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Abstract In this paper the convergent series solutions for the non-similarity flow
of viscous fluid with nanoparticles are given. Fundamental equations employed in
the mathematical modelling include the novel aspects of Brownian motion and ther-
mophoresis. Non-similarity flow is induced by a stretching sheet with arbitrary
velocity. The so-called homotopy analysis method (HAM) is applied to gain the con-
vergent series solutions of the nonlinear partial differential equation. It is noticed
that flow field, temperature and nanoparticle volume fraction profile are greatly
influenced by the physical parameters such as Prandtl number, Brownian motion
parameter, thermophoresis parameter and Lewis number. To the best of our knowl-
edge, the present analysis seems to be a first attempt to non-similarity boundary layer
flows of viscous fluids with nanoparticles.
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1 Introduction

The study of boundary layer flow by stretching sheet has received a great deal of
research interest due to its wide applications in metallurgy, extrusion processes,
cooling of an infinite metallic plate in a cooling bath, melt spinning, hot rolling,
manufacture of plastic and rubber sheets, food processing, movement of biological
fluids, cooling or drying of papers and in textile and glass fiber production. Both the
rates of stretching and cooling have pivotal role for quality of the end product with
desired characteristics. Crane [1] initiated the analysis of two-dimensional similar
flow of viscous fluid over a surface with linear stretching velocity. He obtained the
closed form solution of the resulting nonlinear mathematical problem. Afterwards
extensive literature is now available on this topic through different aspects of suc-
tion/injection, magnetohydrodynamics (MHD), rheological characteristics, heat and
mass transfer, chemical reaction etc. Information is replete especially to the similar
boundary layer flows of viscous fluid in this direction. Some recent contributions
on the title may be mentioned by the studies [2, 5]. The non-similarity flows have
not been discussed extensively in the past. Only few attempts addressed such flows
for viscous and second order fluids. For instance Liao [6] analyzed non-similarity
boundary layer flow of viscous fluid bounded by a stretching sheet. Non-similar
solution for boundary layer flow of second order fluid over a stretching surface with
arbitrary velocity was provided by You et al. [7]. Non-similar natural convection
flow of viscous fluid over a permeable sheet is examined by Kousar and Liao [8].
Nakhchi et al. [9] addressed the non-similarity thermal boundary layer flow over a
stretching flat plate. Kousar and Mahmood [10] examined non-similarity boundary
layer flow of viscous fluid by a porous wedge.

The thermal load removal at present is a serious concern in power, manufactur-
ing, transportation, chemical and electronic industries. Although several mechanisms
have been suggested for cooling the high heat flux surfaces but majority of such
mechanisms depend upon fluid suction/injection structure variation, heated surface
vibration etc. Such mechanisms are not useful especially for cooling requirement
of future generation of microelectronic systems. This is because of the reason that
such heat transfer mechanisms result in undesirable cooling system size and low
efficiency of heat exchangers. Concept of nanofluids are considered feasible to obvi-
ate this problem. Thus the topic of nanofluids has attracted the attention of recent
scientists and engineers. In fact the usual fluids in view of their low heat transfer char-
acteristics do not posses effective heat transfer capabilities. Nanofluids is a material
consisting of nanometer-sized particles. Nanofluids are engineered colloidal suspen-
sions of nanoparticles in a base fluid. Commonly used base fluids are oil, water,
lubricants, toluene, ethylene glycol, biofluids and polymer solutions whereas the
nanoparticles are made of metals (gold, aluminium, copper, iron, titanium, methanol),
oxides (Al2O3), carbides (Sic), nitride (AIN, SiN) or non-metals (Graphite, Car-
bon nanotubes). Sure, the selection of base fluid particle combination depends upon
the application for which the nanofluid is intended. In literature, the similar boundary
layer flows of nanofluid have been analyzed under different aspects (see for instance
[11–23]).
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The objective of present communication is to venture further in the regime of
non-similarity boundary layer flows of fluids in the presence of nanoparticles. Lit-
erature survey reveals that there is no such attempt available in this direction. Thus
the main theme here is to revisit the non-similarity flow of analysis of ref. [9] in the
presence of nanoparticles. The flow formulation is first presented and then the result-
ing nonlinear differential systems are solved by optimal homotopy analysis method
(OHAM). The OHAM series solutions contain the convergence-control parameters
as defined by Liao [24]. It should be noticed that the convergence-control parameters
are just the artificial parameters introduced in the high order deformation equations
to enhance the convergence but physically they have no meaning at all. Obviously,
it is very important to ensure the convergence of the approximation series and the
convergence of homotopy analysis method (HAM) results greatly depends on the
proper choice of convergence-control parameters. There are two standard procedures
to obtain convergence-control parameters. One is through �-curve method and the
other one is called Minimum Error Method. In �-curve method we plot a figure which
displays the variations of � with a fixed functional value (for an example, f ′′(0))
given by any order of HAM iteration. It gives � region and any value from that region
is reasonable to be picked. However, � region contains infinite values and it is quite
hard to pick the best value from � region. In minimum error method the optimal val-
ues of the convergence-control parameters are obtained by the minimum of average
squared residual error. The choice of the optimal values of the convergence-control
parameters by using minimum error method as defined by Liao [25] is often referred
to as OHAM and has been applied in the literature (see [26–30]). Here, the optimal
values for the convergence-control parameters are obtained through the minimum of
total average squared residual error. In this paper, the convergence of the OHAM
series solutions has been demonstrated by an illustrative example. The effects of the
physical parameters such as Pr , Nb, Nt and Le on the fluid flow, temperature dis-
tributions, concentration profiles, the local Nusselt number and the local Sherwood
number are studied in detail.

