear wave equations

Let us consider the propagation of progressivewaves inwater of
a finite depth d over a fixed bed with ripples in a sinusoidal form.
When the ripples are distributed in a very large domain, infinite
number of ripples are approximately considered, as depicted by
Fig. 3. Assume that the fluid is inviscid and incompressible, the
flow is irrotational, and the surface tension is negligible. Let (x, y)
and z be the horizontal and vertical coordinates, with the x-axis
in the direction of the wavenumber kB of the bottom ripples and
the z-axis upward, t denote the time, ς(x, y, t) the unknownwave
elevation moving around the mean free surface z = 0, and z =

−d + ζ (x) the varying bottom with a constant mean depth d,
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Fig. 3. Physical model.

respectively. The velocity potential φ(x, y, z, t) is governed by the
Laplace equation

∇
2φ = 0, −d + ζ (x) < z < ς(x, y, t), (8)

where

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(9)

with i, j, k denoting unit vectors in the x, y, z directions,
respectively. The bottom kinematical condition reads

φz − ζxφx = 0, on z = −d + ζ (x), (10)

where the bottom profile

ζ (x) = b cos(kBx), kB = |kB|, (11)

is given, kB denotes the wavenumber of the periodic ripples in si-
nusoidal form on the bottom, b is the amplitude of bottom undula-
tion, respectively. On the unknown free surface z = ς(x, y, t), the
kinematical condition is

ςt − φz +

φxζx + φyζy


= 0, on z = ς(x, y, t) (12)

and the dynamical condition reads

ς = −
1
g


φt +

1
2
∇φ · ∇φ


, on z = ς(x, y, t). (13)

On the free surface z = ς(x, y, t), the kinematic condition (12) and
dynamical condition (13) can be combined into the fully nonlinear
equation

φtt + gφz + 2∇φ · ∇φt +
1
2
∇φ · ∇(∇φ · ∇φ) = 0,

on z = ς(x, y, t), (14)

which we actually solve. In addition, the resonance criterion (2)
must be satisfied. The above fully nonlinear wave equations can be
found in textbooks. For details, please refer to Mei et al. [32].

2.2. Dimensionless equations

Let us consider the wave A, with the wavenumber kA =

{k cosα, k sinα} and the actual frequency σA, where α denotes the
angle betweenkA and the x-axiswith k = |kA|, as depicted by Fig. 2.
Write

ϵ =
σA

ωA
, (15)

where ωA =
√
gk tanh(kd) is the frequency given by the linear

wave theory. Since the surface condition (14) considered in this
paper includes the nonlinear terms, here we have ϵ > 1. Using the
dimensionless variables (denoted by primes)

(x′, y′, z ′, d′) = k(x, y, z, d), t ′ = σAt,

η′
=
η

d
, ζ ′

=
ζ

b
, φ′

=
k φ
σAd

,
(16)

the governing equation and all boundary conditions in Section 2.1
can be rewritten in dimensionless form. For brevity, the prime (′)
is omitted and all variables are dimensionless hereinafter. In this
way, we have the dimensionless governing equation

∇
2φ = 0, −ϵ1 + (ϵ2/ϵ3)ζ < z < ϵ1ς, (17)

subject to the two boundary conditions on the unknown free sur-
face z = ϵ1ς(x, y, t),

φtt +
1

ϵ2 tanh(ϵ1)
φz + 2ϵ1∇φ · ∇φt

+
ϵ21

2
∇φ · ∇(∇φ · ∇φ) = 0, (18)

ς = −ϵ2 tanh(ϵ1)

φt +

ϵ1

2
∇φ · ∇φ


, (19)

and the bottom condition

φz − (ϵ2/ϵ3)ζxφx = 0, on z = −ϵ1 + (ϵ2/ϵ3)ζ , (20)

respectively, where ϵ1 = kd, ϵ2 = bkB and ϵ3 = kB/k are three di-
mensionless parameters. Note that ϵ1 denotes the dimensionless
water depth, ϵ2 the bottom slope, and ϵ3 the ratio of the wave-
length of the wave A to that of the periodically undulate bottom,
respectively. According to (3), it holds ϵ3 = 2 cosα for the class-I
Bragg resonance. It should be emphasized that, in the frame of the
HAM, all of these three parameters ϵ1, ϵ2 and ϵ3 are unnecessary to
be small or large, as shown below.

2.3. Equations in the equilibrium state

Traditionally, the above-mentioned class-I Bragg resonantwave
systemwas solved as an initial value problem, and the correspond-
ing wave evolutions from the beginning at t = 0 were stud-
ied, as illustrated by Mei, Mitra and Greenberg [25,30]. According
to Benney [2], randomly given an initial condition satisfying the
resonance criterion, each component of the corresponding reso-
nant wave system has mostly a periodic amplitude and frequency
so that there exist the periodic exchange of wave energy. Thus,
from the viewpoint of an initial value problem, the corresponding
initial conditions for an equilibrium-state resonant wave system
with time-independent amplitude and frequency are rather spe-
cial and thusmust be unknown, which however can be determined
by means of the HAM as described below.

Different from the traditional approaches, we concentrate on
the unknown equilibrium-state of the resonant wave system,
whose wave amplitudes and frequencies are time-independent.
Following the strategy of Liao [14] in deep water and Xu et al. [15]
in finite water depth, we first assume that the equilibrium-state
of the resonant wave system exists and then try to find such kind
of resonant wave system. If the equilibrium-state of the resonant
wave system is found, then the assumption is right. Otherwise,
there is no equilibrium-state of such kind of resonant wave sys-
tems in a given case.

Since the equilibrium-state of the resonant wave system has
time-independent wave amplitudes and frequencies, we can
transfer the original initial-value problem (17)–(20) to a boundary-
value problem by defining the two new variables

ξ1 = kA · r − t = x cosα + y sinα − t,
ξ2 = kB · r = ϵ3 x

, (21)
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where r = xi + yj. Then, the governing equation (17) becomes

φξ1ξ1 + 2ϵ3 cosα φξ1ξ2 + ϵ23 φξ2ξ2 + φzz = 0,

−ϵ1 + (ϵ2/ϵ3) cos ξ2 < z < ϵ1η(ξ1, ξ2), (22)

subject to the two free surface boundary conditions on z =

ϵ1η(ξ1, ξ2),

φξ1ξ1 +
1

ϵ2 tanh(ϵ1)
φz − 2ϵ1fξ1 + ϵ21∇φ · ∇f = 0, (23)

η = ϵ2 tanh(ϵ1)

φξ1 − ϵ1f


, (24)

and the bottom condition on z = −ϵ1 + (ϵ2/ϵ3) cos ξ2, i.e.

φz + ϵ2 sin ξ2

cosα φξ1 + ϵ3 φξ2


= 0, (25)

where

f =
1
2
∇φ · ∇φ =

1
2


φ2
ξ1

+ ϵ23 φ
2
ξ2

+ 2ϵ3 cosα φξ1φξ2 + φ2
z


. (26)

Note that Eqs. (22)–(25) for the equilibrium-state of resonant
waves with the unknown primary and resonant wave components
(i.e. the wave A and wave C) define a nonlinear boundary-value
problem, since the time t does not appear explicitly. It is well-
known that nonlinear boundary-value problems often have multi-
ple solutions. This is the mathematical reason why there exist the
multiple equilibrium-states of the class-I Bragg resonantwave sys-
tem.

