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Using 1200 CPUs of the National Supercomputer TH-A1 and a parallel integral algorithm based on the 3500th-order Taylor ex-
pansion and the 4180-digit multiple precision data, we havedone a reliable simulation of chaotic solution of Lorenz equation in a
rather long interval 06 t 6 10000 LTU (Lorenz time unit). Such a kind of mathematically reliable chaotic simulation has never
been reported. It provides us a numerical benchmark for mathematically reliable long-term prediction of chaos. Besides, it also
proposes a safe method for mathematically reliable simulations of chaos in a finite but long enough interval. In addition, our very
fine simulations suggest that such a kind of mathematically reliable long-term prediction of chaotic solution might have no physical
meanings, because the inherent physical micro-level uncertainty due to thermal fluctuation might quickly transfer into macroscopic
uncertainty so that trajectories for a long enough time would be essentially uncertain in physics.
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1 Introduction

Lorenz [1] found that the nonlinear dynamic system (called
today Lorenz equations)

ẋ = σ (y− x) , (1)

ẏ = R x− y− x z, (2)

ż = x y− b z (3)

has non-periodic solution in cases such asb = 8/3, σ = 10
and R > 24.74, and especially, numerical simulations are
rather sensitive to the initial conditions, i.e., a very slight vari-
ation in the initial condition of Lorenz equation might lead
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to a significant difference of numerical simulation. Lorenz’s
work [1] in 1963 was a milestone. Today, it is common
knowledge that, due to the so-called sensitive dependence on
initial condition (SDIC) or the so-called “butter-fly effect”, it
is impossible to make a long-term prediction of chaotic dy-
namic systems [1–5]. Here, the prediction means that one can
make reliable, convergent numerical simulations. In other
words, due to “the butter-fly effect”, chaotic systems destroy
the possibility of following the true individual trajectories ac-
curately in an infinite interval of time.

Shadowing theories have proliferated in the literature [6]to
locate or prove the existence of true trajectories that staynear
the computer-generated trajectory for a long time. Accord-
ing to the Shadow Lemma [6], for a uniformly hyperbolic
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dynamic system, there always exists a true trajectory near
any computer-generated trajectories, as long as the truncation
and round-off errors are small enough. Unfortunately, hardly
a nonlinear dynamic system is uniformly hyperbolic in most
cases so that the Shadow Lemma [6] seldom woks in practice.
Besides, it is found that for some chaotic dynamic systems,
computer-generated trajectories can be shadowed only for a
short time [7], and in addition it is “virtually impossible to ob-
tain a long trajectory that is even approximately correct” [8].
Furthermore, for some chaotic systems, “there is no funda-
mental reason for computer-simulated long-time statistics to
be even approximately correct” [9]. As illustrated by Yuan
and York [10] using a model, a numerical artifact persists for
an arbitrarily high numerical precision. These numerical ar-
tifacts “expose an exigent demand of safe numerical simula-
tions” [11].

Note that floating-point calculations to approximate so-
lutions of dynamic systems contain the inherent numerical
noises, say, the truncation and round-off errors. Lorenz [2]
investigated the sensitivity of numerical simulations to the
time step and found the so-called “computational chaos”. Li
et al. [12] investigated the influence of the time step∆t on
the numerical simulation of Lorenz equation in details. They
used 29 standard numerical methods at orders up to 10 in sin-
gle and double precision. In case ofb = 8/3, σ = 10 and
R< 24.06 (without chaos), they found [12] that the final sta-
tus of computer-generated trajectories starting from (5,5,10)
are rather sensitive to the time step∆t varying from 10−6 to
10−1: it seems to alterlate randomly between the two unstable
fixed points

C
(√

b(R− 1),
√

b(R− 1),R− 1
)

,

C′
(

−
√

b(R− 1),−
√
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with the same probability. So, in some cases even without
chaos, it is also impossible to accurately predict the final
status of Lorenz equation using the 29 traditional numerical
methods at orders up to 10 in single or double precision [12].
This numerical phenomenon [12,13] revealed the significant
influence of truncation and round-off errors on nonlinear dy-
namic systems. This kind of sensitivity to time step was fur-
ther studied and confirmed by Lorenz [3] in 2006, Teixeira et
al. [14] in 2007 and Liao [15] in 2009. It should be empha-
sized that the truncation and round-off errors are ineluctable.
Therefore, numerical simulations of chaotic dynamic systems
are sensitive not only to initial condition but also to numerical
algorithms and numerical precision at each time step.

