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ABSTRACT
Steady-state resonant interfacial waves in a two-layer fluid within a frictionless duct are investigated theoretically. A combination of the
homotopy analysis method (HAM) and Galerkin’s method is used to search for accurate steady-state resonant solutions with multiple
near resonances. In the HAM, a piecewise parameter in the auxiliary linear operators is introduced to remove the small divisors caused
by nearly resonant components. Convergent series solutions are then provided to the Galerkin iterations to accelerate the convergence rate.
It is found that weakly nonlinear steady-state resonant waves form a continuum in the parameter space. As nonlinearity (wave steepness)
increases, energy appears to be progressively shifted to sideband frequency components, effectively broadening the spectrum. The corre-
sponding interfacial wave profile exhibits an almost fixed spatial pattern of repeated relatively high frequency, high-amplitude bursts followed
by low-amplitude, longer waves. On examining the influence of density ratio, though changing slightly, the upper layer enlarges the ampli-
tude of components near primary ones, which reduces the amplitude of higher frequency components, enlarges the wave steepness, and
reduces the horizontal velocity in the wave field. Our results indicate that steady-state systems with resonant interactions among periodic
interfacial wave components could occur naturally in the ocean. All these should enhance our understanding of periodic resonant interfacial
waves.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0015581., s

I. INTRODUCTION

The subsea is a habitat for marine mammals, fish, plankton,
and other organisms and also provides a location and working
environment for many man-made devices, including submarines,
deep sea risers, and elements of offshore structures. Autonomous
underwater vehicles are nowadays routinely used for ocean explo-
ration tasks including marine environmental monitoring, seabed
mapping, and the mapping and exploitation of submarine resources

[see, e.g., Leonard et al. (1998) and Leonard and Bahr (2016)].
Internal waves commonly occur in the ocean owing to density
stratification caused by temperature or salinity differences. They
are believed to provide a transport mechanism for planktonic lar-
vae and also to create so-called dead water zones that hinder ship
propulsion.

Internal waves have been studied for decades [see, e.g., Garrett
and Munk (1979), Sutherland (2010), and Dauxois et al. (2018)].
Hunt (1961) derived a third-order approximation of progressive
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interfacial waves and considered the effect of upper fluid layer
on the wave field. A general theoretical treatment of long inter-
nal waves, including solitary and periodic waves, was proposed by
Benjamin (1966; 1967). Holyer (1979) studied large amplitude, pro-
gressive interfacial waves moving between two infinite fluids of dif-
ferent densities. The Garrett–Munk internal wave spectrum accu-
rately estimated the internal wave energy spectra of most oceanic
observations [see Garrett and Munk (1975)]. There have been many
field observations of solitary internal waves. For example, Osborne
and Burch (1980) reported observations of internal solitons in the
Andaman Sea. In recent years, solitary internal waves [see, e.g.,
Aghsaee et al. (2010) and Grimshaw and Helfrich (2012)] and peri-
odic internal waves [see, e.g., Chen and Forbes (2008) and Camassa
et al. (2010)] have been further investigated through mathematical
analysis, numerical simulation, and physical experiments. Although
fewer studies have considered periodic internal waves than solitary
internal waves owing to the practical difficulties encountered in con-
ducting field observation campaigns and laboratory experiments,
research into periodic internal waves is rather important, especially
given that the periodic progressive internal waves in the layered
fluids constitute a well-documented phenomenon [see, e.g., Holyer
(1979), Saffman and Yuen (1982), and Chen and Forbes (2008)].

Interactions among periodic waves can cause resonance, a topic
that has been extensively researched in the context of surface gravity
waves. The earliest study on surface wave resonance was undertaken
by Phillips (1960) who derived the exact resonance criterion for a
quartet of periodic progressive waves as

k1 ± k2 ± k3 ± k4 = 0, ω1 ± ω2 ± ω3 ± ω4 = 0, (1)

where ki is the wave vector and ωi is the associated linear angular
frequency, with i = 1, . . ., 4. Phillips (1960) found that the ampli-
tude of the resonant wave component increases linearly with time.
Another resonant fluid flow topic concerns resonant gravity-driven
films on wavy topographies. Linear and nonlinear resonances of vis-
cous films on an oblique wavy plane were studied by Wierschem
et al. (2008) and Heining et al. (2009). The stabilities of film flows
over topography were analyzed by Schörner et al. (2015) and Aksel
and Schörner (2018). Investigations into wave resonance have also
extended to periodic internal gravity waves in continuous stratifi-
cation and interfacial waves in discontinuous layered fluids. Studies
of internal wave resonance include the rate of energy transfer in the
Garrett–Munk spectra [see, e.g., Mccomas and Bretherton (1977)],
collisions of internal wave beams in a uniformly stratified fluid
[e.g., Akylas and Karimi (2012)], an instability mechanism causing
resonant harmonic generation of internal gravity waves [see, e.g.,
Liang et al. (2017)], and nearly resonant flow at the long-wavelength
weakly nonlinear limit in a stratified fluid over topography [see, e.g.,
Grimshaw and Smyth (1986) and Zhang et al. (2008)]. Studies of
interfacial wave resonance in a two-layer fluid include Bragg reso-
nance between surface-interfacial waves and a rippled bed [see, e.g.,
Alam et al. (2009)], wave resonance between an “internal” mode
and an “external” mode whose dispersion relation is the same as
for surface waves, each with the same phase speed but one hav-
ing twice the wavelength of the other [see, e.g., Parau and Dias
(2001)], and triad resonances among surface and interfacial waves
[e.g., Ball (1964), Thorpe (1966), Wen (1995), Alam (2012), Tanaka
and Wakayama (2015), and Zaleski et al. (2019)]. To date, research

into triad and higher-order interfacial wave resonances, includ-
ing surface–interfacial waves and interfacial–interfacial waves, all
concerns wave systems with unsteady-state amplitudes that change
slowly, vary in the form of Jacobian elliptic functions, or have other
relationships changing with time.

In recent years, in the field of surface gravity waves, by using
the homotopy analysis method (HAM) (Liao, 2003; 2011a; and
Vajravelu and Van Gorder, 2012), Liao (2011b) successfully over-
came the problem of singularities identified by Madsen and
Fuhrman (2012) and obtained a single steady-state resonant quar-
tet in deep water when condition (1) is exactly satisfied. Xu et al.
(2012) and Liu and Liao (2014) then found that a steady-state res-
onant quartet could exist in water of finite depth and for more
complicated cases. Similar results concerning the weakly nonlin-
ear steady-state resonant quartet in water of finite depth have
also been deduced from Zakharov’s equation (Xu et al., 2012). In
addition, using model basin tests, Liu et al. (2015) experimentally
verified the existence of the surface wave systems discovered by
Liao (2011b).

Although the foregoing theoretical analyses were based on an
exact resonance criterion, there exist near-resonance criteria that are
more generalized in their nature than the exact criterion. Without
loss of generality, we consider a surface wave system with L nearly
resonant components (k0,1, k0,2, . . ., k0,L) derived from two pri-
mary components (k1, k2). It satisfies the following near-resonance
criteria:

mlk1 + nlk2 = k0,l, mlω1 + nlω2 = ω0,l + dω0,l, l = 1, 2, . . . ,L, (2)

where ml and nl are integers associated with the lth nearly reso-
nant component, k0, l is the wave vector, ω0, l is the corresponding
linear angular frequency, and dω0, l is the angular frequency mis-
match (a small real number). Note that the exact resonance can be
regarded as a special case of near resonance, but with dω0,i = 0. As
Madsen and Fuhrman (2012) rightly pointed out, setting dω0,i = 0
causes singularities and inevitably setting dω0,i ≈ 0 for nearly res-
onant components would lead to very small denominators in the
perturbation theory [see, e.g., Liao et al. (2016)]. In the framework
of the HAM, Liao et al. (2016) developed an approach that suc-
cessfully overcame this problem for a single nearly resonant quartet
when L = 1 in (2) and obtained solutions for steady-state surface
gravity waves in deep water. Liu et al. (2017; 2018) and Liu and
Xie (2019) extended the method to multiple near resonances when
L > 1 in (2) and obtained finite amplitude steady-state surface wave
systems in any arbitrary water depth. Meanwhile, steady-state reso-
nant solutions for acoustic-gravity waves were also derived by Yang
et al. (2018) using the HAM.