3. Approach based on homotopy analysis method

In this section, the equilibrium state of the class-I Bragg reso-
nance governed by the nonlinear boundary-value Eqs. (22)–(25)
are solved by means of the HAM [7–13], when the resonant con-
dition (2) is exactly satisfied. The system of the coupled nonlinear
partial differential equations (PDEs) defined above can be solved
by means of the HAM in a similar way to that for the equilibrium-
state resonant waves in deep and finite water depth, as illustrated
by Liao [14] and Xu et al. [15]. For the sake of simplicity, we only
briefly describe the approach based on the HAM. The detailed
mathematical formulas are given in the Appendix.

Similar to the equilibrium states of the wave–wave resonant
interactions [14,15], the wave elevation of the equilibrium state of
the class-I Bragg resonance can be expressed by

η(ξ1, ξ2) =

+∞
m=0

+∞
n=−∞

am,n cos(mξ1 + nξ2), (27)

where am,n is a time-independent constant to be determined,
i.e. dam,n/dt = 0, since there is no wave energy exchange, and
wave amplitudes and frequencies are time-independent. Here,
ξ1 and ξ2 are defined by (21). This is because the class-I Bragg
resonant waves are consist of the primary wave, the resonant
wave, the periodic bottom ripples, and their nonlinear interactions.
The above expression is complete, since due to (2) it holds

kC · r − t = (kA − kB) · r − t = ξ1 − ξ2,

say, the resonant wave component can be simply expressed by
a1,−1 cos(ξ1 − ξ2), where a1,−1 is a time-independent constant.
So, the wave elevation of the class-I Bragg, fully resonant waves
can be completely expressed by (27).

Due to the linear governing equation (22), the velocity potential
φ(ξ1, ξ2, z) has the form

φ(ξ1, ξ2, z) =

+∞
m=1

+∞
n=−∞


bm,nΨm,n + cm,n zm,n


, (28)
with the definitions

Ψm,n = sin(mξ1 + nξ2)
cosh


Pm,n(z + ϵ1)


cosh(Pm,n ϵ1)

, (29)

zm,n = sin(mξ1 + nξ2)
sinh(Pm,n z)

Pm,n cosh

Pm,n ϵ1

 , (30)

Pm,n =


m2 + n(m + n) ϵ23 , (31)

where bm,n and cm,n are time-independent constants to be deter-
mined, i.e. dbm,n/dt = dcm,n/dt = 0. Note that the velocity poten-
tial (28) satisfies the linear governing equation (22) automatically.
Thus, our aim is to obtain the wave elevation η(ξ1, ξ2) in the form
(27) and the velocity potential φ(ξ1, ξ2, z) in the form (28), which
satisfy the three boundary conditions (23)–(25) with the resonant
criterion (2).

In the frame of the HAM, theMth-order approximations read

φ(ξ1, ξ2, z) ≈

M
m=0

φm(ξ1, ξ2, z), (32)

η(ξ1, ξ2) ≈

M
m=0

ηm(ξ1, ξ2), (33)

where φm(ξ1, ξ2, z) and ηm(ξ1, ξ2) are governed by the so-called
high-order deformation equations

∂2φm

∂ξ 21
+ 2ϵ3 cosα

∂2φm

∂ξ1∂ξ2
+ ϵ23

∂2φm

∂ξ 22
+
∂2φm

∂z2
= 0,

−ϵ1 < z < 0, (34)

subject to the free surface boundary condition

L̄1[φm] = R1,m(ξ1, ξ2), on z = 0 (35)

and the bottom condition

L̄2[φm] = R2,m(ξ1, ξ2), on z = −ϵ1, (36)

where

R1,m(ξ1, ξ2) = c0∆
φ

m−1 + χmSm−1 − S̄m,

R2,m(ξ1, ξ2) = c0∆b
m−1 + χmTm−1 − T̄m

are dependent upon φ0, φ1, . . . , φm−1 and thus are always known.
Here,

L̄1[φm] =


∂2φm

∂ξ 21
+

1
tanh(ϵ1)

∂φm

∂z


z=0

,

L̄2[φm] =
∂φm

∂z


z=−ϵ1

(37)

are two auxiliary linear operators which we have great freedom to
choose. Meanwhile, we have

ηm(ξ1, ξ2) = c0∆
η

m−1 + χmηm−1 = R3,m(ξ1, ξ2), on z = 0, (38)

where the function R3,m(ξ1, ξ2) is dependent upon φ0, φ1, . . .,
φm−1 and thus is known as well. The detailed derivation of Eqs.
(35)–(38) and the explicit expressions of Ri,m(ξ1, ξ2)(i = 1, 2, 3)
are given in the Appendix.

Note that the auxiliary linear operator L̄1 defined by (37) has
the property

L̄1[Ψm,n] = λm,n sin (mξ1 + nξ2) , (39)

where

λm,n =
Pm,n tanh(Pm,n ϵ1)

tanh(ϵ1)
− m2 (40)
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is the eigenvalue of L̄1, and Pm,n is defined by (31). Note that it
holds

λ1,0 ≡ 0, L̄1[Ψ1,0] = 0 (41)

for the wave A (with wavenumber kA). Especially, when the class-I
Bragg resonance occurs, we have

λ1,−1 = 0, L̄1[Ψ1,−1] = 0 (42)

for the wave C (with wavenumber kC ), too. Thus, for the class-
I Bragg resonance, the high-order deformation Eq. (35) has two
homogeneous solutions, i.e. Ψ1,0 and Ψ1,−1. Thus, since the HAM
provides us the great freedom to choose the initial guess solution,
we choose the initial guess

φ0(ξ1, ξ2, z) = A1,0
0 Ψ1,0 + A1,−1

0 Ψ1,−1, (43)

where A1,0
0 and A1,−1

0 are time-independent constants, which
are determined by two coupled nonlinear algebra equations for
avoiding the so-called ‘‘secular terms’’ different from the solution
expressions (27) and (28). In this way, the multiple equilibrium
states of the class-I Bragg resonantwaves can be found, and besides
the singularity occurred in the perturbation approaches [31] can be
avoided, as illustrated below in details.

4. Equilibrium-state resonant waves

In this section, we illustrate in details how to find the
equilibrium-state class-I Bragg resonant waves using the HAM-
based approach mentioned above. Without loss of generality, let
us consider such a case

α = 70°, ϵ1 = kd = 2.5, ϵ2 = bkB = 0.005,

ϵ =
σA

ωA
=
σC

ωC
= 1.0003.

(44)

Herewe choose ϵ to be slightly larger than unity, sincewe consider
the nonlinear effect in the surface boundary condition (14). But the
value is small mainly because the frequency ωA = ωC in the res-
onance criterion (2) is given by the linear wave theory. It should
be emphasized that the class-I Bragg resonant waves are fully res-
onating because they satisfy

kA − kC − kB = 0, ωA − ωC = 0, σA − σC = 0. (45)

In other words, the resonance criterion is satisfied even using the
actual frequencies of wave. For the class-I Bragg resonant waves,
we have due to (3) that

ϵ3 = kB/k = 2 cosα = 0.68404.

Thus, the shape of bottom ripple is completely fixed by the two
given parameters ϵ2 and ϵ3. In other words, only the amplitudes of
all wave components are unknown up to now.