2 Mathematical formulation

Here we investigate the two-dimensional flow of viscous nanofluid bounded by
a stretching surface with velocity Uw(x). Two different cases of Uw(x) are con-
sidered. The boundary layer approximations are employed. The sheet is taken at
y = 0 whereas x-axis is along the surface. The effects of Brownian motion and
thermophoresis are accounted.

Continuity Equation

∂u

∂x
+ ∂v

∂y
= 0. (1)

Momentum Equation

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
. (2)
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Thermal energy equation

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

{
DB

(
∂C

∂y

∂T

∂y

)
+ DT

T∞

(
∂T

∂y

)2
}

. (3)

Nanoparticle volume fraction equation

u
∂C

∂x
+ v

∂C

∂y
= DB

(
∂2C

∂y2

)
+ DT

T∞

(
∂2T

∂y2

)
. (4)

In the above expressions of continuity, momentum and nanoparticle volume
fraction, α = k

(ρc)f
is the thermal diffusivity of the fluid, k is the fluid thermal con-

ductivity, τ is the volumetric expansion coefficient of nanofluid, ν is the kinematic
viscosity, T is the temperature, C is the nanoparticle fraction, DB is the Brownian
diffusion coefficient and DT is the thermophoretic diffusion coefficient. The origin
of the coordinate axes (x,y) is defined as a rest point on the stretching sheet when
two forces with same magnitude are applied in different direction. Since the flow is
symmetric therefore we only consider the flow in the first quadrant i.e. x ≥ 0 and
y ≥ 0. The fluid is at rest far from the sheet (i.e., as y → ∞) and the sheet exhibits
stretching with velocityUw(x). Therefore the corresponding boundary conditions are

u = Uw(x), v = 0, T = Tw, C = Cw at y = 0, (5)

and

u = 0,
∂v

∂x
= 0 at x = 0, (6)

u → 0, T → T∞, C → C∞ as y → ∞. (7)

The stream functions (ψ) and the non-similarity transformation (η) are defined as
follows:

ψ = ν
1
2 σ(x)f (x, η), η = y

ν
1
2 σ(x)

, (8)

where σ(x) > 0 is a real function. Using the stream function ψ we get

u = ∂f

∂η
, v = −ν

1
2

[
σ ′(x)

(
η
∂f

∂η
− f

)
− σ(x)

∂f

∂x

]
. (9)

Without loss of generality let us consider the case Uw(x) = Uw(ξ), where ξ =
�(x) is a given real function of x and considering

θ(η) = T − T∞
Tw − T∞

, φ(η) = C − C∞
Cw − C∞

. (10)
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Substituting (8–10) into (1–4), the non-dimensional governing partial differential
equations are as follows:

∂3f

∂η3
+ σ1(ξ)f

∂2f

∂η2
+ σ2(ξ)

(
∂f

∂ξ

∂2f

∂η2
− ∂f

∂η

∂2f

∂ξ∂η

)
= 0, (11)