Unlike the unsteady-state system, there is no energy trans-
fer between the various wave components in the steady-state
resonant waves. In the case of unsteady-state resonance, time-
dependent periodic exchange of wave energy may happen and
the nonlinear wave system would exhibit a Fermi–Pasta–Ulam
recurrence phenomenon (Lake et al., 1977). Amundsen (1999)
investigated the differences that arise in weakly nonlinear wave
resonant interactions under the assumption of a discrete or
continuous spectrum. Couston (2016) found that surface waves or
internal waves propagating over seabed corrugations can become
trapped or deflected. In the case of steady-state resonance, the
amplitude of each component is invariant over time. Therefore, the
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steady-state resonance represents a balanced state of wave energy
and is a special case of the more general unsteady-state resonance,
where wave energy transfers dynamically among different wave
components. Alam et al. (2010) pointed out that the dynamic evolu-
tion of the wave spectrum with multiple resonances after a long time
is complicated and intractable by traditional perturbation meth-
ods. Steady-state resonance provides a way to study the evolution
of a complex wave system because the components in unsteady-
state resonance are hard to distinguish after long-term evolution
with the complicated wave generation and transformation. Besides,
steady-state resonance could also be regarded as a benchmark to test
the accuracy of any numerical algorithm for predicting the long-
term evolution of wave systems. Knowledge of steady-state resonant
systems provides insight into the behavior of nonlinear interfacial
wave evolution. To the best of the authors’ knowledge, a system
containing resonant interactions among periodic interfacial gravity
waves with time-independent amplitudes has not previously been
identified.

The objective of this paper is to investigate steady-state res-
onant interfacial waves with rigid boundaries. A two-layer fluid
within a frictionless duct of finite depth is considered. The assump-
tion of a rigid top boundary holds for the following reason: Resonant
interactions among surface waves and interface waves are quite com-
plicated to evaluate because multiple external and internal modes
of the surface and interface waves have to be considered. When
the depth of the upper fluid layer is sufficiently large, the influ-
ence of the surface on the interface can be ignored. Therefore, we
consider a large depth of the upper fluid layer to simplify the prob-
lem to one of interface waves traveling under a rigid top boundary.
Physical parameters simplified from data in northeast of the South
China Sea (21○N, 118.5○E) (Fan et al., 2013) are used to simulate the
actual ocean environment. As a well-established analytical approxi-
mation method for nonlinear differential problems, especially in the
field of steady-state resonant surface waves, the HAM is used in the
present work to derive the steady-state resonant solutions of interfa-
cial waves to a certain level of accuracy. The resulting solutions are
then taken as the initial conditions for iteration in Galerkin’s method
[e.g., Okamura (2010) and Liu and Xie (2019)] to obtain convergent
solutions of sufficient accuracy.

The contributions of this paper are summarized as follows:
First, the existence of steady-state resonant interfacial waves is con-
firmed theoretically. It mainly extends the work of Hunt (1961)
from progressive interfacial waves with a single primary compo-
nent to wave groups with two primary components that con-
tain multiple resonances and also extends the work of Liu and
Xie (2019) from steady-state resonant surface waves to steady-
state resonant interfacial waves. Second, accurate solutions of
interfacial waves are obtained in circumstances similar to that
of the real ocean environment. The influence of periodic inter-
facial wave groups on underwater vehicles could be estimated.
Finally, the effects of nonlinearity and density ratio on the physics
of interfacial wave groups are analyzed. The continuum of the
steady-state resonant interfacial waves in the parameter space
is established. This work aims to push forward the existence
of steady-state resonant waves to more general situations. We
believe steady-state resonance can occur for any kind of water
wave if resonant interactions among different wave components
appear.

This paper is structured as follows: Section II outlines the
mathematical derivation. Section III presents the results for linear
resonance analysis, weakly nonlinear waves with a single exactly
resonant quartet, multiple nearly resonant waves of increased
nonlinearity, and resonant waves with different density ratios.
Section IV summarizes the main conclusions.

II. MATHEMATICAL FORMULAS
A. Governing equations

Let us consider a system of two incompressible fluid layers,
each of constant density under gravity that entirely fills a frictionless
duct. Following Alam (2012) and Tanaka and Wakayama (2015),
it is assumed that the flow is inviscid and irrotational inside each
fluid layer. The inviscid model inevitably causes a discontinuity of
shear stress around the interface. In practice, this drawback would be
smeared out, and the analyses presented in this paper should there-
fore be useful. Figure 1 illustrates the layered system for stable strati-
fication density when ρ1 < ρ2. Here, (x, y, z) represents the Cartesian
coordinate system, where z = 0 is a horizontal plane located at the
undisturbed interface between the fluid layers and z is measured ver-
tically upwards. The two-fluid system is bounded above and below
by rigid surfaces located at z = h1 and z = −h2, respectively. The gov-
erning equations for each layer, kinematic boundary conditions, and
kinematic and dynamic interface conditions are

∇2ϕ1 = 0, ζ(x, y, t) < z < h1, (3)

∇2ϕ2 = 0, −h2 < z < ζ(x, y, t), (4)

∂ϕ1

∂z
= 0 at z = h1, (5)

∂ϕ2

∂z
= 0 at z = −h2, (6)

∂ζ
∂t

+∇ϕ1 ⋅ ∇ζ −
∂ϕ1

∂z
= 0 at z = ζ(x, y, t), (7)

∂ζ
∂t

+∇ϕ2 ⋅ ∇ζ −
∂ϕ2

∂z
= 0 at z = ζ(x, y, t), (8)

ρ1(
∂ϕ1

∂t
+ gζ +

1
2
∣∇ϕ1∣2) − ρ2(

∂ϕ2

∂t
+ gζ +

1
2
∣∇ϕ2∣2) = 0

at z = ζ(x, y, t),
(9)

FIG. 1. The physical sketch of the two-fluid system with related notations.
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where ϕ1(x, y, z, t) and ϕ2(x, y, z, t) denote the velocity potentials of
the upper and lower fluid layers, respectively, ζ(x, y, t) is the interfa-
cial wave elevation, g is the acceleration due to gravity, t is time, and
∇ = i ∂

∂x + j ∂
∂y + k ∂

∂z is the gradient operator. For constant values of
layer density,

ρ1 = ρ2Δ, 0 < Δ < 1, (10)
where Δ is the density ratio. Consider a steady-state interfacial wave
system with two primary periodic progressive waves. Let ki denote
the wave vector, σi denote the actual angular frequency, and βi
denote the initial phase of the ith primary component. As ampli-
tudes of all components in the steady-state interfacial wave system
are time-independent, we introduce the following transformation to
search for steady-state solutions:

ξi = ki ⋅ r − σit + βi, i = 1, 2, (11)

where r = ix + jy, and define

φ1(ξ1, ξ2, z) = ϕ1(x, y, z, t), φ2(ξ1, ξ2, z) = ϕ2(x, y, z, t),
η(ξ1, ξ2) = ζ(x, y, t)

(12)

in the new coordinate system (ξ1, ξ2, z). The original initial/boundary-
value problem (3)–(9) in the coordinate system (x, y, z, t) is then
transformed into a boundary-value problem in the coordinate sys-
tem (ξ1, ξ2, z). Steady-state solutions can be more easily obtained
from the boundary-value problem in the coordinate system (ξ1, ξ2,
z), and therefore, the two coordinates (ξ1, ξ2) play an important role
in the rest of the analysis. The governing equations in the coordinate
system (ξ1, ξ2, z) read

∇̂2φ1 = 0, η(ξ1, ξ2) < z < h1, (13)

∇̂2φ2 = 0, −h2 < z < η(ξ1, ξ2), (14)

with three (two kinematic and one dynamic) boundary conditions at
the unknown interface z = η(ξ1, ξ2) (see Appendix A for a detailed
derivation),