Whenm = 1, it is straightforward to gainη1(ξ1, ξ2) bymeans of
(38), which is dependent upon the initial guess φ0 only. However,
φ0 contains two unknown constants A1,0

0 and A1,−1
0 , which should

be determined when solving φ1, as shown below.
Substituting the initial guess (43) of the velocity potential into

the boundary conditions (35) and (36), we have

L̄1[φ1] = R1,1(ξ1, ξ2) =

3
i=1

3
j=−3

Bi,j
1,1 sin(i ξ1 + j ξ2), (46)

L̄2[φ1] = R1,2(ξ1, ξ2) =

3
i=1

3
j=−3

Bi,j
1,2 sin(i ξ1 + j ξ2), (47)

respectively, where Bi,j
1,1 and Bi,j

1,2 are constants independent of
ξ1 and ξ2. Note that these coefficients contain the two unknown
constants A1,0

0 and A1,−1
0 .
Since the auxiliary linear operator L̄2 has the property

L̄2[Ψm,n] = 0, L̄2[zm,n] = sin(mξ1 + nξ2), (48)

the general solution of (47) reads

φ1(ξ1, ξ2, z) =

3
i=1

3
j=−3


Bi,j
1,2 zi,j +Ai,j

1 Ψi,j


, (49)

where Ai,j
1 are to-be-determined constants. Note that the above

expression automatically satisfies the governing equation (34).
Using the property (39) and substituting the above general solution
into the boundary condition (46) gives us

3
i=1

3
j=−3

λi,j A
i,j
1 sin(iξ1 + jξ2)

=

3
i=1

3
j=−3


Bi,j
1,1 −

Bi,j
1,2

tanh ϵ1 cosh(pϵ1)


sin(i ξ1 + j ξ2). (50)

According to (41) and (42), we have λ1,0 = 0 and λ1,−1 = 0 for the
class-I Bragg resonance. Therefore, we must enforce

B1,0
1,1 −

B1,0
1,2

tanh ϵ1 cosh(pϵ1)
= 0, B1,−1

1,1 −
B1,−1
1,2

tanh ϵ1 cosh(pϵ1)
= 0

to avoid the so-called secular term, corresponding to the ‘‘singular-
ity’’ occurred in perturbation approaches [31]. Since Bi,j

1,1 and Bi,j
1,2

contain the twounknown constantsA1,0
0 andA1,−1

0 , we gain the two
coupled nonlinear algebraic equations

0.00059973A1,0
0 − 6.04225


A1,0
0

3
− 0.0000230462A1,−1

0

− 13.3757A1,0
0


A1,−1
0

2
= 0, (51)

−0.0000230462A1,0
0 + 0.00059973A1,−1

0

− 13.3757

A1,0
0

2
A1,−1
0 − 6.04225


A1,−1
0

3
= 0 (52)

which have four groups of nontrivial solutions of A1,0
0 and A1,−1

0 ,
as listed in Table 1. These multiple solutions result from the non-
linear terms of the surface boundary condition (14). All solutions
with the same values of

A1,0
0

 and A1,−1
0

 are in the same group,
since they correspond to the same time-independent spectrum of
wave energy, because the wave energy spectrum is determined by
the amplitude square of wave components. For the sake of sim-
plicity, only one solution of A1,0

0 and A1,−1
0 for each group is listed

in Table 1. Note that each group in Table 1 corresponds to a differ-
ent resonant wave, as shown later. It is well-known that nonlinear
algebraic equations havemultiple solutions. This is themathemat-
ical reason why there exist the multiple equilibrium-state class-I
Bragg resonant waves.

As long as A1,0
0 and A1,−1

0 are known, namely that the initial
guess φ0 is fixed, then η1(ξ1, ξ2) is obtained by (38), and in addi-
tion, all other constants Bi,j

1,1 in (46) and Bi,j
1,2 in (47) are determined.

Further, equating the coefficients of Eq. (50), we have

Ai,j
1 =

1
λi,j


Bi,j
1,1 −

Bi,j
1,2

tanh ϵ1 cosh(pϵ1)


, λi,j ≠ 0. (53)

Since λ1,0 = 0 and λ1,−1 = 0, Eq. (50) holds for arbitrary A1,0
1

and A1,−1
1 . In other words, they cannot be determined by the above

expression. Therefore, like the initial guess φ0(ξ , ξ2, z) defined by
(43), the solution φ1(ξ1, ξ2, z) still contains two unknown param-
eters A1,0

1 and A1,−1
1 , which can be determined in a similar way by

avoiding the so-called secular term of φ2(ξ1, ξ2, z).
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Table 1
Solutions of the nonlinear algebraic equations (51) and (52) when the resonant
condition (2) is satisfied in the case of (44).

A1,0
0 A1,−1

0

Group 1
−0.00995774 0.000315596
0.00995774 −0.000315596

Group 2
−0.00566324 0.00566324
0.00566324 −0.00566324

Group 3
−0.00544964 −0.00544964
0.00544964 0.00544964

Group 4
−0.000315596 0.00995774
0.000315596 −0.00995774

In this way, we can successively gain η2(ξ1, ξ2), φ2(ξ1, ξ2, z),
η3(ξ1, ξ2), φ3(ξ1, ξ2, z), and so on. Note that the high-order defor-
mation equations are linear, and only fundamental operations are
needed in the above HAM-based approach. Thus, using the com-
puter algebra software (such as Mathematica), we can obtain the
approximations of the velocity potential φ(ξ1, ξ2, z) and the wave
elevation η(ξ1, ξ2) efficiently.

It should be emphasized that the velocity potential φ(ξ1, ξ2, z)
and wave elevation η(ξ1, ξ2) contain the so-called ‘‘convergence-
control parameter’’ c0, whose value is unknown up to now. This is
mainly because, in the frame of the HAM, one can introduce the
‘‘convergence-control parameter’’, which has no physical mean-
ings. However, as illustrated by Liao [7–11], the convergence-
control parameter c0 provides a simple way to guarantee the
convergence of analytic approximations. A proper value of the
convergence-control parameter c0 is determined when the av-
eraged squared residuals of the governing equations decrease
fast. The averaged squared residuals of the governing equations
(23)–(25) are defined as follows:

εm,1 =
1

(1 + M)2

M
i=0

M
j=0


m

n=0

∆φn (i1ξ1, j1ξ2)

2

, (54)

εm,2 =
1

(1 + M)2

M
i=0

M
j=0


m

n=0

∆ηn(i1ξ1, j1ξ2)

2

, (55)

εm,3 =
1

(1 + M)2

M
i=0

M
j=0


m

n=0

∆b
n(i1ξ1, j1ξ2)

2

, (56)

respectively, where M is the discrete number and 1ξ1 = 1ξ2 =

π/M . In this article, we useM = 10.
The residuals should tend to zero as the approximation order

increases if this convergence-control parameter c0 is properly
chosen. Since the governing equation (22) is automatically
satisfied, it is our main task to choose a proper c0 in order to
make sure that the averaged squared residuals of the boundary
conditions (23)–(25) decrease as the order of approximations
increase.

