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Using 1200 CPUs of the National Supercomputer TH-A1 and allgdiintegral algorithm based on the 3500th-order Tayler e
pansion and the 4180-digit multiple precision data, we lthvwee a reliable simulation of chaotic solution of Lorenzaipn in a
rather long interval 6< t < 10000 LTU (Lorenz time unit). Such a kind of mathematica#yiable chaotic simulation has never
been reported. It provides us a numerical benchmark for enadlically reliable long-term prediction of chaos. Besjdéalso
proposes a safe method for mathematically reliable sinamgiof chaos in a finite but long enough interval. In additioar very
fine simulations suggest that such a kind of mathematiceligisle long-term prediction of chaotic solution might Bawo physical
meanings, because the inherent physical micro-level taiogr due to thermal fluctuation might quickly transferambacroscopic
uncertainty so that trajectories for a long enough time wdnd essentially uncertain in physics.

chaos, reliable simulation, uncertainty propagation

PACS number(s): 05.45.Pq, 05.40.Ca

Citation: Liao S J, Wang P F. On the mathematically reliable long-temmukation of chaotic solutions of Lorenz equation in theeimal [0,10000]. Sci
China-Phys Mech Astron, 2014, 57: 330-335, doi: 10.1€07433-013-5375-z

1 Introduction to a significant dference of numerical simulation. Lorenz’s
work [1] in 1963 was a milestone. Today, it is common
Lorenz [1] found that the nonlinear dynamic system (calledknowledge that, due to the so-called sensitive dependence o

today Lorenz equations) initial condition (SDIC) or the so-called “butter-flyffect”, it
is impossible to make a long-term prediction of chaotic dy-
=o(y-x. (1) namic systems [1-5]. Here, the prediction means that one can
=RX-y-Xxz 2) make reliable, convergent numerical simulations. In other

3) words, due to “the butter-flyfiect”, chaotic systems destroy
the possibility of following the true individual trajecies ac-
curately in an infinite interval of time.

zZ=xy-bz

has non-periodic solution in cases sucthas 8/3, o = 10 ) ) . ) )
andR > 2474, and especially, numerical simulations are Shadowing theories have proliferated in the literatured6]

rather sensitive to the initial conditions, i.e., a vergbtivari-  l0cate or prove the existence of true trajectories thatiséay

ation in the initial condition of Lorenz equation might lead the computer-generated trajectory for a long time. Accord-
_ ing to the Shadow Lemma [6], for a uniformly hyperbolic
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dynamic system, there always exists a true trajectory nearespectively. Li et al. [12,13] proposed the concept “max-
any computer-generated trajectories, as long as the tionca imally effective computation time” (MECT), beyond which
and round-€f errors are small enough. Unfortunately, hardly numerical simulations obtained byfidirent time steps have
a nonlinear dynamic system is uniformly hyperbolic in most significant diference and thus should be unrelated to the true
cases so that the Shadow Lemma [6] seldom woks in practicesolution. Teixeira et al. [14] proposed the concept of fcait
Besides, it is found that for some chaotic dynamic systemstime of decoupling”T., defined as the first point in time after
computer-generated trajectories can be shadowed only for which the state vector norm error exceeds a certain thresh-
shorttime [7], and in addition it is “virtually impossible bb- ~ old. They observed that the critical time of decoupliig
tain a long trajectory that is even approximately corre8t! [ is directly proportional to Inft), whereAt denotes the time
Furthermore, for some chaotic systems, “there is no fundastep [14]. The concepts of “shadowing time”, “maximally ef-
mental reason for computer-simulated long-time staisic ~ fective computation time” and “critical time of decoupling
be even approximately correct” [9]. As illustrated by Yuan although defined in dierent ways, reveal the same fact: it
and York [10] using a model, a numerical artifact persists fo is only possible to give the reliable numerical simulatiofs
an arbitrarily high numerical precision. These numerical a chaotic systems in a finite interval,[D;], beyond which nu-
tifacts “expose an exigent demand of safe numerical simulamerical artifacts might occur. Then, the key point is to easu
tions” [11]. that such a kind of interval is long enough, i.&, is large
Note that floating-point calculations to approximate so- enough.
lutions of dynamic systems contain the inherent numerical As pointed out by Wang et al. [16], in order to gain a
noises, say, the truncation and rourfdl@rors. Lorenz [2] reliable chaotic solution of Lorenz equation in the intérva
investigated the sensitivity of numerical simulationse t  [0,1000] by means of the traditional 4th-order Runge-Kutta
time step and found the so-called “computational chaos”. Limethod, one had to use a rather small time-step 107170
et al. [12] investigated the influence of the time stépon  and very accurate data in 10000-digit precision, but the re-
the numerical simulation of Lorenz equation in details. fhe quired CPU time is about.B x 10'%° years, which is even
used 29 standard numerical methods at orders up to 10 in sinonger than the existence of our universe up to now. Thus, in
gle and double precision. In caself= 8/3, 0 = 10 and  order to gain a reliable chaotic simulation in a long enough
R < 24.06 (without chaos), they found [12] that the final sta- interval within acceptable CPU times, both of the trunaatio
tus of computer-generated trajectories starting from,#®6  and round-€& errors must be small enough. Therefore, not
are rather sensitive to the time stapvarying from 10°to  only the precision of data but also the order of numerical al-
1071 it seems to alterlate randomly between the two unstablgyorithms must be high enough.