How long is a numerical simulation reliable? This is an
important question, as pointed out by Sauer et al. [8] who
proposed the concepts of “shadowing time” to answer the
question. As illustrated by Li et al. [12], different chaotic
numerical simulations of Lorenz equation gained by means
of the 29 standard numerical methods agree with each other
only in the interval [0,Tc], whereTc ≈ 16.857 for single
precision data andTc ≈ 35.412 for double precision data,

respectively. Li et al. [12,13] proposed the concept “max-
imally effective computation time” (MECT), beyond which
numerical simulations obtained by different time steps have
significant difference and thus should be unrelated to the true
solution. Teixeira et al. [14] proposed the concept of “critical
time of decoupling”,Tc, defined as the first point in time after
which the state vector norm error exceeds a certain thresh-
old. They observed that the critical time of decouplingTc

is directly proportional to ln(∆t), where∆t denotes the time
step [14]. The concepts of “shadowing time”, “maximally ef-
fective computation time” and “critical time of decoupling”,
although defined in different ways, reveal the same fact: it
is only possible to give the reliable numerical simulationsof
chaotic systems in a finite interval [0,Tc], beyond which nu-
merical artifacts might occur. Then, the key point is to ensure
that such a kind of interval is long enough, i.e.,Tc is large
enough.

As pointed out by Wang et al. [16], in order to gain a
reliable chaotic solution of Lorenz equation in the interval
[0,1000] by means of the traditional 4th-order Runge-Kutta
method, one had to use a rather small time-step∆t = 10−170

and very accurate data in 10000-digit precision, but the re-
quired CPU time is about 3.1 × 10160 years, which is even
longer than the existence of our universe up to now. Thus, in
order to gain a reliable chaotic simulation in a long enough
interval within acceptable CPU times, both of the truncation
and round-off errors must be small enough. Therefore, not
only the precision of data but also the order of numerical al-
gorithms must be high enough.

Based on the Taylor series method [3,17,18] at high
enough order and data in high enough precision, the so-
called “Clean Numerical Simulation” (CNS) is developed by
Liao [15,19] to gain mathematically reliable simulations of
chaotic dynamic systems in a finite but long enough interval
of time. The Taylor series method [3,17,18] is one of the old-
est methods, which traces back to Newton, Euler, Liouville
and Cauchy. It has an advantage that its formula at an arbi-
trarily high order can be easily expressed in the same form.
So, from the viewpoint of numerical simulations, it is rather
easy to use the Taylor series method at a very high order so
as to deduce the truncation error to a required level. At the
very beginning of the CNS [15], the computer algebra sys-
tem Mathematica was used to decrease the round-off error
to a required level, because Mathematica can express all nu-
merical data in arbitrarily high precision. LetM denote the
order of the Taylor series method, andNs the significant digit
number of all numerical data, respectively. Unlike other nu-
merical approaches, in the frame of the CNS, the significant
digit numberNs increases linearly withM (the order of Tay-
lor expansion), for exampleNs = 2M as illustrated in [15],
so that both of the truncation and round-off errors decrease
samutaneously. In this way, both of the truncation and round-
off errors can be reduced to a required level by means of high
enough order of Taylor series expansion and high enough pre-
cision of data, so that the numerical simulations of chaos are
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mathematically reliable in a time interval [0,Tc], whereTc is
called the critical prediction time.

In the frame of the CNS, the critical prediction timeTc is
dependent upon the orderM of the Taylor expansion and the
significant digit numberNs. Let s(M,Ns) denote a numerical
simulation given by theMth-order Taylor series method in
Ns digit precision. LetTd(M,Ns; M′,N′s) denote the time of
decoupling, determined by comparings(M,Ns) with a more
accurate simulations′(M′,N′s), whereM′ > M andN′s > Ns.
Then, the critical prediction timeTc of the numerical simula-
tion s(M,Ns) is defined by