For instance, let us consider Group 1 in Table 1, with A1,0
0 =

−0.00995774 and A1,−1
0 = 0.000315596. The corresponding av-

eraged residual squares εm,i (i = 1, 2, 3) at different order m of
approximations are shown in Fig. 4. It is found that, as the order
of approximation increases, the averaged residual squares of the
three boundary conditions decrease in an interval around c0 ∈

[−1, 7,−0.5] with a fast decrease near c0 = −1.2. So, we choose
c0 = −1.2 as an optimal convergence-control parameter. As long
as c0 is determined, the mth-order approximations of the velocity
potential φ(ξ1, ξ2, z) and wave elevation η(ξ1, ξ2) are completely
Fig. 4. Averaged residual squares versus c0 in the case of α = 70°, kB/k =

0.68404, kd = 2.5, bkB = 0.005, ϵ = 1.0003 when A1,0
0 = −0.00995774

and A1,−1
0 = 0.000315596 (corresponding to Group 1). Dash–dot-dotted line: 1st-

order approximation; Dashed line: 2nd-order approximation; Dash-dotted line:
3rd-order approximation; Solid line: 4th-order approximation.

known. Fig. 5 summarizes the averaged residual squares of the
three boundary conditions at different order of approximations
when c0 = −1.2. All of them decrease as the order m increases,
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Fig. 5. Averaged residual squares versus the approximation order m by means of
c0 = −1.2 in the case of α = 70°, kB/k = 0.68404, kd = 2.5, bkB = 0.005, ϵ =

1.0003 when A1,0
0 = −0.00995774 and A1,−1

0 = 0.000315596 (corresponding to
Group 1). Solid line: log10 εm,1; Dashed line: log10 εm,2; Dash-dotted line: log10 εm,3 .

Table 2
Wave energy distribution for different equilibrium states of the class-I Bragg
resonant wave system in the case of α = 70°, kB/k = 0.68404, kd = 2.5,
bkB = 0.005 and ϵ = 1.0003.

Distribution of wave energy
Wave A Wave C Sum
a21,0/Π a21,−1/Π Π0/Π

Group 1 0.8620 0.1378 0.9998
Group 2 0.4999 0.4999 0.9998
Group 3 0.4999 0.4999 0.9998
Group 4 0.1378 0.8620 0.9998

indicating the convergence of our analytic approximations of the
class-I Bragg resonant waves, corresponding to Group 1 in Table 1.
Thus, using the initial approximation of Group 1 listed in Table 1,
we gain an equilibrium-state class-I Bragg resonant wave.

Similarly, we can gain the different equilibrium-state class-I
Bragg resonant waves by means of the initial guesses of Group 2
to 4 listed in Table 1. The corresponding wave energy distributions
are listed in Table 2, where

Π =

+∞
i=0

+∞
j=−∞

a2i,j (57)

is directly proportional to the total wave energy, and

Π0 = a21,0 + a21,−1 (58)

the sum of wave energy for the wave components A and C only,
respectively. Thus, a21,0/Π and a21,−1/Π denote the ratio of wave
energy of the wave A and wave C to the total wave energy,
respectively.

As shown in Table 2, the equilibrium-state class-I Bragg reso-
nant waves of Group 1 and Group 4 have the anti-symmetric wave
energy distribution between the wave A and wave C. So do the
solutions of Group 2 and Group 3. This is because the two wave
components with wavenumbers kA and kC are symmetric on the
perpendicular bisector of the bottomwavenumber kB, as shown in
Fig. 2. Since the shape of bottomare fixed, both ofkB and−kB canbe
regarded as thewavenumber of the bottom ripples. So, eitherwave
AorwaveC can be regarded as the resonantwave. Opposite bottom
wavenumber −kB makes kC to be the wavenumber of the primary
wave and kA the resonant ones, respectively. So, it is not impor-
tant to define which wave component corresponds to the primary
wave and which to the resonant ones. If anyone among kA and kC
is regarded as the wavenumber of the primary wave, the other is
for the resonant one. Thus, due to the antisymmetry, only two dif-
ferent kinds of equilibrium-state class-I Bragg resonant waves are
found. For the first kind of equilibrium-state resonantwave system
(corresponding to Group 2 and 3 in Table 2), the amplitude of the
wave A is equal to that of the wave C, so that the primary and reso-
nantwave components contain the samewave energy. This kind of
class-I Bragg resonant waves is similar to the first-order multiple-
scale approximation given by Mei [25] in the limiting case of the
infinite ripples, as discussed later. However, for the second kind
(corresponding to Group 1 and 4 in Table 2), thewave A andwave C
contain differentwave energy. This kind of equilibrium-state class-
I Bragg resonantwaves have never been reported, to the best of our
knowledge. Note that these two kinds of equilibrium-state class-I
Bragg resonant waves widely exist in general cases, as shown be-
low.

5. Bifurcations of equilibrium-state resonant waves

The HAM-based analytic approach described in Section 4 is
valid in general for different physical parameters ϵ1 = kd, ϵ2 =

bkB, ϵ3 = kB/k = 2 cosα and ϵ. In this section, we investigate
the effect of the wave propagation angle α of the wave A (with
wavenumber kA), the bottom slope (denoted by ϵ2 = bkB), the
water depth (denoted by ϵ1 = kd) and the nonlinearity (ϵ) on the
equilibrium states of the class-I Bragg resonant waves. As shown
below, two kinds of equilibrium-state class-I Bragg resonantwaves
are found with a bifurcation, and one among them has been never
reported.

5.1. Equilibrium-state resonant waves for different wave propagation
angle α

Let us first consider the effect of the propagation angle α of the
wave A with the wavenumber kA on the equilibrium states of the
class-I Bragg resonant waves. Without loss of generality, consider
the following case

ϵ1 = kd = 2.5, ϵ2 = bkB = 0.005, ϵ = 1.0003 (59)

with various propagation angle α of the wave A. In a similar way
as mentioned in Section 4, two kinds of equilibrium states of
class-I Bragg resonant waves are found. The wave A and wave C
share the same wave energy for the 1st kind of equilibrium-state
(a21,0/Π = a21,−1/Π = 0.499) for different angles in the domain
0 < α < 75(°). The corresponding wave energy distributions for
the 2nd kind of equilibrium-state is shown in Table 3. Both of the
two equilibrium states are depicted by Fig. 6.

Our results indicate that there exist two kinds of equilibrium-
state class-I Bragg resonant waves, with a bifurcation with respect
to the propagation angle α of the wave A. For the first kind,
the wave components A and C contain the same wave energy
(a21,0/Π = a21,−1/Π = 0.499). This agrees well with the multiple-
scale approximation given by Mei [25] for the perfect tuning
(Ω = 0) resulting from the linearized governing equations. For
the second kind, they have different wave energy, as listed in
Table 3. Note that, from physical viewpoint, there should be no
resonant waves when the propagation angle α tends to 90°. Thus,
the first kind of equilibrium-state class-I Bragg resonant waves
should have no physical meanings for large α close to 90°. From
physical viewpoint, as α decreases from 90° to zero, the resonant
wave should appear with more and more wave energy, i.e. higher
and higher wave amplitude. This is indeed true. For the second
kindof equilibrium-state class-I Bragg resonantwaves, the primary
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Table 3
Wave energy distribution of the 2nd kind of equilibrium state of the class-I Bragg
resonant wave systemwith different propagation angle α of the wave A in the case
of kd = 2.5, bkB = 0.005 and ϵ = 1.0003.