∂2θ

∂η2
+ PrNb

∂φ

∂η

∂θ

∂η
+ PrNt

(
∂θ

∂η

)2

+ Prσ1(ξ)f
∂θ

∂η
+ Prσ2(ξ)

(
∂f

∂ξ

∂θ

∂η
− ∂θ

∂ξ

∂f

∂η

)
= 0, (12)

∂2φ

∂η2
+ Nt

Nb

∂2θ

∂η2
+ LeP rσ1(ξ)f

∂φ

∂η
+ LeP rσ2(ξ)

(
∂f

∂ξ

∂φ

∂η
− ∂φ

∂ξ

∂f

∂η

)
= 0,(13)

In the above equations, the parameters Pr ,Nb,Nt ,Le and Sc are the Prandtl number,
the Brownian motion parameter, the thermophoresis parameter or Lewis and Schmidt
numbers respectively. These are defined by

Nb = τDB(Cw − C∞)

ν
, Nt = τDT (Tw − T∞)

νT∞
, Le = Sc

P r
, P r = ν

α
, Sc = ν

DB

. (14)

Also

PrNb = τDB(Cw − C∞)

α
, P rNt = τDT (Tw − T∞)

αT∞
, LeP r = Sc. (15)

and

σ1(ξ) = 1

2

[
σ 2(x)

]′
, σ2(ξ) = �′(x)σ 2(x). (16)

The corresponding boundary conditions are

f (ξ, 0) = 0, fη(ξ, 0) = Uw(ξ), fη(ξ, ∞) = 0,

θ(ξ, 0) = 1, θ(ξ, ∞) = 0,

φ(ξ, 0) = 1, φ(ξ, ∞) = 0.

⎫⎪⎬
⎪⎭ (17)

Here the so-called homotopy analysis method (HAM) (for details see [6, 31, 32])
is used to provide a general approach to solve non-similarity boundary layer flows of
nanofluids governed by PDE’s (11–13) with boundary conditions (17). Its basic ideas
and mathematical formulations are given in the Appendix. For details, please refer to
Liao [6]. We point out the great freedom in HAM to choose the convergence-control

parameters
(
c
f

0 , cθ
0 , c

φ

0

)
, the auxiliary function Hi (η)(i = 1 − 3), the auxiliary lin-

ear operators Li (i = 1 − 3), the initial approximations (f0(η), θ0(η), φ0(η)). If all
of them are so properly chosen the solutions (fk(η), θk(η), φk(η)) from (34–36) of
high order deformation equations can be easily obtained by means of computation
software Mathematica. The convergence of OHAM series solutions is checked by
the total average squared residual error [6, 33].

The flow, temperature distribution, concentration profile, the local Nusselt number
and the local Sherwood number are analyzed for various values of the physi-
cal parameters like Prandtl number, Brownian motion parameter, thermophoresis
parameter and Lewis number.
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3 Results and discussion

Certainly, it is quite necessary to assure the convergence of the non-similarity OHAM
series solutions. The convergence of the optimal HAM (OHAM) series solutions
depends upon the convergence-control parameters. The convergence-control param-
eters provide us a simple way to control the convergence rate of homotopy series
solution. It should be emphasized that we have great freedom to choose the value
of convergence-control parameters that guarantee the convergence of the homotopy
series solutions. The accuracy of the OHAM series solutions can be verified by the
exact squared residual error of the governing equation (19–21) as shown in the (43–
45). Since it takes too much CPU time to compute exact squared residual error even
if the order of approximation is not so high. Therefore for the sake of computational
efficiency, we used here the average squared residual errors (47–49).

Clearly, the total average squared residual error E t
k

(
c
f

0 , cθ
0 , c

φ

0

)
is a good approx-

imation of total exact squared residual error �t
k

(
c
f

0 , cθ
0 , c

φ

0

)
provided the integer

N in equations (47–49) is sufficiently large. We have chosen N = 80 throughout

the computations in this paper. Since E t
k

(
c
f

0 , cθ
0 , c

φ

0

)
depends upon the convergence-

control parameters therefore the smaller the value of E t
k

(
c
f

0 , cθ
0 , c

φ
0

)
the better the

approximation.