Tc(s) = min
M′>M,N′s>Ns

Td(M,Ns; M′,N′s) (4)

for anyM′ > M andN′s > Ns.
Another key point of the CNS is that an explicit estimation

of the critical prediction timeTc versus the orderM of the
Taylor series expansion is given, as illustrated by Liao [15]
who gave the estimationTc ≈ 3M for Lorenz equation (us-
ing data in 2M-digit precision, i.e.,Ns = 2M). Then, given
a finite but long enough time interval [0,Tc] of Lorenz equa-
tion, one might obtain mathematically reliable numeral sim-
ulations of chaotic solution in the interval [0,Tc] by means
of the CNS with the orderM > Tc/3 of Taylor expansion
and data in (2M)-digit precision, which however should be
verified by means of a higher order of Taylor series method.

In this paper, we gave a mathematically reliable chaotic
numerical simulation of Lorenz equation in the interval
[0,10000] by means of the CNS using parallel computation
in the National Supercomputer TH-A1. To the best of our
knowledge, mathematically reliable chaotic simulations in
such a long interval have never been reported. So, it pro-
vides us a numerical benchmark for reliable long-term sim-
ulation of chaos. Thereafter, we point out that, due to the
thermal fluctuation, the physical micro-level uncertaintyof
initial conditions is inherent. This objective, inherent,phys-
ical uncertainty of initial condition is indeed rather small (at
the level of 10−19), but is much larger than the required 4000-
digit precision for a reliable prediction of chaotic solution in
such a long interval [0, 10000]. This suggests that the chaotic
trajectories of Lorenz equation for a long time might be es-
sentially uncertain in physics.

2 Reliable long-term numerical simulation of
chaos

Liao [15] proposed the CNS to gain reliable chaotic solutions
of Lorenz equation in the case ofR = 28, b = 8/3 and
σ = 10. Using time step∆t = 0.01 and enforcing the sig-
nificant digit numberNs = 2M, whereM denotes the order
of Taylor series method, Liao [15] found an estimation for-
mula Tc ≈ 3M for the criticial prediction timeTc. Accord-
ing to this formula, Liao [15] gained a reliable chaotic solu-
tion of Lorenz equation in the interval 06 t 6 1000 Lorenz
time units (LTU) by means of the CNS using the 400th-order

Taylor series method and the data in 800-digit precision. It
took about one month [15], mainly due to the use of the com-
puter algebra system Mathematica without parallel computa-
tion. The computational efficiency of the CNS was improved
greatly (several hundreds times faster) by Wang et al. [16]
who employed a parallel algorithm and the multiple precision
(MP) library of C. Their result (based on the 1000th-order
Taylor expansion and 2100-digit MP precision) confirms the
correction of Liao’s simulation [15] in the interval [0, 1000].
Using the CNS with the 1000th-order Taylor expansion and
the 2100 digit multiple precision, Wang et al. [16] obtaineda
reliable chaotic solution in the interval [0,2500] within only
30 hours, which is validated using a more accurate simula-
tion given by the 1200th-order Taylor expansion and the 2100
digit multiple precision.

Can we obtain a mathematically reliable chaotic simula-
tion of Lorenz equation in a longer interval like [0,10000]?
Obviously, such a reliable chaotic solution can provide us a
numerical benchmark for mathematically reliable long-term
prediction of chaos, and thus certainly has important mean-
ings in theory.

According to Liao’s [15] estimationTc ≈ 3M for Lorenz
equation in the case ofNs = 2M, the required order of Taylor
expansion should be larger than 3333 for a reliable simulation
in [0,10000]. We found that the required digit precision might
be less than 2M. Even so, it is a huge challenge to gain such
a reliable chaotic simulation of Lorenz equation in [0,10000].
Currently, using the parallel algorithm and 1200 CPUs of
the National Supercomputer TH-1A (at Tianjian, China), we
successfully obtained the reliable chaotic solution of Lorenz
equation in the interval [0, 10000] by means of the CNS using
the 3500th-order Taylor expansion and the 4180-digit multi-
ple precision. The used CPU time is 220.92 hours (i.e., about
9 days and 5 hours). Its reliability (from the mathematical
viewpoint) was confirmed by means of the CNS using the
3600th-order Taylor expansion and the 4515-digit multiple
precision. The reliable chaotic solution is given in Table 1,
which can be regarded as a benchmark of long-term predic-
tion of chaos. It should be emphasized that, to the best of
our knowledge, the mathematically reliable chaotic solution
of Lorenz equation in such a long interval of time has never
been reported, whose time interval of the reliable chaotic so-
lution is about 500 times longer than that of chaotic simula-
tions given by means of the traditional Runge-Kutta method
in double-precision. Therefore, from the mathematical view-
point, it is possible to gain a reliable, convergent chaoticso-
lution of Lorenz equation in such a long interval [0, 10000]
within a reasonable CPU time, as long as the initial condi-
tion and all data at each time-step are accurate enough, and
besides the order of the Taylor series method is high enough.