α (deg) Distribution of wave energy
Wave A (C) Wave C (A) Sum
a21,0/Π a21,−1/Π Π0/Π

66.9 0.48998 0.50988 0.99986
67 0.5384 0.4615 0.9999
67.2 0.6317 0.3682 0.9999
67.5 0.7029 0.2970 0.9999
68 0.7667 0.2332 0.9999
68.5 0.8047 0.1952 0.9999
69 0.8303 0.1696 0.9999
69.5 0.8485 0.1513 0.9998
70 0.8620 0.1378 0.9998
72 0.8903 0.1096 0.9999
73.5 0.8972 0.1026 0.9998
75 0.8970 0.1028 0.9998

Fig. 6. Wave energy distribution versus propagation angle α for the equilibrium
states of the class-I Bragg resonant wave system in the case of kd = 2.5, bkB =

0.005 and ϵ = 1.0003.

wave contains almost all wave energy for large α close to 90°,
and then, as α decreases, it has less and less wave energy until
α ≈ 66.9°. In other words, as α decreases from 90° to 66.9°,
the resonant wave has more and more wave energy. A bifurcation
of solutions occurs at α ≈ 66.9°, as shown in Fig. 6. Thus, the
second kind of equilibrium-state class-I Bragg resonant waves is
physically more reasonable for large propagation angle α of the
wave A. So, such kind of bifurcation of equilibrium-state class-I
Bragg resonant waves with respect to the propagation angle α of
the wave A is physically reasonable. It should be emphasized that
the second kind of equilibrium-state class-I Bragg resonant waves
and especially the bifurcation with respect to α have never been
reported.

It is well-known that bifurcation is a common characteristic
of nonlinear dynamic systems. Obviously, such kind of bifurcation
cannot be found bymeans of linearizedwave theory. This indicates
the importance of the nonlinearity for the class-I Bragg resonant
waves.

5.2. Equilibrium-state resonant waves for different water depth kd

Secondly, let us study the effect of the dimensionless water
depth kd on the equilibrium states of class-I Bragg resonant waves.
Fig. 7. Wave energy distribution versus kd of the equilibrium states of the class-I
Bragg resonant wave system in the case of α = 70°, kB/k = 0.68404, bkB = 0.005
and ϵ = 1.0003.

Table 4
Wave energy distribution of the 2nd kind of equilibrium state of the class-I Bragg
resonant wave system at different water depth (kd) in the case of α = 70°, kB/k =

0.68404, bkB = 0.005 and ϵ = 1.0003.

kd Distribution of wave energy
Wave A (C) Wave C (A) Sum
a21,0/Π a21,−1/Π Π0/Π

2.31 0.5170 0.4829 0.9999
2.325 0.5891 0.4107 0.9998
2.35 0.6743 0.3256 0.9999
2.4 0.7664 0.2334 0.9998
2.5 0.8620 0.1378 0.9998
2.6 0.9134 0.0864 0.9998
2.8 0.9635 0.0363 0.9998
3 0.9841 0.0157 0.9998

Without loss of generality, consider the following case

α = 70°, ϵ2 = bkB = 0.005,

ϵ3 =
kB
k

= 0.68404, ϵ = 1.0003
(60)

with various dimensionless water depth ϵ1 = kd.
In a similar way as described in Section 4, two kinds of

equilibrium-state class-I Bragg resonant waves are found with a
bifurcation with respect to the dimensionless water depth kd, as
shown in Fig. 7. For the first kind, the primary and resonant waves
have the same wave energy, ı.e. a21,0/Π = a21,−1/Π = 0.499
for different mean water depth in the domain 1.5 < kd < 3.
For the second kind, they contain different wave energy, as shown
in Table 4. Note that, physically speaking, for deep water, i.e. as
kd → +∞, there should be no resonant wave caused by the
bottom ripples. So, the first kind of equilibrium-state resonant
waves might have no physical meanings in deep water, say, as
kd → +∞. However, as the water depth becomes smaller and
smaller, the influence of bottom ripples becomes more and more
important, so that the resonant wave component should contain
more and more wave energy, until both of the primary wave and
resonant wave have the same wave amplitude. This is indeed true,
as shown in Fig. 7 which clearly indicates the bifurcation at kd ≈

2.3. So, such kind of bifurcation with respect to the dimensionless
water depth kd is reasonable from the physical viewpoint.

It should be emphasized that the two kinds of equilibrium-
state class-I Bragg resonant waves and especially the bifurcation
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Fig. 8. Wave energy distribution versus the bottom slope bkB of the equilibrium
states of the class-I Bragg resonant wave system in the case of α = 70°, kB/k =

0.68404, kd = 2.5 and ϵ = 1.0003.

with respect to the water depth kd have never been reported, to
the best of our knowledge. Note that bifurcation is a common
characteristic of nonlinear dynamic system. This indicates once
again the important influence of nonlinearity of the class-I Bragg
resonant waves.

5.3. Equilibrium-state resonant waves for different bottom slope bkB

Let us study the effect of the bottom slope bkB on the
equilibrium-state class-I Bragg resonant waves. Without loss of
generality, consider the case

α = 70°, ϵ1 = kd = 2.5,
ϵ3 = kB/k = 0.68404, ϵ = 1.0003,

(61)

with various bottom slope ϵ2 = b kB.
In a similar way as described in Section 4, two kinds of equi-

librium states of class-I Bragg resonant waves with a bifurcation
with respect to the bottom slope bkB are found as well, as shown
in Fig. 8. For the first kind, the primary wave and the resonant ones
have the same wave energy, i.e. a21,0/Π = a21,−1/Π = 0.499 for
different bottom slope in the domain 0.003 < bkB < 0.018. For the
second kind, they have different wave energy, as shown in Table 5.
However, from physical viewpoint, as the bottom slope bkB → 0,
i.e. the bottom is flat, there should be no resonance caused by the
bottom ripples, say, the class-I Brag resonance should not exist at
all. Thus, the first kind of equilibrium-state class-I Bragg resonant
waves should have no physical meanings for the flat bottom, say,
as bkB → 0. From physical viewpoint, as the bottom slope bkB be-
comes larger and larger, the resonant wave should contain more
and more wave energy, until both of the primary and resonant
waves have the samewave amplitude. This is indeed true, as shown
in Fig. 8, which clearly indicates the bifurcation with respect to the
bottom slope at bkB ≈ 0.0074. So, such kind of bifurcation with
respect to the bottom slope is reasonable from the physical view-
point.

It should be emphasized that the two kinds of equilibrium-
state class-I Bragg resonant waves and especially the bifurcation
with respect to the bottom slope bkB have never been reported,
to the best of our knowledge. Note that bifurcation is a common
characteristic of nonlinear dynamic system. This indicates once
again the important influence of nonlinearity of the class-I Bragg
resonant waves.
Table 5
Wave energy distribution of the 2nd kind of equilibrium state of the class-I Bragg
resonant wave system with different bottom slope (bkB) in the case of α = 70°,
kB/k = 0.68404, kd = 2.5 and ϵ = 1.0003.

bkB Distribution of wave energy
Wave A (C) Wave C (A) Sum
a21,0/Π a21,−1/Π Π0/Π

0.003 0.9550 0.0448 0.9998
0.004 0.9169 0.0830 0.9999
0.005 0.8620 0.1378 0.9998
0.006 0.7820 0.2178 0.9998
0.007 0.6345 0.3653 0.9998
0.00725 0.5653 0.4346 0.9999
0.0074 0.5004 0.4994 0.9998

Fig. 9. Wave energy distribution versus the nonlinearity ϵ of the equilibrium states
of the class-I Bragg resonant wave system in the case of α = 70°, kB/k = 0.68404,
kd = 2.5 and bkB = 0.005.

5.4. Equilibrium-state resonant waves for different nonlinearities ϵ

Finally, let us study the effect of the nonlinearity ϵ on the
equilibrium-state class-I Bragg resonant waves. Without loss of
generality, consider the case

α = 70°, kd = 2.5, kB/k = 0.68404,
bkB = 0.005.