N1[φ1,φ2] =
2

∑
i=1

2

∑
j=1
σiσj

∂2φ2

∂ξi∂ξj
+ g(1 − Δ)∂φ2

∂z

−Δ
2

∑
i=1

2

∑
j=1
σiσj

∂2φ1

∂ξi∂ξj
+ ∇̂φ2 ⋅ ∇̂f2

− 2
2

∑
i=1
σi
∂f2
∂ξi

+ Δ(
2

∑
i=1
σi
∂f1
∂ξi

h21 − ∇̂φ2 ⋅ ∇̂f1) = 0, (15)

N2[φ1,φ2] = g(1 − Δ)
∂(φ2 − φ1)

∂z
+ ∇̂(φ2 − φ1) ⋅ ∇̂f2 − h12

−
2

∑
i=1
σi
∂f2
∂ξi
− Δ[

2

∑
i=1
σi
∂f1
∂ξi

+ h21 + ∇̂(φ2 − φ1) ⋅ ∇̂f1] = 0,

(16)

N3[φ1,φ2,η] = η − 1
g(1 − Δ)[

2

∑
i=1
σi
∂φ2

∂ξi
− f2

−Δ(
2

∑
i=1
σi
∂φ1

∂ξi
− f1)] = 0, (17)

and two boundary conditions at the upper and lower rigid surfaces,

∂φ1

∂z
= 0 at z = h1, (18)

∂φ2

∂z
= 0 at z = −h2, (19)

where N1, N2, and N3 are nonlinear differential operators and

∇̂ = k1
∂

∂ξ1
+ k2

∂

∂ξ2
+ k

∂

∂z
, fi =

1
2
∣∇̂φi∣

2, i = 1, 2, (20)

hij = −σ1∇̂φi ⋅ ∇̂(
∂φj
∂ξ1
) − σ2∇̂φi ⋅ ∇̂(

∂φj
∂ξ2
), i, j = 1, 2. (21)

The interfacial wave elevation η and velocity potentials in the upper
and lower fluid layers φi of the steady-state interfacial wave system
can be expressed in the following form:

η(ξ1, ξ2) =
+∞
∑

i=−∞

+∞
∑

j=−∞
Cη
i,j cos(iξ1 + jξ2), (22)

φ1(ξ1, ξ2, z) =
+∞
∑

i=−∞

+∞
∑

j=−∞
Cφ1
i,j ψ

1
i,j(ξ1, ξ2, z), (23)

φ2(ξ1, ξ2, z) =
+∞
∑

i=−∞

+∞
∑

j=−∞
Cφ2
i,j ψ

2
i,j(ξ1, ξ2, z), (24)

where

ψ1
i,j(ξ1, ξ2, z) = cosh[∣ik1 + jk2∣(z − h1)] sin(iξ1 + jξ2), (25)

ψ2
i,j(ξ1, ξ2, z) = cosh[∣ik1 + jk2∣(z + h2)] sin(iξ1 + jξ2). (26)

The values of ki, σi, and hi with i = 1, 2 are given in each case to obtain
the unknown constants Cη

i,j, C
φ1
i,j , and Cφ2

i,j . Equations (13), (14), (18),
and (19) are automatically satisfied by the form of η, φi given by
(22)–(24), and so the unknown constants are obtained by solving
the three boundary conditions (15)–(17) at the internal interface
z = η(ξ1, ξ2).

B. Approach based on the HAM
The general idea behind the homotopy analysis method (HAM)

is to construct a kind of continuous deformation between the given
solution (called initial guess) and the solution of the nonlinear dif-
ferential equations to be solved. A detailed introduction of the HAM
can be found in Liao (2003; 2011a) and Vajravelu and Van Gorder
(2012). The basic concept and important details of the HAM are
described below.

Given that the expressions for φ1 (23) and φ2 (24) automati-
cally satisfy the governing equations (13) and (14) and the top and
bottom boundary conditions [(18) and (19)], it is sufficient solely to
consider the interface conditions (15) and (17). We set q ∈ [0, 1] as
an embedding homotopy parameter, c0 ≠ 0 as a convergence-control
parameter, L1 and L2 as the auxiliary linear operators, η0 = 0 as the
initial approximation of interfacial wave elevation η, and φ0,1(ξ1, ξ2,
z) and φ0,2(ξ1, ξ2, z) as the initial approximations of the potential
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functions φ1 and φ2. Then, based on the interface conditions (15)–
(17), we construct the following parameterized family of equations
(called the zeroth-order deformation equations):

(1 − q)L1[φ̌1 − φ0,1, φ̌2 − φ0,2] = qc0N1[φ̌1, φ̌2] at z = η̌, (27)

(1 − q)L2[φ̌1 − φ0,1, φ̌2 − φ0,2] = qc0N2[φ̌1, φ̌2] at z = η̌, (28)

(1 − q)η̌ = qc0N3[φ̌1, φ̌2, η̌] at z = η̌, (29)

where

φ̌i(ξ1, ξ2, z; q) =
+∞
∑
m=0

φm,iqm,

φm,i(ξ1, ξ2, z) = 1
m!

∂mφ̌i
∂qm
∣
q=0

, i = 1, 2,
(30)

η̌(ξ1, ξ2; q) =
+∞
∑
m=1

ηmqm, ηm(ξ1, ξ2) =
1
m!

∂mη̌
∂qm
∣
q=0

. (31)

Considering the auxiliary linear operators L1 and L2 that have
the property L1[0, 0] = L2[0, 0] = 0, we obtain the following
relationships when q = 0:

φ̌i(ξ1, ξ2, z; 0) = φ0,i, i = 1, 2, η̌(ξ1, ξ2; 0) = 0. (32)

When q = 1, Eqs. (27)–(29) are equivalent to the original equations
(15)–(17). Thus,

φ̌i(ξ1, ξ2, z; 1) = φi, i = 1, 2, η̌(ξ1, ξ2; 1) = η. (33)

Hence, Eqs. (27)–(29) define the following three homotopies:

φ̌1 ∶= φ0,1 ∼ φ1, φ̌2 ∶= φ0,2 ∼ φ2, η̌ ∶= 0 ∼ η, when q ∶= 0 ∼ 1.
(34)

Letting q = 1, the solutions for the interfacial wave elevation
η and velocity potentials in the upper and lower fluid layers φi are
approximated by

φi(ξ1, ξ2, z) = φ̌i(ξ1, ξ2, z; 1) =
+∞
∑
m=0

φm,i(ξ1, ξ2, z), i = 1, 2, (35)

η(ξ1, ξ2) = η̌(ξ1, ξ2; 1) =
+∞
∑
m=1

ηm(ξ1, ξ2). (36)

The sum index of the interfacial wave elevation η starts from m = 1
as the initial guess η0 = 0.

1. Solution procedure
The unknowns φm ,i and ηm are governed by the following high-

order deformation equations:

Li[φm,1,φm,2] = c0Δφm−1,i − Sm,i + χmSm−1,i, i = 1, 2, (37)

ηm = c0Δηm−1 + χmηm−1, (38)

where χ1 = 0 and χm = 1 for m ≥ 2, and Li = Li∣z=0 are auxiliary
linear operators.

Up to the mth-order of approximation, all terms Δφm−1,i, Sm,i,
Sm−1,i, and Δηm−1 on the right-hand side of the high-order defor-
mation equations (37) and (38) are already predetermined by φn ,i

and ηn, with n = 0, 1, 2, . . ., m − 1 and m ≥ 1. The detailed expres-
sions for Δφm−1,i, Sm,i, Sm−1,I , and Δηm−1 are given in Appendix B and
Sec. II B 2. Note that ηm could be obtained directly from (38);
meanwhile, the solution process for φm ,i is more complicated.