It was found [15] that the required initial condition of
Lorenz equation should be in the accuracy of 10−0.4Tc, where
Tc is the critical prediction time. Thus, from mathematical
viewpoint, whenTc = 10000, the required initial condition
must be in the accuracy of 10−4000, i.e., in the 4000-digit pre-
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Table 1 Reliable results of Lorenz equation in the case ofσ = 10, R =
28, b = −8/3 andx(0) = −15.8, y(0) = −17.48, z(0) = 35.64 by means of
the parallel algorithm of the CNS with the 3500th-order Taylor expansion,
the 4180-digit MP data and∆t = 0.01. The used CPU times is 9 days and 5
hours by means of the 1200 CPUs of National Supercomputer TH-1A.

t x y z

500 −5.3050 −9.4260 12.3022

1000 13.8820 19.9183 26.9019

1500 −10.1398 −7.6264 31.8584

2000 −6.8739 −1.4848 31.3495

2500 2.7592 0.4763 24.6411

3000 1.6933 3.6003 21.4109

3500 0.7357 −2.1187 24.4667

4000 −7.6927 −13.4996 14.1994

4500 −13.7455 −8.3158 38.8589

5000 −6.0844 −10.8137 12.7391

5500 4.7719 8.8154 10.4386

6000 0.2167 2.1043 22.1246

6500 4.6758 5.6919 20.4906

7000 −11.3949 −16.5754 23.6813

7500 0.1858 0.6489 16.5550

8000 −1.2659 −2.3363 17.4960

8500 −3.0412 1.5314 27.8442

9000 13.4797 17.2821 29.2382

9500 8.9996 3.0374 33.8242

10000 −15.8173 −17.3669 35.5584

cision. However, from the physical viewpoint, does such an
accurate initial condition exist in nature?

3 Are mathematically reliable long-term
chaotic simulations physically meaningful?

It is traditionally believed that initial conditions are exact in
nature, and the uncertainty in initial conditions is due to the
fact that we can not measure at arbitrary precision. Thus, due
to the “butterfly effect”, such a kind of uncertainty or limited
knowledge of initial conditions destroys long-term prediction
of chaos. This is the traditional explanation for the “butter-fly
effect” and SDIC of chaos. However, this traditional thought
is wrong in physics, since the uncertainty of initial condi-
tions of Lorenz equation is objective and inherent in nature,
as shown below.

Note that Lorenz equation is a simplified model for con-
vention and heat transfer of viscous fluid [1,20], withx, y
for velocity andz for temperature, respectively. It should
be emphasized that, thermal fluctuation is a basic conse-
quence of the definition of temperature [21–23]: a system at
nonzero temperature does not stay in its equilibrium micro-
scopic state, but instead randomly samples all possible states,
with probabilities given by the Boltzmann distribution. Ther-
modynamic variables, such as pressure and temperature, un-
dergo thermal fluctuations in a similar way. For example, a
system has an equilibrium temperature, but its true tempera-

ture fluctuates to some extent about the equilibrium.
According to statistical mechanics [21,22], the well-

known thermodynamic equation [23] for the variance of tem-
perature fluctuationsu in volumeV reads

〈

u2
〉

=
kBT2

ρCvV
, (5)

wherekB = 1.3806488× 10−23 J/K is the Boltzmann con-
stant,T denotes temperature,ρ the density, andCv the spe-
cific heat capacity, respectively. In the case of the typical
air in room conditions in a cube withV = 1012 m3, we
haveT = 20C = 293.15 K,ρ = 1204.1 g/m3, Cv = 1.012
J/(g K), respectively. The corresponding standard deviation
of temperature reads

√

〈

u2
〉

= 3.1204× 10−17 K. Using the
room temperatureT = 293.15 K as the characteristic one,
we have the dimensionless standard deviation of temperature
σ = 1.06444×10−19. This value is indeed rather small. How-
ever, it is much larger than 10−4000, the required precision of
the initial condition for a mathematically reliable prediction
of chaotic simulation in the interval [0,10000].