(62)

In a similar way, two kinds of equilibrium states of class-I Bragg
resonant waves with a bifurcation with respect to the nonlinear-
ity ϵ are found as well, as shown in Fig. 9. For the first kind, the
primary wave and the resonant one have the same wave energy,
i.e. a21,0/Π = a21,−1/Π = 0.499 for different nonlinearities in the
domain 1.00008 < ϵ < 1.0005. For the second kind, they have dif-
ferent wave energy, as shown in Table 6. From physical viewpoint,
the bifurcation is due to nonlinearity. As presented by Fig. 9, when
the nonlinearity ϵ increases, the bifurcation appears at ϵ ≈ 1.0002.
When ϵ grows further, the resonant wave contains more andmore
wave energy in the second kind of equilibrium state. In addition,
the bifurcation points shift as the nonlinearity ϵ varies. Take the
bifurcation point of the incident angle α as an example. Let us in-
vestigate the case

kd = 2.5, kB/k = 0.68404, bkB = 0.005. (63)

For each ϵ, there should be a corresponding bifurcation point αbif .
When ϵ increases from 1.0001 to 1.0003, the bifurcation point of
αbif decreases from 79.5° to 66.9°, as shown by Fig. 10. This means
the bifurcationwill start earlier for larger nonlinearitywhich varies
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Table 6
Wave energy distribution of the 2nd kind of equilibrium state of the class-I Bragg
resonant wave system with different nonlinearity (ϵ) in the case of α = 70°,
kB/k = 0.68404, kd = 2.5 and bkB = 0.005.

ϵ Distribution of wave energy
Wave A (C) Wave C (A) Sum
a21,0/Π a21,−1/Π Π0/Π

1.000201 0.5038 0.4961 0.9999
1.000205 0.5559 0.4440 0.9999
1.00021 0.6024 0.3975 0.9999
1.00022 0.6709 0.3290 0.9999
1.00025 0.7809 0.2190 0.9999
1.00028 0.8369 0.1630 0.9999
1.0003 0.8620 0.1378 0.9998
1.0004 0.9277 0.0721 0.9998
1.0005 0.9549 0.0449 0.9999

Fig. 10. Bifurcation points of the incident angle versus the nonlinearity ϵ of the
equilibrium states of the class-I Bragg resonant wave system in the case of kB/k =

0.68404, kd = 2.5 and bkB = 0.005.

in the domain ofαbif ∈ (1.0001, 1.0003) if the incident angle starts
from zero. Thus, stronger nonlinearity makes bifurcation easier.

5.5. Physical analysis of the two equilibrium states

From the physical viewpoint, the resonant wave should have
less and less wave energy as the effects of Bragg resonance
decrease, which correspond to the cases when the water depth
becomes deep, the slope of bottom ripples decreases, and thewave
direction becomes increasingly parallel to the ripples. It should be
emphasized that the 2nd kind of equilibrium-state is physically
more reasonable for the case with less effects of Bragg resonance.
As the effects of Bragg resonance increase, the resonant wave
has more and more wave energy until the bifurcations. After the
bifurcations, it shares the same energy with the primary wave
corresponding to the 1st equilibrium state, as depicted by Figs. 6–8.

6. Concluding remarks and discussions

For the class-I Bragg resonantwave systems about the nonlinear
interaction between surface waves and bottom ripples, Mitra
and Greenberg [30] found the slowly periodic exchange of wave
energy between different wave modes, say, the wave amplitude
and frequency of each component changes periodically with the
time. They solved the problem from the viewpoint of initial value
equations, and thus did not gain any multiple resonant waves,
since an initial value problem has only one solution. Their work
agreed with the famous conclusion of Benney [2] for periodically
varying surface resonant waves. Davies [31] applied perturbation
method to search for equilibrium states of the class-I Bragg
resonant waves, but failed, mainly because ‘‘the perturbation
theory breaks down due to singularities in the transfer functions’’,
as currently also pointed out byMadsen and Fuhrman [6]. It was an
open question whether or not there exist the equilibrium-states of
the class-I Bragg resonant waves, whose amplitude and frequency
of each components are independent of time.

In this paper, using an advanced analytic approximation
method for nonlinear problems, namely the homotopy analysis
method (HAM) [7–13], we successfully obtain the two kinds of
the equilibrium-states of the class-I Bragg resonant wave systems
with bifurcations. For the first kind, the primary and resonantwave
components have the same amplitude, i.e. the same wave energy.
This agrees well with the perfect tuning case (Ω = 0) reported by
Mei [25] using a linearizedwave equation. However, for the second
kind, they contain different wave energy, which have been never
reported. Especially, the bifurcations of the equilibrium-state solu-
tions with respect to the wave propagation angle α of the primary
wave, the dimensionless water depth kd, the bottom slope bkB and
the nonlinearity ϵ, as shown in Figs. 6–9, respectively, were discov-
ered for the first time. Asmentioned in Section 5, these bifurcations
are reasonable from physical viewpoints. Note that bifurcation is a
common characteristic of nonlinear dynamic systems. It should be
emphasized that the second kind of equilibrium-state class-I Bragg
resonantwaves and especially the bifurcations have been never re-
ported, to the best of our knowledge. This also indicates the impor-
tance of the nonlinearity for the class-I Bragg resonant waves. All
of these reveal the novel of our work.

Mathematically, unlike previous approaches, we use the ho-
motopy analysis method (HAM) [7–13], an advanced analytic ap-
proximation method for nonlinear problems. Unlike perturbation
methods, the HAM is independent of small/large physical param-
eters. So, it is unnecessary for us to assume any small physical
parameters in our HAM-based approach. It allows one to solve a
target nonlinear problem via a perturbation expansion about a pa-
rameter that is not physical (called embedding parameter). The
embedding parameter allows one to interpolate between a suit-
ably chosen linear problem (with known solution) and the target
nonlinear problem (with unknown solution). Themethod provides
a series solution for the target nonlinear problemwhich converges
if the solution of the linear problem and the solution of the target
problem are homotopic. Since we do not know a priori the homo-
topy class of the solution of the target nonlinear problem, it fol-
lows that the choice of the linear problem is very important. In
particular, the convergence of the HAM method will depend cru-
cially on this choice. In addition, provided the original nonlinear
problem is homotopic to the associated linear sub-problems, the
HAM provides us a simple way (convergent-control parameter c0)
to greatly improve the convergence speed of the solution series.
Especially, unlike previous approaches which regarded the class-I
Bragg resonance as an initial value problem that leads to slowly
periodic solutions, we search for the equilibrium states of the
resonant waves, which are unknown and governed by a non-
linear boundary-value problem. It is well-known that nonlinear
boundary-value problems often havemultiple solutions. This is the
mathematical reason why we gain the two different types of the
equilibrium-state class-I Bragg resonant waves with the bifurca-
tions.

Combining our equilibrium-state resonant waves with the
periodic resonant ones given byMitra andGreenberg [30], we have
now a better understanding about the class-I Bragg resonance.
From the traditional viewpoint of initial-value problems, the
class-I Bragg resonant wave systems have periodically varying
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amplitudes and frequencies of wave components if the initial
condition is randomly given, but are time-independent if the
initial condition is given exactly according to the equilibrium-
states of the class-I Bragg resonant ones found in this paper. Note
that the class-I Bragg resonant wave is a complicated nonlinear
dynamic system, and these equilibrium-states and especially their
bifurcations discovered in this article reveal one of its important,
global property of nonlinear dynamics. So, this work is helpful
to deepen and enrich our understandings about the class-I Brag
resonance.