The minimum value of the E t
k

(
c
f

0 , cθ
0 , c

φ

0

)
can be obtained by means of the soft-

wares such as Maple, Mathematica and Matlab. Throughout in this paper, we fix
c
f

0 = −0.5 as [6] has already proved that one can get convergent HAM series solu-
tions for (11) in the whole domain 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ +∞ (corresponding to
0 ≤ x ≤ +∞ and 0 ≤ y ≤ +∞). Without loss of genrality, let’s consider the case
Pr = Le = 1.0, Nb = Nt = 0.1. The optimal values of the convergence-control

parameters cθ
0 and c

φ

0 are obtained by the minimum of the E t
k

(
c
f

0 , cθ
0 , c

φ

0

)
through

directly employing the command “Minimized” in Mathematica. It can be seen in
Table 1 that as we increase the order of iteration the corresponding average squared
residual error’s are decreasing. The computation is stopped when a certain conver-
gence criterion is satisfied. This illustrative example validates the reliability of the
non-similarity HAM series solutions.

Figures 1(a) and (b) describe the local Nusselt number and the local Sherwood
number as the functions of the coordinate x in the positive direction at the leading

Table 1 Average squared
residual errors at different order
of iterations for Le = Pr = 1.0,
Nb = Nt = 0.1, σ1(x) = 1

2 and
σ2(x) = 1 − ξ by using
c
f

0 = −0.5, cθ
0 = −0.87 and

cθ
0 = −1.20

k 10 20 30

Ef
k 1.6 × 10−5 3.01 × 10−7 1.20 × 10−8

Eθ
k 1.0 × 10−5 5.1 × 10−7 3.7 × 10−8

Eφ
k 1.4 × 10−5 8.9 × 10−7 5.8 × 10−8

E t
k 4.2 × 10−5 1.7 × 10−6 1.0 × 10−7
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edge with different stretching velocities Uw(x). The stretching velocity of the sur-
face Uw(x) = x

1+x
increases monotonically from 0 to 1. However the solutions of the

boundary value problem (1–4) subject to the boundary conditions (5–7) with surface
velocities Uw → x as x → 0 and Uw → 1 as x → ∞ can be obtained with sim-
ilarity transformations y√

ν
and y√

νx
, respectively. The direct study of the boundary

layer flows with nanoparticles for the stretching surfaces under non-similarity trans-
formations is important in the sense how we can develop the relationships between
the heat and mass transfer for both similarity and non-similarity transformations. It
is reasonable to consider σ(x) = √

1 + x under the definition of η in (10). For the
sake of simplicity, when Uw(x) = x

1+x
we define ξ = �(x) = x

x+1 which gives

Uw(ξ) = ξ , σ1(ξ) = 1
2 , σ2(ξ) = 1 − ξ . Then the local Nusselt number and the

local Sherwood number are ν
1
2 Nux = − xθ ′(ξ,0)

σ (x)
and ν

1
2 Shx = − xφ′(ξ,0)

σ (x)
, respec-

tively. When Uw(x) = x we define ξ = x which gives the local Nusselt number

ν
1
2 Nux = −xθ ′(ξ, 0) and the local Sherwood number ν

1
2 Shx = −xφ′(ξ, 0). When

Uw(x) = 1 the local Nusselt number and the local Sherwood number is defined as
ν

1
2 Nux = −x

1
2 θ ′(ξ, 0) and ν

1
2 Shx = −x

1
2 φ′(ξ, 0). It is observed from Figs. 1(a)

and (b) that the local Nusselt number and the local Sherwood number increase in the
positive x-direction for boundary layer flows with nanoparticles under similarity and
non-similarity transformations for different stretching velocities. The magnitude of
local Nusselt number and the local Sherwood number for the surface withUw(x) = 1
when x < 1 is higher than the surfaces with Uw(x) = x

1+x
and Uw(x) = x. However

for the surface with Uw(x) = x
1+x

and Uw(x) = x the local Nusselt number and the
local Sherwood number is same at the leading edge when x → 0. The magnitude of
the local Nusselt number and the local Sherwood number for Uw(x) = x

1+x
when

x >> 1 is higher than Uw(x) = x and Uw(x) = 1. Since the process of heat and

x

N
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2
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Fig. 1 (a) The local Nusselt number (b) The local Sherwood number
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(b)

Fig. 2 (a) Graph of the local Sherwood number for different Le (b) Graph of the local Sherwood number
for different Nb

mass transfer are analogous to each other as it can be seen in the Figs. 1(a) and (b),
therefore it is easy to develop an understanding of mass transfer.