fixed points Based on the Taylor series method [3,17,18] at high
enough order and data in high enough precision, the so-

C(\/b(R_ 1), vb(R-1).R- 1)’ called “Clean Numerical Simulation” (CNS) is developed by

c’ (_ Vb(R-1), - yb(R-1),R- 1) Liao [15,19] to gain mathematically reliable simulatiorfs o

chaotic dynamic systems in a finite but long enough interval

with the same probability. So, in some cases even withoubf time. The Taylor series method [3,17,18] is one of the old-
chaos, it is also impossible to accurately predict the finalest methods, which traces back to Newton, Euler, Liouville
status of Lorenz equation using the 29 traditional numéricaand Cauchy. It has an advantage that its formula at an arbi-
methods at orders up to 10 in single or double precision [12]trarily high order can be easily expressed in the same form.
This numerical phenomenon [12,13] revealed the significantSo, from the viewpoint of numerical simulations, it is rathe
influence of truncation and round¥errors on nonlinear dy- easy to use the Taylor series method at a very high order so
namic systems. This kind of sensitivity to time step was fur- as to deduce the truncation error to a required level. At the
ther studied and confirmed by Lorenz [3] in 2006, Teixeira etvery beginning of the CNS [15], the computer algebra sys-
al. [14] in 2007 and Liao [15] in 2009. It should be empha- tem Mathematica was used to decrease the rodihdroor
sized that the truncation and round-errors are ineluctable. to a required level, because Mathematica can express all nu-
Therefore, numerical simulations of chaotic dynamic ayste  merical data in arbitrarily high precision. L&t denote the
are sensitive not only to initial condition but also to nuinar  order of the Taylor series method, aNgthe significant digit
algorithms and numerical precision at each time step. number of all numerical data, respectively. Unlike other nu

How long is a numerical simulation reliable? This is an merical approaches, in the frame of the CNS, the significant
important question, as pointed out by Sauer et al. [8] whodigit numberNs increases linearly wittM (the order of Tay-
proposed the concepts of “shadowing time” to answer thelor expansion), for examplls = 2M as illustrated in [15],
question. As illustrated by Li et al. [12], fierent chaotic  so that both of the truncation and rounfi-errors decrease
numerical simulations of Lorenz equation gained by meansamutaneously. In this way, both of the truncation and reund
of the 29 standard numerical methods agree with each otheuff errors can be reduced to a required level by means of high
only in the interval [QT.], whereT. ~ 16.857 for single  enough order of Taylor series expansion and high enough pre-
precision data and; ~ 35412 for double precision data, cision of data, so that the numerical simulations of chaes ar
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mathematically reliable in a time interval,[0;], whereT. is Taylor series method and the data in 800-digit precision. It
called the critical prediction time. took about one month [15], mainly due to the use of the com-
In the frame of the CNS, the critical prediction tirffigis puter algebra system Mathematica without parallel computa
dependent upon the ordst of the Taylor expansion and the tion. The computationalfBciency of the CNS was improved
significant digit numbeNs. Let (M, Ns) denote a numerical greatly (several hundreds times faster) by Wang et al. [16]
simulation given by theMth-order Taylor series method in  who employed a parallel algorithm and the multiple precisio
Ns digit precision. LefT4(M, Ns; M’, N2 denote the time of (MP) library of C. Their result (based on the 1000th-order
decoupling, determined by comparisgM, Ns) with a more  Taylor expansion and 2100-digit MP precision) confirms the
accurate simulatios' (M’, Nz), whereM’ > M andNZ > Ns. correction of Liao’s simulation [15] in the interval [0000].
Then, the critical prediction tim&; of the numerical simula- Using the CNS with the 1000th-order Taylor expansion and