Without loss of generality, let us consider the initial condi-
tion

x(0) = −15.8, y(0) = −17.48, z(0) = 35.64 (6)

of Lorenz equation (in the case ofR = 28, b = 8/3 and
σ = 10) for the equilibrium state. As mentioned above, a
system at nonzero temperature may randomly sample all pos-
sible states [21–23]. For simplicity, let us consider the fol-
lowing two possible states, corresponding to the two initial
conditions with a micro-level thermal fluctuation of tempera-
ture (att = 0)

x = −15.8, y = −17.48, z= 35.64+ 10−20 (7)

or
x = −15.8, y = −17.48, z= 35.64− 10−20. (8)

From the physical viewpoints of thermal fluctuation, the
above three initial conditions (6)–(8) are the same, since
each of them may sample a state but we do not know which
ones truly appears in practice. The key point is that, phys-
ically speaking, due to the thermal fluctuation, the required
initial condition in the accuracy of 4000-digit precision for
Tc = 10000 (LTU) does not exist in nature, since it is much
smaller even than the thermal fluctuation!

The CNS provides us a safe tool to very accurately simu-
late the propagation of this kind of inherent, objective, physi-
cal, micro-level uncertainty of initial conditions, as illustrated
by Liao [15,19,24,25] and Wang et al [16]. Similarly, by
means of the parallel CNS (8 CPUs) with the 400th-order
Taylor expansion and the data in accuracy of 1000-digit mul-
tiple precision (∆t = 10−2), we gain the three reliable chaotic
solutions in the interval 06 t 6 1000, corresponding to the
possible initial conditions (6), (7) and (8), respectively, within
one and a half hour. Besides, the mathematical reliability of
these three chaotic simulations in the intervalt ∈ [0, 1000] is
confirmed by means of the 500th-order Taylor expansion and
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the 1200-digit multiple precision data. In this way, these three
chaotic simulations are guaranteed to be mathematically reli-
able in the interval 06 t 6 1000. In other words, compared to
the micro-level thermal fluctuation in the level of 10−20, the
numerical noises of the three chaotic simulations in the in-
terval [0, 1000] are much smaller and thus negligible. There-
fore, from the mathematical viewpoint, we are quite sure that
these three chaotic simulations are convergent to their true
trajectories.

However, as shown in Figure 1, the three mathematically
reliable chaotic simulations agree well only in the interval
t ∈ [0, 51] but quickly depart from each other whent > 51.
Since, due to the thermal fluctuation mentioned above, we do
not know which initial condition among (6), (7) and (8) truly
appears in nature, all trajectories beyond [0, 51] are uncertain.
Mathematically, this numerical phenomenon is not surpris-
ing, since the “butter-fly effect” of chaos is well known. How-
ever, from the physical viewpoint, it means that the random,
inherent, micro-level thermal fluctuation has a great influence
on the chaotic solutions! It should be emphasized that ther-
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Figure 1 Comparison of the reliable chaotic solutions by means of the
CNS with∆t = 10−2, the 400th-order Taylor expansion and the 1000-digit
multiple-precision (MP) data. Solid line: without thermalfluctuation using
the initial condition (6); dashed line: with thermal fluctuation using the ini-
tial condition (7); dash-dotted line: with thermal fluctuation using the initial
condition (8).

mal fluctuation is inherently uncertain and objective, say,it
is independent of any experimental accuracy of observation.
This suggests that, although the reliable, accurate prediction
of chaos in a finite but long enough interval is mathematically
possible, the chaotic trajectories for a long time might be es-
sentially uncertain in physics, mainly due to the the objective,
unavoidable, micro-level thermal fluctuation.