Figure 2(a) shows the influence of the Le on the local Sherwood number for
Uw(x) = x

1+x
. It should be noticed that Sc ≈ 1 indicates that (13) and (11) coincide

with each other. Similarly if we replace Sc by Pr.Le in (13), it represents that rela-
tive heat and mass transfer by diffusion is comparable. The increase in Le means a
larger thermal diffusivity which is a result of higher thermal conductivity or low heat
capacity. The conduction increases and thus the temperature enhances. The higher
thermal diffusivity means high rate of heat transfer and since the process of heat and
mass transfer undergoes simultaneously especially in gases therefore it can be seen
in Fig. 2(a) that the increase in Le enhances the local Sherwood number.

Figure 2(b) represents the effect of Nb on the local Sherwood number. The Brow-
nian motion is considered to be an important phenomenon in nanofluids because the
effective thermal conductivity of nanofluids does not depend only on the structure of
the nanoparticles but also on the movement of nanoparticles in base fluid. Figure 2(b)
demonstrates that the increase in Nb yields enhancement in the mass diffusion which
results in the increase in mass transfer.

The local Nusselt number at different locations of x for various values of Pr is
shown in Fig. 3(a). It can be seen the increase in Pr increases the local Nusselt
number however the effects of Pr are significant when x > 1.

The buildup of velocity profiles of the boundary layer flow for stretching surface
for increasing values of ξ is shown in Fig. 3(b). It is observed that at the leading
edge the velocity profiles increase proportionally with the increasing values of ξ .
The velocity gradient decreases in the downstream direction and velocity profiles for
increasing ξ become constant in the free stream region.
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Fig. 3 (a) Graphs of the local Nusselt number for different Pr . (b) Graphs of the velocity profiles for
various ξ .

The dimensionless temperature profiles for a surface stretching with velocity Uw

are shown in Fig. 4(a). At the leading edge of the surface, the fluid temperature
is equal to the surface temperature and gradually decreases to the temperature of
the surrounding fluid and sufficiently far away from the surface it asymptotically
approaches to zero. The effect of the increase in the values ξ is to increase the
temperature in the surrounding fluid.
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Fig. 4 (a) Temperature profiles for various values of ξ . (b) Concentration profiles for various values of ξ
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(b)

Fig. 5 (a) Temperature profiles for various values of Pr(b)Temperature profiles for various values of Nb

The dimensionless concentration profile in Fig. 4(b) under the boundary condi-
tions for specified values of ξ depicts that concentration is highest at the leading edge
and it gradually decreases to low concentration with the increase in the values of η.
Increase in the values of ξ exhibits an increase to the concentration in the bound-
ary layer region. Figure 5(a) shows variations of Pr on the temperature profiles at a
fixed value of ξ keeping all other physical parameters constant. The Pr is increased
which is due to the relatively low thermal diffusivity (thermal conductivity), the
reduced conduction decreases the thermal boundary layer thickness. Therefore the
temperature of a nanofluids are strong function of Pr . It is illustrated in Fig. 5(a) the
temperature decreases with Pr in the boundary layer region.

Nanofluids are dynamic systems so the effects of Brownian motion mechanism in
the enhancement of temperature through particle-particle collision caused by Brow-
nian motion of nanoparticles are shown in Fig. 5(b). It shows that purely increasing
Brownian motion of nanoparticles enhances the temperature in the boundary layer
region. Similarly Fig. 6(a) demonstrates the variation of temperature profile with
respect to the change of Nt keeping all other parameters fixed. It can be seen that the
increase in Nt also increases the temperature profile in the boundary layer region.

Figure 6(b) shows variations of nanofluid concentration graph via Le. Here the
concentration is a decreasing function of Le. Physically it validates the fact that the
increase in the Le reduces the mass diffusivity therefore mass transfer slows down
through the fluid because the fluid conducts heat slowly relative to its volumetric heat
capacity.