When resonance conditions are nearly satisfied, proper auxil-
iary linear operators Li must be chosen to remove the small divisors
associated with the near-resonant components in φm ,i. Otherwise,
no convergent series solutions could be obtained for steady-state
wave groups. This is why the perturbation method breaks down for
steady-state wave groups when the resonance conditions are satisfied
(Madsen and Fuhrman, 2012). Unlike the traditional perturbation
method, the HAM does not depend on small physical parameters
and instead provides freedom in the choices of auxiliary linear oper-
ator and initial guess. Convergent series solutions can therefore be
obtained in the HAM framework for steady-state resonant wave
groups.

2. Choice of auxiliary linear operators
Consider an interfacial wave system with L nearly resonant

components (k0,1, k0,2, . . ., k0,L) and two primary ones (k1, k2). The
resonance criteria are

ilk1 + jlk2 = k0,l, ilω1 + jlω2 = ω0,l + dω0,l, l = 1, 2, . . . ,L, (39)

where

ωi = ω(ki) =
¿
ÁÁÀ gki(1 − Δ) tanh(kih1) tanh(kih2)

tanh(kih1) + Δ tanh(kih2)
(40)

is the linear angular frequency with the associated wave number
ki = |ki|. Here, dω0, l is a small real number that represents the angular
frequency mismatch of the lth resonant component.

For multiple resonances such as given by (39), the following
auxiliary linear operators can be used to eliminate the small divisor
caused by each nearly resonant component:

L1[φ1,φ2] = ω2
1
∂2φ2

∂ξ2
1

+ μω1ω2
∂2φ2

∂ξ1∂ξ2

+ω2
2
∂2φ2

∂ξ2
2

+ g(1 − Δ)∂φ2

∂z

−Δ(ω2
1
∂2φ1

∂ξ2
1

+ μω1ω2
∂2φ1

∂ξ1∂ξ2
+ ω2

2
∂2φ1

∂ξ2
2
), (41)

L2[φ1,φ2] = g(1 − Δ)(
∂φ2

∂z
− ∂φ1

∂z
), (42)

where

μ(i, j) =
⎧⎪⎪⎨⎪⎪⎩

ω2(ki,j)−(i2ω2
1+j2ω2

2)
ijω1ω2

, i = il, j = jl
2, else

(43)

is a piecewise parameter depending on i and j in φi [(23) and (24)]
and ki ,j = |ik1 + jk2|. This piecewise parameter is the key that elim-
inates the small divisors caused by all nearly resonant components
and makes the HAM work. The auxiliary linear operators [(41) and
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(42)] are chosen based on the linear operators in boundary condi-
tions [(15) and (16)]. The expressions of Sm ,i and Sm,i can then be
defined as

Sm,1 = ω2
1β

m,0
2,0,2 + μω1ω2βm,0

1,1,2 + ω2
2β

m,0
0,2,2 + g(1 − Δ)γm,0

0,0,2

−Δ(ω2
1β

m,0
2,0,1 + μω1ω2βm,0

1,1,1 + ω2
2β

m,0
0,2,1) + Sm,1, (44)

Sm,1 =
m−1

∑
n=1
[ω2

1β
m−n,n
2,0,2 + μω1ω2βm−n,n

1,1,2

+ω2
2β

m−n,n
0,2,2 + g(1 − Δ)γm−n,n

0,0,2

−Δ(ω2
1β

m−n,n
2,0,1 + μω1ω2βm−n,n

1,1,1 + ω2
2β

m−n,n
0,2,1 )], (45)

Sm,2 =
m−1

∑
n=1
[g(1 − Δ)(γm−n,n

0,0,2 − γ
m−n,n
0,0,1 )], (46)

Sm,2 = g(1 − Δ)(γm,0
0,0,2 − γ

m,0
0,0,1) + Sm,2. (47)

The detailed expressions of βn,m
i,j,k and γn,m

i,j,k are shown in Appendix B.
Define the general form of φm ,1 and φm ,2 as

φm,1 = ∑
i,j
Cφ1 ,m
i,j ψ1

i,j, φm,2 = ∑
i,j
Cφ2 ,m
i,j ψ2

i,j. (48)

Then, the mth-order deformation equation (37) can be simplified as

L1

⎡⎢⎢⎢⎢⎣
∑
i,j
Cφ1 ,m
i,j ψ1

i,j,∑
i,j
Cφ2 ,m
i,j ψ2

i,j

⎤⎥⎥⎥⎥⎦
= ∑

i,j
R1,m
i,j sin(iξ1 + jξ2), (49)

L2

⎡⎢⎢⎢⎢⎣
∑
i,j
Cφ1 ,m
i,j ψ1

i,j,∑
i,j
Cφ2 ,m
i,j ψ2

i,j

⎤⎥⎥⎥⎥⎦
= ∑

i,j
R2,m
i,j sin(iξ1 + jξ2), (50)

where Cφ1 ,m
i,j and Cφ2 ,m

i,j are the constants to be determined for given
R1,m
i,j and R2,m

i,j . Equating the terms of both sides of Eqs. (49) and (50),
we obtain the following two linear algebraic equations:

Δ(i2ω2
1 + μijω1ω2 + j2ω2

2) cosh(ki,jh1)Cφ1 ,m
i,j

+ [g(1 − Δ)ki,j sinh(ki,jh2)
−(i2ω2

1 + μijω1ω2 + j2ω2
2) cosh(ki,jh2)]Cφ2 ,m

i,j

= R1,m
i,j , (51)

g(1 − Δ)ki,j[sinh(ki,jh1)Cφ1 ,m
i,j + sinh(ki,jh2)Cφ2 ,m

i,j ] = R
2,m
i,j . (52)

The solutions for Cφ1 ,m
i,j and Cφ2 ,m

i,j are given by

Cφ1 ,m
i,j =

R2,m
i,j

g(1 − Δ)ki,j sinh(ki,jh1)
− sinh(ki,jh2)

sinh(ki,jh1)
Cφ2 ,m
i,j , (53)

Cφ2 ,m
i,j = Ai,j

λi,j
(R1,m

i,j − Bi,jR2,m
i,j ), (54)

respectively, where

Ai,j =
tanh(ki,jh1)/ cosh(ki,jh2)

tanh(ki,jh1) + Δ tanh(ki,jh2)
, (55)

Bi,j =
Δ(i2ω2

1 + μijω1ω2 + j2ω2
2)

g(1 − Δ)ki,j tanh(ki,jh1)
, (56)

λi,j = ω2(ki,j) − (i2ω2
1 + μijω1ω2 + j2ω2

2). (57)

For a non-resonant component cos(iξ1 + jξ2), μ(i, j) = 2 and
λi,j = ω2(ki,j) − (iω1 + jω2)2 is a non-small real number. Cφ2 ,m

i,j can
be obtained directly from (54), and Cφ1 ,m

i,j is then computed from
(53). For a nearly resonant component cos(ilξ1 + jlξ2), the value
of μ(il, jl) is determined so that it satisfies λil ,jl = ω2(kil ,jl) − (i2l ω2

1

+ μiljlω1ω2 + j2l ω
2
2) = 0. Small divisors caused by nearly resonant

components are changed into singularities associated with exact res-
onance. Since λil ,jl = 0 for a nearly resonant component, then Cφ2 ,m

il ,jl
cannot be obtained from (54) directly. To remove the singularity
associated with the resonance, we enforce the right-hand side of (54)
equal to zero,

R1,m
il ,jl −

Δ tanh(kil ,jlh2)
tanh(kil ,jlh1) + Δ tanh(kil ,jlh2)

R2,m
il ,jl = 0, (58)

from which the value of Cφ2 ,m−1
il ,jl is determined. Similarly, Cφ2 ,m

il ,jl is
determined from the right-hand side of (54) via

R1,m+1
il ,jl − Δ tanh(kil ,jlh2)

tanh(kil ,jlh1) + Δ tanh(kil ,jlh2)
R2,m+1
il ,jl = 0. (59)

It should be noted that for the two primary components cos(ξ1) and
cos(ξ2), λ1,0 = λ0,1 = 0. Therefore, Cφ2 ,m

1,0 and Cφ2 ,m
0,1 are determined in

a similar way as if the two primary components are resonant ones.
Once the value of Cφ2 ,m

i,j is obtained, we can compute Cφ1 ,m
i,j directly

from (53).