tion s(M, Ng) is defined by the 2100 digit multiple precision, Wang et al. [16] obtairzed
reliable chaotic solution in the interval [0,2500] withinlg
Te(s) =, min  Ta(M,Ns; M’ N (4) 30 hours, which is validated using a more accurate simula-
e tion given by the 1200th-order Taylor expansion and the 2100
foranyM’ > M andN{ > Ns. digit multiple precision.

Another key point of the CNS is that an explicit estimation ~ Can we obtain a mathematically reliable chaotic simula-
of the critical prediction timeT. versus the ordeM of the  tion of Lorenz equation in a longer interval like [0,10000]?
Taylor series expansion is given, as illustrated by Liad [15 Obviously, such a reliable chaotic solution can provide us a
who gave the estimatiofi, ~ 3M for Lorenz equation (us- numerical benchmark for mathematically reliable longvter
ing data in M-digit precision, i.e.Ns = 2M). Then, given  prediction of chaos, and thus certainly has important mean-
a finite but long enough time interval,[U¢] of Lorenz equa-  ings in theory.
tion, one might obtain mathematically reliable numeral-sim  According to Liao’s [15] estimatio; ~ 3M for Lorenz
ulations of chaotic solution in the interval,[0;] by means equation in the case ®s = 2M, the required order of Taylor
of the CNS with the ordeM > T./3 of Taylor expansion expansion should be larger than 3333 for a reliable sinarati
and data in (®1)-digit precision, which however should be in[0,10000]. We found that the required digit precision htig
verified by means of a higher order of Taylor series method. be less than 1. Even so, it is a huge challenge to gain such

In this paper, we gave a mathematically reliable chaotica reliable chaotic simulation of Lorenz equation in [0,20P0
numerical simulation of Lorenz equation in the interval Currently, using the parallel algorithm and 1200 CPUs of
[0,10000] by means of the CNS using parallel computationthe National Supercomputer TH-1A (at Tianjian, China), we
in the National Supercomputer TH-A1l. To the best of our successfully obtained the reliable chaotic solution ofdrar
knowledge, mathematically reliable chaotic simulations i equation in the interval [0000] by means of the CNS using
such a long interval have never been reported. So, it prothe 3500th-order Taylor expansion and the 4180-digit multi
vides us a numerical benchmark for reliable long-term sim-ple precision. The used CPU time is 220.92 hours (i.e., about
ulation of chaos. Thereafter, we point out that, due to the9 days and 5 hours). Its reliability (from the mathematical
thermal fluctuation, the physical micro-level uncertainfy  viewpoint) was confirmed by means of the CNS using the
initial conditions is inherent. This objective, inherephys-  3600th-order Taylor expansion and the 4515-digit multiple
ical uncertainty of initial condition is indeed rather sir(alt precision. The reliable chaotic solution is given in Table 1
the level of 10°), but is much larger than the required 4000- which can be regarded as a benchmark of long-term predic-
digit precision for a reliable prediction of chaotic sobutiin tion of chaos. It should be emphasized that, to the best of
such a long interval [AL0000]. This suggests that the chaotic our knowledge, the mathematically reliable chaotic soluti
trajectories of Lorenz equation for a long time might be es-of Lorenz equation in such a long interval of time has never
sentially uncertain in physics. been reported, whose time interval of the reliable chaatic s

lution is about 500 times longer than that of chaotic simula-
2 Reliable long-term numerical simulation of tions given by means of the traditional Runge-Kutta method
chaos in double-precision. Therefore, from the mathematicalvie