Figures 7(a) and (b) indicate the nanofluid concentration with respect to differ-
ent variations of Nb and Nt , respectively. Figure 7(a) indicates that the effect of Nb

on nanoparticle concentration is to decrease the concentration profile. Figure 7(b)
witnesses that the increase in Nt increases the concentration in the boundary layer
region. The concentration profile is strictly decreasing when Nt = 0.10. However
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Fig. 6 (a) Temperature profiles for various values of Nt (b) Concentration profiles for various values of
Le

the concentration shootout is observed for Nt = 0.3, 0.5, 0.8 i.e. the concentration is
initially increasing and then it starts decreasing. The peak value of the concentration
increases significantly with the increase in Nt and then it starts decreasing.
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Fig. 7 (a) Concentration profiles for various values of Nb (b) Concentration profiles for various values of
Nt
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4 Conclusions

In this paper, an analytic approach based on optimal homotopy analysis method
(OHAM) is proposed to obtain convergent series solutions for the non-similarity
boundary layer flows of nanofluids. The series solutions of the resulting partial dif-
ferential equations through non-similar transformations are obtained by OHAM. The
convergence criterion of the OHAM series solutions is satisfied through average
squared residual errors. It is found that for the non-similarity boundary layer flow
of a surface stretching with velocity Uw = x

1+x
the so-called local similarity exists

only near x = 0 i.e. Uw = x and x = +∞ i.e. Uw = 1. The effects of the non-
similarity variable ξ and various values of the physical parameters such as Nb, Nt ,
Pr and Le on the fluid velocity, temperature, concentration profile, the local Nusselt
number and Sherwood number are illustrated through graphs. We may extract some
important findings from the presented analysis as follows:

• The increase in the values of x increases the local Nusselt and the local Sherwood
numbers. Keeping all other parameters fixed the stretching velocities Uw = x

1+x
and Uw = x the local Sherwood number and the local Nuseelt number are same
when x << 1.

• Effects of Le and Nb are to increase the local Sherwood number.
• An increase in the Prandtl number gives rise to the local Nusselt number.
• The velocity profiles increase proportionally with ξ at the leading edge. Also

the increase in the values of ξ enhances both the temperature and concentration
profiles .

• Larger Prandtl number decreases the temperature whereas the temperature
profiles increase when the values of Nb and Nt are increased.

• Increase in the values of the parameters Le and Nb significantly decreases
the concentration profiles and the increase in the values of Nt enhances the
concentration profiles.
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Appendix Approach based on the HAM

We apply the OHAM to solve the system of nonlinear ordinary differential equation
(11–13) with boundary conditions (17). In the framework of the OHAM the solutions
for f (η), θ(η) and φ(η) can be expressed explicitly by an infinite number of sub-
functions in the following forms:

f (η) =
+∞∑
k=0

fk(η), θ(η) =
+∞∑
k=0

θk(η), φ(η) =
+∞∑
k=0

φk(η) (18)
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N1[f (ξ, η), θ(ξ, η), φ(ξ, η)] = ∂3f

∂η3
+ σ1(ξ)f

∂2f

∂η2
+ σ2(ξ)

(
∂f

∂ξ

∂2f

∂η2
− ∂f

∂η

∂2f

∂ξ∂η

)
, (19)

N2[f (ξ, η), θ(ξ, η), φ(ξ, η)] = 1

Pr

∂2θ

∂η2
+ Nb

∂φ

∂η

∂θ

∂η
+ Nt

(
∂θ

∂η

)2

+ σ1(ξ)f
∂θ

∂η
+

σ2(ξ)

(
∂f

∂ξ

∂θ

∂η
− ∂θ

∂ξ

∂f

∂η

)
, (20)

N3[f (ξ, η), θ(ξ, η), φ(ξ, η)] = ∂2φ

∂η2
+ Nt

Nb

∂2θ

∂η2
+ Le.σ1(ξ)f

∂φ

∂η
+ Pr.Le.σ2(ξ)(

∂f

∂ξ

∂φ

∂η
− ∂φ

∂ξ

∂f

∂η

)
. (21)

From physical points of view, it is clear that all the solutions should be in the form
as given below therefore

f (η) = Ak
0,0 +

+∞∑
k=0

+∞∑
j=1

+∞∑
i=0

Ak
i,j ηi exp(−jη), (22)

θ(η) =
+∞∑
k=0

+∞∑
j=1

+∞∑
i=0

Bk
i,j ηi exp(−jη), (23)