3. Choice of initial velocity potentials
Based on the linearized solutions of Eqs. (15)–(17), we choose

the following initial guesses:

φ0,1 = −
sinh(k1h2)
sinh(k1h1)

Cφ2 ,0
1,0 ψ

1
1,0 −

sinh(k2h2)
sinh(k2h1)

Cφ2 ,0
0,1 ψ

1
0,1

−
L

∑
i=1

sinh(kil ,jlh2)
sinh(kil ,jlh1)

Cφ2 ,0
il ,jl ψ

1
il ,jl , (60)

φ0,2 = Cφ2 ,0
1,0 ψ

2
1,0 + Cφ2 ,0

0,1 ψ
2
0,1 +

L

∑
l=1

Cφ2 ,0
il ,jl ψ

2
il ,jl (61)

for velocity potentials and η0 = 0 for the interfacial wave elevation.
Here, the relationship between coefficients of ψ1

i,j and ψ2
i,j is derived

directly from (53). When m = 1, Eq. (58) reduces to nonlinear alge-
braic equations from which multiple solutions can be obtained for
Cφ2 ,0
i,j . When m > 1, Eq. (58) reduces to linear algebraic equations

for Cφ2 ,m−1
i,j . For weakly nonlinear waves, one resonant component

in the initial guesses (60) and (61) (L = 1) is considered in order to
obtain convergent steady-state solutions. As the nonlinearity (wave
steepness) increases, the wave energy increases and is more dis-
persed. Other components may join the resonance, and so the num-
ber of resonant components (L) in the initial guess increases, too. A
detailed example is given in Sec. III C.
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In the framework of the HAM, the proper auxiliary linear
operator and initial guess are chosen to remove the small divisors
associated with near resonance. Convergent series solutions could
then be obtained successfully by symbolic arithmetic software such
as Mathematica. Compared with the solution procedure of multi-
ple steady-state resonances for surface waves (Liu et al., 2018; Liu
and Xie, 2019), the solution procedure for interfacial waves is more
complicated. One more unknown velocity potential is considered
in the kinematic and dynamic interface conditions. Besides, the
velocity potentials in the upper and lower fluid layers are coupled,
so they have to be solved simultaneously. The CUP time required
for convergent series solutions of steady-state resonant interfacial
waves increases dramatically when either the order of approxima-
tion or the number of near-resonant components in the initial guess
increases. To accelerate the convergence rate of series solutions pro-
vided by the HAM, we combine the HAM-based analytical approach
and Galerkin method-based numerical approach. Once convergent
series solutions of steady-state resonant interfacial waves have been
found by HAM, the Galerkin method is used to obtain accurate
steady-state solutions as the nonlinearity or density ratio changes.

C. Approach based on Galerkin’s method
Based on the work of Okamura (2010) and Liu and Xie (2019),

we express the interfacial wave elevation η and velocity potentials
φi as

η(ξ1, ξ2) =
N

∑
i=1

N

∑
j=−N

Cη
i,j cos(iξ1 + jξ2) +

N

∑
j=0

Cη
0,j cos( jξ2), (62)

φ1(ξ1, ξ2, z) =
N

∑
i=1

N

∑
j=−N

Cφ1
i,j ψ

1
i,j(ξ1, ξ2, z)

+
N

∑
j=1

Cφ1
0,jψ

1
0,j(ξ1, ξ2, z), (63)

φ2(ξ1, ξ2, z) =
N

∑
i=1

N

∑
j=−N

Cφ2
i,j ψ

2
i,j(ξ1, ξ2, z)

+
N

∑
j=1

Cφ2
0,jψ

2
0,j(ξ1, ξ2, z) (64)

with 6N(N + 1) + 1 unknown coefficients (Cη
i,j, C

φ1
i,j , and Cφ2

i,j ) to be
determined.

After substituting (63) and (64) into (17), the discrete interface
profile,

z = η(ξ1, ξ2) = η(
2π(i − 1)

M
,

2π(j − 1)
M

), i, j = 1, 2, . . . ,M, (65)

can be evaluated numerically by Newton’s method for M2 discrete
points. Then, substituting (65) into (15) and (16), we obtain

Pr,s = ∫
2π

0
∫

2π

0
N1[φ1,φ2] sin(rξ1 + sξ2)dξ1dξ2 = 0,

at z = η(ξ1, ξ2),
(66)

Qr,s = ∫
2π

0
∫

2π

0
N2[φ1,φ2] sin(rξ1 + sξ2)dξ1dξ2 = 0,

at z = η(ξ1, ξ2),
(67)

which are calculated using M-point Fourier transforms. For
M > 2N + 1, 4N(N + 1) independent equations can be obtained
from (66) and (67) for 1 ≤ r ≤ N, −N ≤ s ≤ N, and 1 ≤ s ≤ N with
r = 0. The number of unknown coefficients Cφ1

i,j and Cφ2
i,j in the veloc-

ity potentials φ1 and φ2, 4N(N + 1) equals the number of equations
in (66) and (67). Hence, the values of Cφ1

i,j and Cφ2
i,j can be computed

by Newton’s method. Finally, we substitute (63) and (64) into (17)
and obtain

Rr,s = ∫
2π

0
∫

2π

0
N3[φ1,φ2,η] cos(rξ1 + sξ2)dξ1dξ2 = 0,

at z = η(ξ1, ξ2),
(68)

which is evaluated by means of an M-point Fourier transform. For
M > 2N + 1, 2N(N + 1) + 1 independent equations from (68)
are obtained for 1 ≤ r ≤ N, −N ≤ s ≤ N, and 0 ≤ s ≤ N with
r = 0. The number of unknown coefficients Cη

i,j in the interfa-
cial wave elevation η, 2N(N + 1), equals the number of equations
in (68), and so Cη

i,j is also determined using Newton’s method.
When applying Galerkin’s method, the initial solution is provided by
the HAM, and the iterations terminated once the maximum abso-
lute difference between the unknown coefficients before and after
an iteration reduces below 10−9. Appendix C lists the full details
of the formulas used to evaluate the coefficients in the Jacobian
matrices.

We define the dimensionless angular frequency ϵ = σ1/ω1
= σ2/ω2 and the wave steepness

Hs = k2
max[η(ξ1, ξ2)] −min[η(ξ1, ξ2)]

2
, ξ1, ξ2 ∈ [0, 2π]. (69)

Here, the wave number of the second primary component k2 is
used because its value is fixed in different cases. Table I lists the

TABLE I. Dimensionless amplitude of the dominant component ∣Cη4,−3∣k4,−3 and wave steepness Hs in the form

(∣Cη4,−3∣k4,−3,Hs) of one solution for various values of N and M when Δ = 0.996, h1/λ2 = 0.5, h2/λ2 = 2, α = π/36, k2/k1

= 0.895 815, and ϵ = 1.014. α is the angle between the wave vectors of the two primary components, and λ2 = 2π/k2. “⋯”
means divergent solutions.

N/M 69 84 99

25 (0.114 08, 0.265 75) (0.114 08, 0.265 76) (0.114 08, 0.265 76)
30 (0.112 20, 0.265 91) (0.113 66, 0.265 43) (0.113 66, 0.265 43)
35 . . . (0.113 76, 0.265 35) (0.113 75, 0.265 36)
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dimensionless amplitude of the dominant component, ∣Cη
4,−3∣k4,−3

(only in this case), and the wave steepness, Hs, for different values of
N and M when ϵ = 1.014. It can be seen that the values of ∣Cη

4,−3∣k4,−3

and Hs remain unchanged for M ≥ 84. The values of ∣Cη
4,−3∣k4,−3 and

Hs converge as N increases from 25 to 35. Convergent solutions up
to four significant figures are obtained for this case where N = 35
and M = 99. In the other cases considered, convergence is up to four
significant figures.