point, it is possible to gain a reliable, convergent chastic
Liao [15] proposed the CNS to gain reliable chaotic solugion lution of Lorenz equation in such a long interval {®000]
of Lorenz equation in the case & = 28, b = 8/3 and  within a reasonable CPU time, as long as the initial condi-
o = 10. Using time stept = 0.01 and enforcing the sig- tion and all data at each time-step are accurate enough, and
nificant digit numbeNs = 2M, whereM denotes the order besides the order of the Taylor series method is high enough.
of Taylor series method, Liao [15] found an estimation for- It was found [15] that the required initial condition of
mulaT. ~ 3M for the criticial prediction timeT.. Accord- Lorenz equation should be in the accuracy of%f®:, where
ing to this formula, Liao [15] gained a reliable chaotic solu T, is the critical prediction time. Thus, from mathematical
tion of Lorenz equation in the interval € t < 1000 Lorenz  viewpoint, whenT. = 10000, the required initial condition
time units (LTU) by means of the CNS using the 400th-ordermust be in the accuracy of 1%, i.e., in the 4000-digit pre-
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Table 1 Reliable results of Lorenz equation in the caserof 10, R = ture fluctuates to some extent about the equilibrium.
28, b = —8/3 andx(0) = —15.8, y(0) = —17.48, z0) = 35.64 by means of According to statistical mechanics [21,22], the well-

the parallel algorithm of the CNS with the 3500th-order Bayxpansion,  known thermodynamic equation [23] for the variance of tem-
the 4180-digit MP data andt = 0.01. The used CPU times is 9 days and 5 perature fluctuations in volumeV reads

hours by means of the 1200 CPUs of National Supercomputet AH-

2

t 2 v z (?) = oL ®)
500 ~5.3050 -9.4260 12.3022 pCWV
1000 13.8820 19.9183 26.9019 whereks = 1.3806488x 10-22 JK is the Boltzmann con-
1500 -10.1398 -7.6264 31.8584 stant,T denotes temperaturg,the density, anecC, the spe-
2000 —6.8739 -1.4848 31.3495 cific heat capacity, respectively. In the case of the typical
2500 2.7592 0.4763 24.6411 air in room conditions in a cube with' = 102 m®, we
3000 1.6933 3.6003 21.4109 haveT = 20C = 293.15 K,p = 12041 g/m3, C, = 1012
3500 0.7357 -2.1187 24.4667 J(g K), respectively. The corresponding standard deviation
4000 —7.6927 —13.4996 14.1994 of temperature reads/@ = 3.1204x 1077 K. Using the
4500 —13.7455 _8.3158 38.8589 room temperaturd = 29315 K as the characteristic one,
5000 —6.0844 ~10.8137 12.7391 we have the dimensionless standard deviation of temperatur
5500 4.7719 8.8154 10.4386 o = 1.06444x 10_19. This value is indeed rather small. How-
6000 0.2167 21043 221246 ever, it is much larger than 1%, the required precision of
6500 4.6758 56919 20.4906 the initial condition for a mathematically reliable pretiin
7000 _11.3949 _16.5754 23,6813 of chaotic simulation in thg interval [0,1(_)000]. S
7500 0.1858 0.6489 16.5550 . Without loss of generality, let us consider the initial cend
8000 ~1.2659 ~2.3363 17.4960 tion
8500 -3.0412 1.5314 27.8442 x(0) = —15.8, y(0) = —17.48, z(0) = 35.64 (6)
9000 13.4797 17.2821 29.2382

of Lorenz equation (in the case & = 28 b = 8/3 and

o = 10) for the equilibrium state. As mentioned above, a
system at nonzero temperature may randomly sample all pos-
sible states [21-23]. For simplicity, let us consider the fo
cision. However, from the physical viewpoint, does such anlowing two possible states, corresponding to the two ihitia

9500 8.9996 3.0374 33.8242
10000 -15.8173 —-17.3669 35.5584

accurate initial condition exist in nature? conditions with a micro-level thermal fluctuation of temaer
ture (att = 0)