It should bementioned that for caseswith large incidence angle,
large water depth and small bottom slope, the equilibrium state
is unreasonable where the two wave components have the same
wave energy. This state is possibly unstable physically while the
two kinds equilibrium states for relatively large nonlinearity are
not unreasonable apparently. Thus the stability of the equilibrium
states will be considered in the future. In addition, for simplicity,
an infinite number of ripples on the bottom is considered
approximately when the ripples are located in a large area. The
result found in this paper might be extended into the optics which
can propagate for quite long distance, where the Bragg resonance
were found initially of the X-ray diffraction by William Lawrence
Bragg andWilliamHenry Bragg [33], whowere awarded the Nobel
Prize in Physics in 1915.

Can we observe the two kinds of the equilibrium-states of the
class-I Bragg resonant waves with the bifurcations in laboratory?
Are they stable? How about the class-II and class-III Bragg resonant
wave systems? Obviously, further theoretical, numerical and
experimental studies are necessary in future to answer these
interesting open questions.
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Appendix. Detailed mathematical deduction of the high-order
deformation equations (35)–(38)

The HAM is based on the homotopy, a basic concept of topol-
ogy, which may describe continuous variations (or deformations)
of functions. In the context of the HAM, we first construct the con-
tinuous variations φ̆(ξ1, ξ2, z; q) and η̆(ξ1, ξ2; q)which, as the em-
bedding parameter q ∈ [0, 1] increases from 0 to 1, continuously
deform from the initial guesses φ0(ξ1, ξ2, z) and η0(ξ1, ξ2) to the
solution φ(ξ1, ξ2, z) and η(ξ1, ξ2) of the boundary-value Eqs. (22)–
(25), respectively.

Such continuous variations are governed by the zeroth-order
deformation equation
∂2

∂ξ 21
+ 2ϵ3 cosα

∂2

∂ξ1∂ξ2
+ ϵ23

∂2

∂ξ 22
+
∂2

∂z2


× φ̆(ξ1, ξ2, z; q) = 0 (A.1)
in the domain −ϵ1 + q(ϵ2/ϵ3) cos(ξ2) < z < ϵ1η̆(ξ1, ξ2; q),
subject to the boundary conditions on the unknown free surface
z = ϵ1η̆(ξ1, ξ2; q),

(1 − q)L1[φ̆(ξ1, ξ2, z; q)− φ0(ξ1, ξ2, z)]

= q c0 N1[φ̆(ξ1, ξ2, z; q)], (A.2)

(1 − q)η̆(ξ1, ξ2; q) = q c0 N2[φ̆(ξ1, ξ2, z; q), η̆(ξ1, ξ2; q)], (A.3)

and the bottom condition on z = −ϵ1 + q(ϵ2/ϵ3) cos ξ2,

(1 − q)L2[φ̆(ξ1, ξ2, z; q)− φ0(ξ1, ξ2, z)]

= q c0 N3[φ̆(ξ1, ξ2, z; q)], (A.4)

where Li (i = 1, 2) are the auxiliary linear operators with the
property Li[0] = 0, c0 ≠ 0 is the convergence-control parameter,
and

L1 =
∂2

∂ξ 21
+

1
tanh(ϵ1)

∂

∂z
, L2 =

∂

∂z
, (A.5)

N1[φ̆] =
∂2φ̆

∂ξ 21
+

1
ϵ2 tanh(ϵ1)

∂φ̆

∂z
− 2ϵ1

∂ f̆
∂ξ1

+ ϵ21∇φ̆ · ∇ f̆ , (A.6)

N2[φ̆, η̆] = η̆ − ϵ2 tanh(ϵ1)


∂φ̆

∂ξ1
− ϵ1 f̆


, (A.7)

N3[φ̆] =
∂φ̆

∂z
+ ϵ2 sin ξ2


cosα

∂φ̆

∂ξ1
+ ϵ3

∂φ̆

∂ξ2


, (A.8)

f̆ (φ̆) =
1
2

 ∂φ̆
∂ξ1

2

+ ϵ23


∂φ̆

∂ξ2

2

+ 2ϵ3 cosα
∂φ̆

∂ξ1

∂φ̆

∂ξ2
+


∂φ̆

∂z

2
 , (A.9)

respectively. The homotopy-series solutions of the velocity poten-
tial and wave elevation are

φ(ξ1, ξ2, z) =

+∞
m=0

φm(ξ1, ξ2, z), (A.10)

η(ξ1, ξ2) =

+∞
m=0

ηm(ξ1, ξ2), (A.11)

where

φm(ξ1, ξ2, z) =
1
m!

∂mφ̆(ξ1, ξ2, z; q)
∂qm


q=0

, (A.12)

ηm(ξ1, ξ2) =
1
m!

∂mη̆(ξ1, ξ2; q)
∂qm


q=0
. (A.13)

And further, theMth-order homotopy approximation reads

φ(ξ1, ξ2, z) ≈

M
m=0

φm(ξ1, ξ2, z), (A.14)

η(ξ1, ξ2) ≈

M
m=0

ηm(ξ1, ξ2), (A.15)

where φm(ξ1, ξ2, z) and ηm(ξ1, ξ2) are obtained by solving the
high-order deformation equations derived as follows. Based on the
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zeroth-order deformation Eqs. (A.1)–(A.4) and following Liao [14],
we define
µ1,n = ηn, n ≥ 1, (A.16)

µm,n =

n−1
i=m−1

µm−1,iηn−i, m ≥ 2, n ≥ m, (A.17)

ψ
n,m
i,j =

∂ i+j

∂ξ i1∂ξ
j
2


1
m!

∂mφn

∂zm


z=0


, (A.18)

β
n,0
i,j = ψ

n,0
i,j , β

n,m
i,j =

m
s=1

ψ
n,s
i,j µs,mϵ

s
1 m ≥ 1, (A.19)

γ
n,0
i,j = ψ

n,1
i,j , γ

n,m
i,j =

m
s=1

(s + 1)ψn,s+1
i,j µs,mϵ

s
1 m ≥ 1, (A.20)

δ
n,0
i,j = 2ψn,2

i,j ,

δ
n,m
i,j =

m
s=1

(s + 1)(s + 2)ψn,s+2
i,j µs,mϵ

s
1 m ≥ 1,

(A.21)

φ̄i,j
n =

n
m=0

β
n−m,m
i,j , φ̄i,j

z,n =

n
m=0

γ
n−m,m
i,j , (A.22)

φ̄i,j
zz,n =

n
m=0

δ
n−m,m
i,j . (A.23)

It holds

L1[φ̆ − φ0] =
∂2(φ̆ − φ0)

∂ξ 21
+

1
tanh(ϵ1)

∂(φ̆ − φ0)

∂z

=

+∞
n=1

qnSn, (A.24)

where

Sn =

n−1
m=0


β

n−m,m
2,0 +

1
tanh(ϵ1)

γ
n−m,m
0,0


=


∂2φn

∂ξ 21
+

1
tanh(ϵ1)

∂φn

∂z


z=0

+ S̄n, (A.25)

S̄n =

n−1
m=1


β

n−m,m
2,0 +

1
tanh(ϵ1)

γ
n−m,m
0,0


. (A.26)

So, the left hand side of Eq. (A.2) becomes

(1 − q)L1[φ̆ − φ0] =

+∞
n=1

(Sn − χnSn−1)qn, (A.27)

where

χn =


0, when n ≤ 1,
1, when n > 1. (A.28)