III. RESULTS AND ANALYSIS
A. Linear resonance analysis

We first examine linear resonance in a duct. The geometric con-
figuration and physical properties of the fluid layers are based on the
following parameters for northeast of the South China Sea at (21○N,
118.5○E) (Fan et al., 2013):

Δ = 0.996,
h1

λ2
= 0.5,

h2

λ2
= 2, α = π

36
, (70)

where α is the angle between the wave vectors of the two primary
components k1 and k2, λ2 = 2π/k2 = 1 km is the wavelength of
the second primary component (close to real internal waves in the
ocean), h1 is the depth of the upper fluid layer, and h2 is the depth of
the lower layer. We define the relative angular frequency mismatch
as

ν(ml,nl) =
∣dω0,l∣
ω1

. (71)

Figure 2 shows the resonance curves of the second primary
component k2 for the given wave vector k1 of the first primary com-
ponent. Here, the resonance condition (39) is satisfied for any possi-
ble combination of the two primary components. It can be seen that

FIG. 2. The curves represent the location of the wave vector k2 (the second pri-
mary component) satisfying the resonance condition (39), once the wave vector k1
(the first primary component) is given in the case of (70). The resonance curves
remain quite close to each other, which suggests that other components such as
2k1 − k2 and −k1 + 2k2 may appear in the steady-state wave field while the
second primary component moves along the resonance curves.

FIG. 3. Relative angular frequency mismatch log10 ν(m, n) vs wave number ratio
k2/k1 in the case of (70).

the resonance curves stay close to each other for any possible k2. The
other components such as 2k1 − k2 and −k1 + 2k2 may appear in the
steady-state wave field due to resonant interactions.

Taking several possible nearly resonant components as an
example, Fig. 3 displays the dependence of relative angular fre-
quency mismatch ν(ml, nl) on the wave number ratio k2/k1. It can
be seen that resonance occurs when k2/k1 is in the range (0.84,
0.91). Here, k2/k1 = 0.895 815 is chosen so that the component
(2, −1) corresponds to an exactly resonant component. Table II lists
the six resonant components with the smallest relative angular fre-
quency mismatches log10 ν(ml, nl). As the nonlinearity increases,
these resonant components with small relative angular frequency
mismatches may serve as possible candidates for inclusion in the
initial guesses (60) and (61).

B. Weakly nonlinear waves with single exactly
resonant quartet

Next, we consider weakly nonlinear interfacial wave systems
for the case ϵ = 1.0002 together with the parameters in (70). We
consider the exactly resonant component (2, −1) and two pri-
mary ones in the initial guesses (60) and (61). We define L = 1 in
(39) and modify the auxiliary linear operator (41) accordingly. For
m = 1, the nonlinear algebraic equations (58) governing Cφ2 ,0

1,0 , Cφ2 ,0
0,1

and Cφ2 ,0
2,−1 have three groups of solutions, listed in Table V in

Appendix D, which we call S1, S2, and S3, respectively. The three

TABLE II. Six near-resonant components with the smallest relative angular frequency
mismatches log10 ν(ml , nl ) in the case of (70) and k2/k1 = 0.895 815 for ∣m∣ ≤ 20 and
∣n∣ ≤ 20.

ml nl log10 ν(ml, nl) ml nl log10 ν(ml, nl)

3 −2 −3.16 5 −4 −2.27
−1 2 −2.90 −2 3 −2.22
4 −3 −2.61 6 −5 −2.01
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TABLE III. Wave energy distributions and wave steepness Hs of weakly nonlinear
steady-state resonant interfacial waves in the case of (70) with ϵ = 1.0002.

Group
(Cη1,0)2

Π (%) (Cη0,1)2

Π (%) (Cη2,−1)2

Π (%) (Cη3,−2)2

Π (%) Hs

S1 40.80 50.07 8.813 0.3176 0.0313
S2 41.25 18.52 39.50 0.6580 0.0361
S3 9.800 11.94 78.19 0.0383 0.0351

groups of solutions imply that three balanced states of wave energy
exist for the weakly nonlinear cases considered here. It should be
emphasized that the number of weakly nonlinear solutions of inter-
facial waves with a steady-state quartet depends on the physical
parameter considered in (70). Further calculations show that the
weakly nonlinear solutions of interfacial waves form a continuum
in the parameter space. Therefore, the number of weakly nonlin-
ear solutions changes continuously from 3 to 0 when the physical
parameters in (70) change. A similar phenomenon has also been
found for weakly nonlinear surface waves by Liu and Liao (2014).

The interfacial wave energy of the whole wave system may be
defined approximately as

Π =
+∞
∑

m=−∞

+∞
∑

n=−∞
(Cη

m,n)2. (72)

Table III summarizes the energy distributions of the three con-
vergent solutions. For weakly nonlinear waves, the total energy Π
is mainly contained by the primary components and the exactly
resonant component.

Next, we consider the influence of density ratio on weakly non-
linear resonant waves. For (70) and ϵ = 1.0002, we vary the density
ratio Δ from 0 to 1. At the same time, the wave number ratio k2/k1

changes with Δ so that the component (2, −1) corresponds to an
exactly resonant one. Figure 4 shows the wave amplitude ∣Cη

i,jki,j∣ of
three solutions as a function of Δ. It is found that as Δ increases,
the amplitude of each component increases continuously, which
means that the amplitude of each interfacial wave component tends
to increase with density ratio.

We define the average velocity along the interfacial wave profile
separating the upper and lower layers as

Ui =
∫ 2π

0 ∫
2π

0

√
u2
i + v2

i + w2
i ∣z=ηdξ1dξ2

4π2Hs
√
g/k2

, i = 1, 2, (73)

where (iui, jvi, kwi) = ∇ϕi. Figure 5 shows the dependence on Δ
of the wave steepness Hs and average velocity U i of three solutions.
For all three solutions, the wave steepness Hs increases, and aver-
age velocity U i decreases with Δ. For interfacial waves with an upper
layer of larger density, the wave steepness is higher and the aver-
age velocity is smaller than that of corresponding interfacial waves
with an upper layer of lower density. Existence of an upper layer
boosts wave steepness while reducing the average velocity in weakly
nonlinear interfacial wave systems.

C. Multiple nearly resonant waves with increased
nonlinearity

For wave components traveling in the same direction, the wave
steepness increases with the dimensionless angular frequency ϵ.
Hence, in this section, the dimensionless angular frequency ϵ is
increased to consider steady-state interfacial waves with multiple
near resonances. In the HAM-based analytical approach, additional
resonant components (see Table II) are considered in the initial
guesses (60) and (61) when ϵ increases from 1.0002 to 1.008. The

FIG. 4. Wave amplitude ∣Cη
i,jki,j∣ vs

Δ with the parameters in (70) when
ϵ = 1.0002. Wave number ratio k2/k1
changes with Δ so that the component
(2, −1) corresponds to the exact res-
onance. Solid line, ∣Cη

1,0k1,0∣; dashed-
dotted line, ∣Cη

0,1k0,1∣; and dashed line,
∣Cη

2,−1k2,−1∣.
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FIG. 5. Wave steepness Hs and aver-
age velocity Ui vs Δ with the param-
eters in (70) when ϵ = 1.0002. Wave
number ratio k2/k1 changes with Δ so
that the component (2, −1) corresponds
to the exact resonance. Solid line, S1;
dashed-dotted line, S2; and dashed line,
S3.

TABLE IV. Energy distributions of steady-state multiple nearly resonant interfacial waves for different values of dimensionless angular frequency ϵ in group S2 in the case of
(70). “⋯” means the wave component is small enough to be ignored.