3 Are mathematically reliable long-term x=-158, y=-17.48, z= 3564+ 102 @)

chaotic ssimulations physically meaningful ? or

It is traditionally believed that initial conditions areast in x=-158, y=-17.48 z=3564- 10", (8)

nature, and the uncertainty in initial conditions is duette t From the physical viewpoints of thermal fluctuation, the
fact that we can not measure at arbitrary precision. Thus, duabove three initial conditions (6)—(8) are the same, since
to the “butterfly éfect”, such a kind of uncertainty or limited each of them may sample a state but we do not know which
knowledge of initial conditions destroys long-term preigia ones truly appears in practice. The key point is that, phys-
of chaos. This is the traditional explanation for the “brsfte ically speaking, due to the thermal fluctuation, the require
effect” and SDIC of chaos. However, this traditional thought initial condition in the accuracy of 4000-digit precisioor f
is wrong in physics, since the uncertainty of initial condi- T, = 10000 (LTU) does not exist in nature, since it is much
tions of Lorenz equation is objective and inherent in nature smaller even than the thermal fluctuation!
as shown below. The CNS provides us a safe tool to very accurately simu-
Note that Lorenz equation is a simplified model for con- late the propagation of this kind of inherent, objectiveygih
vention and heat transfer of viscous fluid [1,20], withy cal, micro-level uncertainty of initial conditions, asiditrated
for velocity andz for temperature, respectively. It should by Liao [15,19,24,25] and Wang et al [16]. Similarly, by
be emphasized that, thermal fluctuation is a basic consemeans of the parallel CNS (8 CPUs) with the 400th-order
guence of the definition of temperature [21-23]: a system afTaylor expansion and the data in accuracy of 1000-digit mul-
nonzero temperature does not stay in its equilibrium micro-tiple precision At = 1072), we gain the three reliable chaotic
scopic state, but instead randomly samples all possiltiessta  solutions in the interval & t < 1000, corresponding to the
with probabilities given by the Boltzmann distribution.&ih  possible initial conditions (6), (7) and (8), respectivalthin
modynamic variables, such as pressure and temperature, unne and a half hour. Besides, the mathematical reliabifity o
dergo thermal fluctuations in a similar way. For example, athese three chaotic simulations in the interval[0, 1000] is
system has an equilibrium temperature, but its true temperaconfirmed by means of the 500th-order Taylor expansion and
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the 1200-digit multiple precision data. Inthisway, thdseé  mal fluctuation is inherently uncertain and objective, say,
chaotic simulations are guaranteed to be mathematicdily re is independent of any experimental accuracy of observation
able intheinterval & t < 1000. In other words, comparedto This suggests that, although the reliable, accurate predic
the micro-level thermal fluctuation in the level of #8, the  of chaos in a finite but long enough interval is mathematjcall
numerical noises of the three chaotic simulations in the in-possible, the chaotic trajectories for a long time might ®e e
terval [0, 1000] are much smaller and thus negligible. There-sentially uncertain in physics, mainly due to the the oldject
fore, from the mathematical viewpoint, we are quite suré¢ tha unavoidable, micro-level thermal fluctuation.

these three chaotic simulations are convergent to their tru  Therefore, due to the “butterflyfiect” of chaotic dynamic
trajectories. systems like Lorenz equation, the inherent, objective sphy

However, as shown in Figure 1, the three mathematicallycalj micro—lev_el uncertainty (such as the the.rmal flucturgti
reliable chaotic simulations agree well only in the intérva AUicKly truns into the macroscopic uncertainty, as rewtale

t € [0,51] but quickly depart from each other when 51. by our very accurate, reliable chaotic solutions mentioned

Since, due to the thermal fluctuation mentioned above, we d@P0Ve. It suggests that trajectories of chaotic systema for
not know which initial condition among (6), (7) and (8) truly Ion_g time are _ess_entially uncertain, _from the physical yiew
appears in nature, all trajectories beyondD] are uncertain.  POINt. Thus, it might have no physical meanings to give a
Mathematically, this numerical phenomenon is not surpris-detérministic, accurate prediction of the “true” trajegtof

ing, since the “butter-fly@ect” of chaos is well known. How- Such & chaotic dynamic system, because such a kind of de-
ever, from the physical viewpoint, it means that the random,[€ministic trajectory does not exist at all in nature frdm t
inherent, micro-level thermal fluctuation has a greatinfaee ~ Physical viewpoint. Theoretically speaking, such a kind of

on the chaotic solutions! It should be emphasized that ther€haotic dynamic systems should be described from the statis
tic viewpoints [24]. Note that the same conclusions are ob-

tained by Liao [25] for chaotic motions of three body prob-

lems, who proposed a new concept “physical limit of pre-

diction”. Thus, the above-mentioned conclusions have the
general meanings.