φ(η) =
+∞∑
k=0

+∞∑
j=1

+∞∑
i=0

Ck
i,j ηi exp(−jη), (24)

where Ak
i,j , B

k
i,j and Ck

i,j are constant coefficients to be determined. In the OHAM,
one has great freedom for the choice of the auxiliary linear operator. Thus, we can
choose auxiliary linear operators as

L1[f (ξ, η)] = ∂3f

∂η3
− ∂f

∂η
, (25)

L2[θ(ξ, η)] = ∂2θ

∂η2
− θ, (26)

L3[φ(ξ, η)] = ∂2φ

∂η2
− φ, (27)

The auxiliary linear operators (25), (26) and (27) satisfy the following properties

L1[C1 + C2 exp(−η) + C3 exp(η)] = 0, (28)

L2[C4 + C5 exp(−η)] = 0, (29)

L3[C6 + C7 exp(−η)] = 0, (30)

where C1, C2, C3, C4, C5, C6 and C7 are constants to be determined later. The cor-
responding auxiliary linear operator for f (η), θ(η) and φ(η) are L1, L2 and L3,
respectively.
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In OHAM, we also have freedom to choose the initial approximations. Note that,
all the initial approximations need to satisfy the boundary conditions (17). Without
loss of generality, we set

f0(ξ, η) = Uw(ξ).(1 − exp(−η)), (31)

θ0(ξ, η) = exp(−η), (32)

φ0(ξ, η) = exp(−η). (33)

Thus in the frame of HAM the k-th order approximation fk(η), θk(η) and φk(η)

can be obtained using the following recursive formulae

fk(ξ, η) = χkfk−1(ξ, η) + f ∗
k (ξ, η) + Ck

1 + Ck
2e

η + Ck
3e

−η, (34)

θk(ξ, η) = χkθk−1(ξ, η) + θ∗
k (ξ, η) + Ck

4 + Ck
5e

−η, (35)

φk(ξ, η) = χkφk−1(ξ, η) + φ∗
k (ξ, η) + Ck

6 + Ck
7e

−η, (36)

where

χm =
{
0, m ≤ 1

1, m > 1,
(37)

Ck
1 , C

k
2 , C

k
3 , C

k
4 , C

k
5 , C

k
6 , and Ck

7 are integral constants determined as

Ck
1 = −f ∗′

k (0) − f ∗
k (0), Ck

2 = f ∗′
k (ξ, 0), Ck

3 = 0,

Ck
4 = 0, Ck

5 = −θ∗
k (ξ, 0), Ck

6 = 0, Ck
7 = −φ∗

k (ξ, 0) (38)

and f ∗
k (ξ, η), θ∗

k (ξ, η) and φ∗
k (ξ, η) are particular solutions defined by

f ∗
k (ξ, η) = L−1

1

[
c
f

0 R
f
k

]
, θ∗

k (ξ, η) = L−1
2

[
cθ
0R

θ
k

]
, φ∗

k (ξ, η)=L−1
3

[
c
φ

0R
φ
k

]
(39)

c
f

0 , cθ
0 and c

φ

0 are convergence-control parameters, R
f
k , Rθ

k and R
φ
k are defined

based on (10–13) for details see Liao [34]

R
f
m = 1

(m − 1)!
∂m−1N1 [F(ξ, η; q), �1(ξ, η; q), �1(ξ, η; q)]

∂qm−1

∣∣∣∣
q=0

= ∂3fm−1

∂η3
+ σ1(ξ)

m−1∑
n=0

fm−1−n

∂2fn

∂η2

+σ2(ξ)

m−1∑
n=0

(
∂fn

∂ξ

∂2fm−1−n

∂η2
− ∂fn

∂η

∂2fm−1−n

∂ξ∂η

)
, (40)

Rθ
m = 1

(m − 1)!
∂m−1N2 [F(ξ, η; q), �1(ξ, η; q), �1(ξ, η; q)]