Dimensionless angular frequency ϵ

Energy distributions 1.0002 1.002 1.004 1.006 1.008 1.01 1.012 1.014 1.0147

(Cη
1,0)

2/Π (%) 41.25 19.09 2.640 . . . 1.661 3.598 4.200 3.356 2.883
(Cη

0,1)
2/Π (%) 18.52 1.615 3.432 7.335 6.908 4.295 1.364 . . . 0.120

(Cη
2,−1)

2/Π (%) 39.50 42.39 32.81 18.34 7.040 1.217 . . . 0.772 0.815
(Cη

3,−2)
2/Π (%) 0.658 19.11 34.07 40.88 35.89 24.51 13.92 7.998 8.262

(Cη
−1,2)

2/Π (%) . . . 15.00 18.12 9.701 3.668 0.378 0.578 4.188 6.711
(Cη

4,−3)
2/Π (%) . . . 2.579 6.953 17.53 29.59 35.47 34.38 31.48 31.24

(Cη
5,−4)

2/Π (%) . . . 0.120 . . . 0.822 5.541 13.84 20.75 23.06 19.66
(Cη
−2,3)

2/Π (%) . . . . . . 1.364 3.458 7.255 13.48 19.64 22.65 24.80
(Cη

6,−5)
2/Π (%) . . . . . . 0.345 0.668 . . . 0.630 2.732 3.389 1.591

(Cη
7,−6)

2/Π (%) . . . . . . 0.201 0.934 1.332 0.742 0.203 0.190 0.571
(Cη

8,−7)
2/Π (%) . . . . . . . . . 0.249 0.811 1.129 0.967 0.772 0.475

(Cη
9,−8)

2/Π (%) . . . . . . . . . . . . 0.119 0.321 0.295 . . . 0.086
(Cη
−3,4)

2/Π (%) . . . . . . . . . . . . 0.092 0.322 0.815 1.362 1.408
(Cη

10,−9)
2/Π (%) . . . . . . . . . . . . . . . . . . . . . 0.223 0.758

(Cη
11,−10)

2/Π (%) . . . . . . . . . . . . . . . . . . 0.072 0.362 0.503
(Cη

12,−11)
2/Π (%) . . . . . . . . . . . . . . . . . . . . . 0.117 0.057

detailed components along with the associated coefficients in the
initial guess φ0,2 (61) are listed in Table V in Appendix D. Once
a convergent series solution has been obtained by the HAM for
each case, the Galerkin iterations then continue based on the series
solution to obtain more accurate results. For ϵ > 1.008, we use the
Galerkin method to obtain accurate steady-state solutions. Solutions
with smaller ϵ are chosen as the initial solutions of the iteration for
larger ϵ.

We define σ(m, n) = mσ1 + nσ2 as the actual angular frequency
of component (m, n). Table IV lists the energy distributions of
steady-state resonant interfacial waves for ϵ increased up to 1.0147.
As ϵ increases, the summed energy proportion containing two pri-
mary components occupies less than 10% of the total energy when
ϵ ≥ 1.004. The energy proportions of the lower frequency compo-
nents [including σ(2, −1), σ(−1, 2) and σ(3, −2)] appear to oscil-
late with ϵ, whereas the energy proportions of the lowest frequency
components σ(−2, 3), σ(−3, 4) and almost all the remaining high

FIG. 6. Discrete dimensionless amplitude spectra ∣Cη
i,jki,j∣ for steady-state multiple

nearly resonant interfacial waves for group S2 in the case of (70).
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FIG. 7. Spatial profiles of interfacial wave elevation ζ(m) at t = 0 s for group S2 in
the case of (70).

frequency components increase monotonically. This indicates that
energy is transferred gradually from primary and low frequency
components to the lowest frequency components and high fre-
quency components, as the nonlinearity increases. Moreover, the
dominant frequency shifts higher as ϵ increases, a finding that con-
curs with other surface gravity wave situations such as nonlinear
sloshing in a rectangular tank where the angular frequency of non-
linear sloshing waves in shallow water increases with nonlinear-
ity [see, e.g., Tadjbakhsh and Keller (1960), Vanden-Broeck and
Schwartz (1981), and Tsai and Jeng (1994)].

Figure 6 presents the discrete frequency spectra of dimen-
sionless amplitude ∣Cη

i,jki,j∣, evaluated for six dimensionless angu-
lar frequencies ϵ in the range (1.0002, 1.0147). As ϵ increases, the
maximum amplitudes ∣Cη

i,jki,j∣ increase, and many previously triv-
ial components evolve into the non-trivial ones that must not be
neglected in the wave system. This means that increasing numbers of

FIG. 8. Discrete spectra of dimensionless amplitude
∣Cη

i,jki,j∣ for different Δ for group S2 when h1/λ2 = 0.5, h2/λ2

= 2, α = π/36, and ϵ = 1.012. Wave number ratio k2/k1
changes with Δ so that the component (2, −1) corresponds
to the exact resonant one.
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components participate in the resonance. The frequency band
σ/σ1 broadens as ϵ increases. Moreover, when the nonlinear-
ity is weak (ϵ = 1.0002), a single peak exists in the spectrum.
However, when the nonlinearity is stronger, further local peaks
appear (growing into sidebands at 4/5 and 3/2 of the primary fre-
quency σ1). The wave steepness Hs of group 2 increases to 0.28
for ϵ = 1.0147.

Figure 7 plots the interface elevation ζ profile over a distance
of 20 km around the crests for three values of dimensionless angu-
lar frequency ϵ. The interface profiles exhibit alternating bursts of
high frequency, high-amplitude narrow-banded waves followed by

lower frequency, lower amplitude waves. Multiple waves of similar
height exist in each high-amplitude burst. There is a general growth
in wave amplitude with increasing ϵ. For ϵ = 1.0147, the maximum
wave height of the calculated interfacial waves reaches 89 m, and
the wavelength of the wave group reaches near 8100 m. It is worth
mentioning that the maximum wave height and wavelength of the
steady-state resonant interface waves match those of internal soli-
tons in the northeastern South China Sea (Ramp et al., 2004). In
practice, this would have implications for the movement of stresses
on a nuclear-powered submarine traveling at about 500 m below sea
level.

FIG. 9. Interface elevation ζ(m) profiles
over a distance of 20 km about the main
crests at t = 0 s for different Δ for
group S2 when h1/λ2 = 0.5, h2/λ2 = 2,
α = π/36, and ϵ = 1.012. Wave number
ratio k2/k1 changes with Δ so that the
component (2, −1) corresponds to the
exact resonance.
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To summarize, the foregoing has described solutions of steady-
state periodic interfacial gravity waves with multiple resonances
driven by nonlinearity [as exhibited by the interfacial wave energy
spectra (Fig. 6)].

D. Resonant waves with different density ratios
We now examine the influence of density ratio on steady-state

near-resonant internal waves. Noting that the fluid densities above
and below the interface of a Boussinesq wave are almost identi-
cal (Holyer, 1979), we approximate Boussinesq waves by setting
Δ = 0.996 and air–water interfacial waves by setting Δ = 0.001. To
examine the effect of changing the densities, two other density con-
figurations Δ = 0.5 and Δ = 0.1 are studied here, keeping all other
parameters the same.

Figure 8 shows the discrete spectra of dimensionless ampli-
tude ∣Cη

i,jki,j∣ obtained for interfacial waves with four different den-
sity ratios for group S2 when h1/λ2 = 0.5, h2/λ2 = 2, α = π/36, and
ϵ = 1.012. Here, k2/k1 is determined so that the component (2,
−1) corresponds to the exact resonance for different values of Δ. It
is found that the spectra of steady-state resonant interfacial waves
change slightly with Δ. The amplitude of high frequency compo-
nents near σ/σ1 ≈ 2.3 decreases, while the amplitude of components
near the primary ones increases. Compared with the Boussinesq
wave system, a small part of the total energy is transferred to higher
frequency components in the system of air–water interfacial waves.
Although changing slightly, the upper layer enlarges the amplitude
of components near the primary ones, while lowering the amplitude
of higher frequency components.

Figure 9 presents the spatial profiles of the interface elevation
ζ for interfacial waves of four different density ratios. Although
the shapes of the interface profiles are similar, the maximum
wave height increases with Δ. The wave steepness Hs reaches 0.15
and 0.23 for Δ = 0.001 and 0.996, respectively. The upper layer
enlarges the wave steepness of interfacial waves as the ampli-
tude of components near the primary ones increases with density
ratio.

Figure 10 displays the vertical profiles of the horizontal x− com-
ponent of velocity for four density ratios. At the density interface,
large velocity gradients occur in all four cases. The horizontal veloc-
ity of air–water interfacial waves (Δ = 0.001) near the interface is far
larger than that of the corresponding Boussinesq waves (Δ = 0.996).
In other words, the upper layer reduces the horizontal velocity of the
wave field. Although the inviscid model used in this paper inevitably
causes a discontinuity in the horizontal velocity component, this
would be smeared out in practice, and the foregoing interpretation
should nevertheless be useful.