Therefore, due to the “butterfly effect” of chaotic dynamic
systems like Lorenz equation, the inherent, objective, physi-
cal, micro-level uncertainty (such as the thermal fluctuation)
quickly truns into the macroscopic uncertainty, as revealed
by our very accurate, reliable chaotic solutions mentioned
above. It suggests that trajectories of chaotic systems fora
long time are essentially uncertain, from the physical view-
point. Thus, it might have no physical meanings to give a
deterministic, accurate prediction of the “true” trajectory of
such a chaotic dynamic system, because such a kind of de-
terministic trajectory does not exist at all in nature from the
physical viewpoint. Theoretically speaking, such a kind of
chaotic dynamic systems should be described from the statis-
tic viewpoints [24]. Note that the same conclusions are ob-
tained by Liao [25] for chaotic motions of three body prob-
lems, who proposed a new concept “physical limit of pre-
diction”. Thus, the above-mentioned conclusions have the
general meanings.

4 Concluding remarks and discussion

Using the parallel “Clean Numerical Simulation” (CNS)
[15,19] based on the 3500th-order of Taylor series method
and data in the 4180-digit multiple precision, we success-
fully obtain a mathematically reliable long-term prediction of
chaotic solution of Lorenz equation in the interval [0, 10000]
by means of 1200 CPUs of the National Supercomputer TH-
1A at Tianjin, China. To the best of our knowledge, this kind
of mathematically reliable chaotic solution in such a long in-
terval has never been reported. Mathematically, it provides
us with a numerical benchmark for reliable long-term predic-
tion of chaos. Thus, given a finite but long enough interval,
the CNS provides us with a safe tool to gain mathematically
reliable chaotic solutions in it. So, the CNS has important
meanings not only in theory but also in practice.

It is found that the initial condition required for the math-
ematically reliable chaotic solution in [0,10000] must be in
4000-digit precision. However, due to the inherent thermal
fluctuation, there exists the physical uncertainty of the initial
temperature at the level of 10−19, which is independent of any
experimental accuracy of observation or limited knowledge
(in other words, it is the so-called objective uncertainty). This
objective, physical uncertainty is indeed rather small, but is
much larger than the required 4000-digit precision of the ini-
tial temperature. From the physical viewpoint, the three ini-
tial conditions (6)–(8) are the same, since each of them may
sample a state, but we do not know which ones truly appears
in practice. Due to the “butter-fly effect” of chaos, this ob-

shijun
高亮

shijun
高亮

shijun
高亮

shijun
高亮

shijun
高亮

shijun
高亮

shijun
高亮

shijun
高亮

shijun
高亮



Liao S J,et al. Sci China-Phys Mech Astron February (2014) Vol. 57 No. 2 335

jective, inherent, micro-level uncertainty quickly turnsinto
macroscopic uncertainty, as shown in Figure 1. Note that
such a kind of relationship between micro-level and macro-
scopic uncertainty is supported not only by other physical
models such as the chaotic motion of three-body problem
[25] but also some physical experiments [26,27].

Note that the Lorenz equation is derived from the Navier-
Stokes equations with Boussinesq approximation in the
macroscopic view, and thus the micro-level fluctuation of
initial conditions should be negligible from the macroscopic
viewpoint. However, on the other side, our reliable simula-
tions of chaotic trajectories of Lorenz equation given by the
CNS indicate that even the micro-level fluctuations of the ini-
tial conditions can affect the macroscopic property greatly.
This leads to the so-called “precision paradox of chaos”, as
pointed out by Liao [15], if Lorenz equation itself is regarded
not only as a pure, mathematical model of chaos but also
a simplified, physical model related to Navier-Stokes equa-
tions. In history, a paradox often implies something impor-
tant and essential. As suggested by Liao [19], this paradox
might imply the close relationship between the micro-level
uncertainty and macroscopic randomness/uncertainty. Obvi-
ously, it is valuable to investigate and reveal the essence of
this paradox in the future. Note that, there does not exist such
kind of paradox for the chaotic motion of three-body prob-
lem, but the same conclusions mentioned in this article are
obtained in [25].

In summary, it is mathematically indeed possible to gain
convergent, reliable chaotic solutions of Lorenz equationin a
finite but long enough interval such as [0,10000]. However,
our very fine computations suggest that such kind of chaotic
trajectories for a long time might be essentially uncertainin
physics, due to the inherent, objective, physical uncertainty
of initial condition.
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