∂qm−1

∣∣∣∣
q=0

= ∂2θm−1

∂η2
+ Pr.Nb

m−1∑
n=0

∂φm−1−n

∂η

∂θn

∂η
+ Pr.Nt

m−1∑
n=0

(
∂θm−1−n

∂η

∂θn

∂η

)
+ Pr.σ1(ξ)

m−1∑
n=0

fm−1−n

∂θn

∂η
+ Pr.σ2(ξ)

m−1∑
n=0

(
∂fm − 1 − n

∂ξ

∂θn

∂η
−

m−1∑
n=0

∂θm−1−n

∂ξ

∂fn

∂η

)
, (41)
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Rφ
m = 1

(m − 1)!
∂m−1N3[F(ξ, η; q), �1(ξ, η; q), �1(ξ, η; q)]

∂qm−1

∣∣∣∣
q=0

= ∂2φm−1

∂η2
+ Nt

Nb

∂2θm−1

∂η
+ Pr.Le.σ1(ξ)

m−1∑
n=0

fm−1−n

∂φn

∂η
+

+Pr.Le.σ2(ξ)

m−1∑
n=0

(
∂fm−1−n

∂ξ

∂φn

∂η
−

m−1∑
n=0

∂φm−1−n

∂ξ

∂fn

∂η

)
. (42)

Using the above recursive formulae, we can get the explicit analytical approxima-
tions of fk(ξ, η), θk(ξ, η) and φk(ξ, η) for k = 1, 2, 3, ...

At the kth-order of approximation, the exact squared residual error of the
governing (19–21) is defined as

�
f
k

(
c
f

0 , cθ
0 , c

φ

0

)
=

∫ ∞

0

[
Nf

(
k∑

i=0

fi,

k∑
i=0

θi,

k∑
i=0

φi

)]2

dη, (43)

�θ
k

(
c
f

0 , cθ
0 , c

φ

0

)
=

∫ ∞

0

[
Nθ

(
k∑

i=0

fi,

k∑
i=0

θi,

k∑
i=0

φi

)]2

dη, (44)

�
φ
k

(
c
f

0 , cθ
0 , c

φ
0

)
=

∫ ∞

0

[
Nφ

(
k∑

i=0

fi,

k∑
i=0

θi,

k∑
i=0

φi

)]2

dη. (45)

We define

�t
k

(
c
f

0 , cθ
0 , c

φ

0

)
= �

f
k

(
c
f

0 , cθ
0 , c

φ

0

)
+ �θ

k

(
c
f

0 , cθ
0 , c

φ

0

)
+ �

φ
k

(
c
f

0 , cθ
0 , c

φ

0

)
, (46)

where �t
k is the total average squared residual error.

It is observed that much CPU time is required to calculate the exact squared resid-
ual error even if the order of approximation is not very high. Thus, to greatly decrease
the CPU time, it is used here the so-called average residual error defined by

Ef
k

(
c
f

0 , cθ
0 , c

φ

0

)
= 1

N + 1

N∑
j=0

⎡
⎣Nf

(
k∑

i=0

fi,

k∑
i=0

θi,

k∑
i=0

φi

)∣∣∣∣∣
ξ=pδη,η=jδη

⎤
⎦
2

, (47)

Eθ
k

(
c
f

0 , cθ
0 , c

φ
0

)
= 1

N + 1

N∑
j=0

⎡
⎣Nθ

(
k∑

i=0

fi,

k∑
i=0

θi,

k∑
i=0

φi

)∣∣∣∣∣
ξ=pδη,η=jδη

⎤
⎦
2

, (48)

Eφ
k

(
c
f

0 , cθ
0 , c

φ

0

)
= 1

N + 1

N∑
j=0

⎡
⎣Nφ

(
k∑

i=0

fi,

k∑
i=0

θi,

k∑
i=0

φi

)∣∣∣∣∣
ξ=pδη,η=jδη

⎤
⎦
2

, (49)

where N is an integer. It is reasonable to set N = 80 and δη = 0.1. We define

E t
k

(
c
f

0 , cθ
0 , c

φ
0

)
= Ef

k

(
c
f

0 , cθ
0 , c

φ
0

)
+ Eθ

k

(
c
f

0 , cθ
0 , c

φ
0

)
+ Eφ

k

(
c
f

0 , cθ
0 , c

φ
0

)
, (50)
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where E t
k is the total average squared residual error. Obviously, the smaller the value

of E t
k

(
c
f

0 , cθ
0 , c

φ

0

)
for given iteration k, the better the approximation. The OHAM

series solutions which depend on optimal convergence-control parameters can be
obtained accurately by the proper choice of convergence-control parameters.
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