Solid line: without thermal fluctuation
Dashed line: with thermal fluctuation

20

4 Concluding remarks and discussion

x(t)

Using the parallel “Clean Numerical Simulation” (CNS)
[15,19] based on the 3500th-order of Taylor series method
and data in the 4180-digit multiple precision, we success-
fully obtain a mathematically reliable long-term predactiof
chaotic solution of Lorenz equation in the intervalJ0000]

e 26 a8 50 52 54 by means of 1200 CPUs of the National Supercomputer TH-
t 1A at Tianjin, China. To the best of our knowledge, this kind
of mathematically reliable chaotic solution in such a long i
20  Solid line: without thermal fluctuation terval has never been reported. Mathematically, it pravide

Dash-dotted line: with thermal fluctuation us with a numerical benchmark for reliable long-term predic

tion of chaos. Thus, given a finite but long enough interval,
the CNS provides us with a safe tool to gain mathematically
reliable chaotic solutions in it. So, the CNS has important
meanings not only in theory but also in practice.

It is found that the initial condition required for the math-
ematically reliable chaotic solution in [0,10000] must be i
4000-digit precision. However, due to the inherent thermal
fluctuation, there exists the physical uncertainty of thah
temperature at the level of 1¥, which is independent of any
experimental accuracy of observation or limited knowledge

¢ (in other words, it is the so-called objective uncertainfis
Figure 1 Comparison of the reliable chaotic solutions by means of the objective, physical uncertgmty 'S mde-e.d rath(.ar. smalt, |.bu.
CNS with At = 1072, the 400th-order Taylor expansion and the 1000-digit r,nUCh larger than the required 40,00_d!g|t er.,‘CISIOH of tf.le !n
multiple-precision (MP) data. Solid line: without thernfaictuation using Uil temperature. From the physical viewpoint, the thrée in
the initial condition (6); dashed line: with thermal fluctioa using the ini-  tial conditions (6)—(8) are the same, since each of them may
tial condition (7); dash-dotted line: with thermal fluctioat using the initial sample a state, but we do not know which ones truly appears
condition (8). in practice. Due to the “butter-flyfiect” of chaos, this ob-
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jective, inherent, micro-level uncertainty quickly turimo 5
macroscopic uncertainty, as shown in Figure 1. Note that
such a kind of relationship between micro-level and macro- 6
scopic uncertainty is supported not only by other physical
models such as the chaotic motion of three-body problem 7
[25] but also some physical experiments [26,27].

Note that the Lorenz equation is derived from the Navier-
Stokes equations with Boussinesq approximation in the 8
macroscopic view, and thus the micro-level fluctuation of
initial conditions should be negligible from the macrosicop
viewpoint. However, on the other side, our reliable simula-
tions of chaotic trajectories of Lorenz equation given by th 10
CNS indicate that even the micro-level fluctuations of the in
tial conditions can fiect the macroscopic property greatly.
This leads to the so-called “precision paradox of chaos”, as
pointed out by Liao [15], if Lorenz equation itself is regadd
not only as a pure, mathematical model of chaos but also
a simplified, physical model related to Navier-Stokes equa-
tions. In history, a paradox often implies something impor-
tant and essential. As suggested by Liao [19], this paradox
might imply the close relationship between the micro-level ;,
uncertainty and macroscopic randomriessertainty. Obvi-
ously, it is valuable to investigate and reveal the essefice o
this paradox in the future. Note that, there does not exidtsu 15
kind of paradox for the chaotic motion of three-body prob-
lem, but the same conclusions mentioned in this article areig
obtained in [25].

In summary, it is mathematically indeed possible to gain
convergent, reliable chaotic solutions of Lorenz equaitican
finite but long enough interval such as [0,10000]. However, 17
our very fine computations suggest that such kind of chaotic
trajectories for a long time might be essentially uncertain 18
physics, due to the inherent, objective, physical uncetyai
of initial condition.
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