Meanwhile, the right hand side of Eq. (A.2) reads

N1[φ̆] = c0
+∞
n=1

∆
φ

n−1q
n, (A.29)

where

∆φm = φ̄2,0
m +

1
ϵ2 tanh(ϵ1)

φ̄0,0
z,m − 2ϵ1Γm,1 + ϵ21Λm, (A.30)

Γm,1 =

m
n=0

(φ̄1,0
n φ̄

2,0
m−n + ϵ23 φ̄

0,1
n φ̄

1,1
m−n + φ̄0,0

z,n φ̄
1,0
z,m−n)

+ ϵ3 cosα
m

n=0

(φ̄1,0
n φ̄

1,1
m−n + φ̄2,0

n φ̄
0,1
m−n), (A.31)
Γm,2 =

m
n=0

(φ̄1,0
n φ̄

1,1
m−n + ϵ23 φ̄

0,1
n φ̄

0,2
m−n + φ̄0,0

z,n φ̄
0,1
z,m−n)

+ ϵ3 cosα
m

n=0

(φ̄1,0
n φ̄

0,2
m−n + φ̄0,1

n φ̄
1,1
m−n), (A.32)

Γm,3 =

m
n=0

(φ̄1,0
n φ̄

1,0
z,m−n + ϵ23 φ̄

0,1
n φ̄

0,1
z,m−n + φ̄0,0

z,n φ̄
0,0
zz,m−n)

+ ϵ3 cosα
m

n=0

(φ̄1,0
n φ̄

0,1
z,m−n + φ̄0,1

n φ̄
1,0
z,m−n), (A.33)

Λm =

m
n=0

(φ̄1,0
n Γm−n,1 + ϵ23 φ̄

0,1
n Γm−n,2 + φ̄0,0

z,nΓm−n,3)

+ ϵ3 cosα
m

n=0

(φ̄1,0
n Γm−n,2 + φ̄0,1

n Γm−n,1). (A.34)

Thus, the high-order deformation equation on z = 0 for potential
velocity function is

L̄[φm] = c0∆
φ

m−1 + χmSm−1 − S̄m = R1,m(ξ1, ξ2), (A.35)

where

L̄[φm] =


∂2φm

∂ξ 21
+

1
tanh(ϵ1)

∂φm

∂z


z=0

. (A.36)

The high-order deformation equation for thewave elevation hence
becomes

ηm = c0∆
η

m−1 + χmηm−1 = R3,m(ξ1, ξ2), (A.37)

where

∆
η

m−1 = ηm−1 − ϵ2 tanh(ϵ1)(φ̄
1,0
m−1 − ϵ1Γm−1,0), (A.38)

Γm,0 =

m
n=0


1
2
φ̄1,0
n φ̄

1,0
m−n +

1
2
ϵ23 φ̄

0,1
n φ̄

0,1
m−n +

1
2
φ̄0,0
z,n φ̄

0,0
z,m−n

+ ϵ3 cosαφ̄1,0
n φ̄

0,1
m−n


. (A.39)

Meanwhile, on the bottom z = −ϵ1 + q(ϵ2/ϵ3)ζ , by expanding
φn(ξ1, ξ2, z) at z = −ϵ1, we have

φn(ξ1, ξ2, z) = φn|z=−ϵ1

+

+∞
m=1


1
m!

∂mφn

∂zm


z=−ϵ1


qm(ϵ2/ϵ3)mζm, (A.40)

∂ i+jφn(ξ1, ξ2, z)

∂ξ i1∂ξ
j
2

=
∂ i+jφn

∂ξ i1∂ξ
j
2


z=−ϵ1

+

+∞
m=1

∂ i+j

∂ξ i1∂ξ
j
2

 1
m!

∂mφn

∂zm


z=−ϵ1


× qm(ϵ2/ϵ3)mζm, (A.41)

∂φn(ξ1, ξ2, z)
∂z

=
∂φn

∂z


z=−ϵ1

+

+∞
m=1


1
m!

∂m+1φn

∂zm+1


z=−ϵ1


× qm(ϵ2/ϵ3)mζm. (A.42)

Defining

ψ̃
n,m
i,j =

∂ i+j

∂ξ i1∂ξ
j
2


1
m!

∂mφn

∂zm


z=−ϵ1


, (A.43)
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then, on z = −ϵ1 + q(ϵ2/ϵ3)ζ , we have

φn(ξ1, ξ2, z) = ψ̃
n,0
0,0 +

+∞
m=1

ψ̃
n,m
0,0 qm(ϵ2/ϵ3)mζm, (A.44)

∂ i+jφn(ξ1, ξ2, z)

∂ξ i1∂ξ
j
2

= ψ̃
n,0
i,j +

+∞
m=1

ψ̃
n,m
i,j qm(ϵ2/ϵ3)mζm, (A.45)

∂ i+j+1φn(ξ1, ξ2, z)

∂z∂ξ i1∂ξ
j
2

= ψ̃
n,1
i,j +

+∞
m=1

(m + 1)ψ̃n,m+1
i,j qm(ϵ2/ϵ3)mζm. (A.46)

On z = −ϵ1 + q(ϵ2/ϵ3)ζ , we have

∂

∂z


φ̆(ξ1, ξ2, z; q)− φ0(ξ1, ξ2, z)


=

+∞
n=1

qnTn, (A.47)

where

Tn = ψ̃
n,1
0,0 + T̄n,

T̄n =

n−1
m=1

(m + 1)ψ̃n−m,m+1
0,0 (ϵ2/ϵ3)

mζm.
(A.48)

Thus, the left-hand side of Eq. (A.4) hence becomes

(1 − q)L2[φ̆(ξ1, ξ2, z; q)− φ0(ξ1, ξ2, z)]

=

+∞
n=1

qn[Tn − χnTn−1]. (A.49)

Besides, we have

∂φ̆(ξ1, ξ2, z; q)
∂z

=

+∞
n=0

∂φn
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qn

=
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n=0
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
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m=0
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0,0 (ϵ2/ϵ3)

mζm


, (A.50)

∂φ̆(ξ1, ξ2, z; q)
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=
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∂φn
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=
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mζm


, (A.51)

∂φ̆(ξ1, ξ2, z; q)
∂ξ2

=

+∞
n=0

∂φn

∂ξ2
qn

=

+∞
n=0

qn


n
m=0

ψ̃
n−m,m
0,1 (ϵ2/ϵ3)

mζm


. (A.52)

So, the right-hand side of Eq. (A.4) reads

q c0 N3[φ̆] = c0q


∂φ̆

∂z
+ ϵ2 sin ξ2


cosα

∂φ̆

∂ξ1
+ ϵ3

∂φ̆

∂ξ2



= c0
+∞
n=1

qn∆b
n−1, (A.53)

where

∆b
n =


ψ̃

n,1
0,0 + ϵ2 sin ξ2


cosαψ̃n,0

1,0 + ϵ3ψ̃
n,0
0,1


+

n
m=1

(ϵ2/ϵ3)
mζm


(m + 1)ψ̃n−m,m+1

0,0

+ ϵ2 sin ξ2

cosαψ̃n−m,m

1,0 + ϵ3ψ̃
n−m,m
0,1


. (A.54)
Thus, the high-order bottom condition reads

L̄2[φm] = c0∆b
m−1 + χmTm−1 − T̄m

= R2,m(ξ1, ξ2), on z = −ϵ1, (A.55)

where

L̄2[φm] =
φm

∂z


z=−ϵ1

. (A.56)

Note that ζ = cos ξ2 in all of above formulas.
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