For progressive interfacial waves of finite amplitude, Hunt
(1961) found that the principal effect of the upper fluid is to reduce
the velocity of propagation and the amplitude of the higher harmon-
ics in the wave profile. Here, we might extend the conclusion of Hunt
(1961) from progressive waves with a single primary component
to more complicated wave groups with two primary components
that contain multiple resonances. More calculations have been con-
ducted for steady-state resonant interfacial waves in groups S1 and
S3, and similar conclusions about the effects of density ratio and
nonlinearity could be obtained.

FIG. 10. Vertical profiles of the x− horizontal component of velocity at crests
at t = 0 s for different Δ corresponding to solution S2 with h1/λ2 = 0.5, h2/λ2
= 2, α = π/36, and ϵ = 1.012. Wave number ratio k2/k1 changes with Δ so
that the component (2, −1) corresponds to the exact resonance. Solid line, Δ
= 0.001; dashed-dotted line, Δ = 0.1; dashed line, Δ = 0.5; and dotted line,
Δ = 0.996.

IV. CONCLUDING REMARKS
Using analytical HAM and a numerical Galerkin’s method,

we have shown that steady-state periodic interfacial gravity wave
solutions can exist under conditions of multiple near resonances
for a two-layer fluid filling a frictionless duct with fixed upper
and lower boundaries. To achieve this, the fully nonlinear gov-
erning equations are solved using the HAM to derive steady-
state resonant solutions to a certain level of accuracy and pro-
vide initial solutions that are then iterated using Galerkin’s method
to obtain convergent solutions of sufficient accuracy, accord-
ing to multiple near resonance criteria. By inserting a piece-
wise parameter in the auxiliary linear operators and solving the
high-order deformation equations simultaneously, the HAM was
able to avoid arithmetic problems arising from small denomi-
nators and singularities (that afflict the traditional perturbation
method).

The physical parameters were chosen so that they approximate
actual ocean conditions in the northeastern part of the South China
Sea. In the spirit of previous studies by Liao (2011b), Liao et al.
(2016), Liu et al. (2018), and Yang et al. (2018), we believe that inter-
facial waves with time-independent spectra in the ocean may exhibit
steady-state resonance in an analogous manner to surface gravity
waves and acoustic-gravity waves. It should be noted that steady-
state resonant surface waves (air–water interfacial waves) obtained
by the HAM in previous studies are particular cases of the more gen-
eral steady-state resonant interfacial waves considered in the present
paper.

For weakly nonlinear interfacial waves with a single exactly
resonant quartet, three convergent solutions with different energy

Phys. Fluids 32, 087104 (2020); doi: 10.1063/5.0015581 32, 087104-13

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

distributions are obtained for a system with two primary com-
ponents and an exactly resonant component. For the three solu-
tions considered herein, the energy related to these components
dominates the total energy of the system. Analogous phenom-
ena have previously been found in steady-state surface gravity
waves with a single resonant quartet by Liao (2011b), Xu et al.
(2012), and Liao et al. (2016). In addition, for all three solu-
tions, the amplitude of each interfacial wave component tends
to increase with density ratio, and the upper layer raises the
wave steepness, while reducing the average velocity. Here, the
existence of steady-state periodic interfacial gravity waves with a
single exactly resonant quartet has been confirmed for the first
time.

As nonlinearity increases, the interfacial wave energy spec-
trum broadens from a small primary peak to the one with a larger
primary peak and sideband peaks at frequencies that are 4/5 and
3/2 the primary wave frequency σ1. The dominant frequency also
exhibits a monotonic, though small, increase with nonlinearity.
The spectra indicate that previously trivial components can become
non-trivial as nonlinearity increases and so cannot be neglected in
the wave system as further components participate in resonance.
At all levels of nonlinearity considered, the steady-state interfa-
cial wave profile comprises two types of waves that appear in a
repeating consecutive pattern: high (nearly constant) amplitude,
high frequency waves followed by low (again nearly constant) ampli-
tude, low frequency waves. Our results prove the theoretical exis-
tence of steady-state periodic interfacial gravity waves with multiple
resonances.

We also confirm the existence of steady-state resonant inter-
facial waves of finite amplitude at other density ratios. It has
been found that, though changing slightly, the upper layer might
reduce the amplitude of high frequency components, while increas-
ing the amplitude of components near the primary one. In addi-
tion, the upper layer increases the wave steepness of interfacial
waves and decreases the horizontal velocity of the wave field.
Hunt (1961) finding that the presence of an upper fluid layer
reduces the propagation velocity and the amplitude of higher
harmonics in the wave profile, may be extended from progres-
sive waves with a single primary component to more complicated
wave groups with two primary components that contain multiple
resonances.

In this work, the depth of the upper fluid layer is sufficiently
large that we ignored the influence of the free surface on the inter-
face. Interactions between surface and interfacial waves in a shal-
lower upper fluid layer will be considered in the future. Besides, we
considered steady-state resonant interfacial wave groups with dis-
crete wave spectra. Extension from discrete to continuous spectra
will also be considered.
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APPENDIX A: DERIVATION OF INTERFACE
CONDITIONS

The interface elevation ζ is obtained by solving Eq. (9) to give

ζ = 1
g(ρ2 − ρ1)

[ρ1(
∂ϕ1

∂t
+

1
2
∣∇ϕ1∣2)

−ρ2(
∂ϕ2

∂t
+

1
2
∣∇ϕ2∣2)] at z = ζ. (A1)

Carrying out partial differentiation of (A1) with respect to x, y,
and t, and substituting into Eqs. (7) and (8), ζ is then eliminated to
give

ρ2
∂2ϕ2

∂t2 + g(ρ2 − ρ1)
∂ϕ2

∂z
− ρ1

∂2ϕ1

∂t2 + ρ2
∂(∣∇ϕ2∣2)

∂t

− ρ1
∂( 1

2 ∣∇ϕ1∣2)
∂t

+ ρ2∇ϕ2 ⋅ ∇(
1
2
∣∇ϕ2∣2)

− ρ1∇ϕ2 ⋅ ∇(
∂ϕ1

∂t
+

1
2
∣∇ϕ1∣2) = 0 at z = ζ, (A2)

ρ2
∂2ϕ2

∂t2 + g(ρ2 − ρ1)
∂ϕ1

∂z
− ρ1

∂2ϕ1

∂t2 − ρ1
∂(∣∇ϕ1∣2)

∂t

+ρ2
∂( 1

2 ∣∇ϕ2∣2)
∂t

− ρ1∇ϕ1 ⋅ ∇(
1
2
∣∇ϕ1∣2)

+ ρ2∇ϕ1 ⋅ ∇(
∂ϕ2

∂t
+

1
2
∣∇ϕ2∣2) = 0 at z = ζ. (A3)

Subtracting (A3) from (A2), we obtain

g(ρ2 − ρ1)
∂(ϕ2 − ϕ1)

∂z
+

2

∑
i=1
ρi
⎡⎢⎢⎢⎢⎣

∂( 1
2 ∣∇ϕi∣

2)
∂t

+∇ϕi ⋅ ∇(
1
2
∣∇ϕi∣2)] − ρ1∇ϕ2 ⋅ ∇(

∂ϕ1

∂t
+

1
2
∣∇ϕ1∣2)

− ρ2∇ϕ1 ⋅ ∇(
∂ϕ2

∂t
+

1
2
∣∇ϕ2∣2) = 0 at z = ζ. (A4)

Subsequent derivation is then based on the interface condi-
tions (A1), (A2), and (A4). After transformation [(11) and (12)], the
dynamic interface condition (A1) becomes

N3[φ1,φ2,η] = η − 1
g(1 − Δ)[

2

∑
i=1
σi
∂φ2

∂ξi
− f2

−Δ(
2

∑
i=1
σi
∂φ1

∂ξi
− f1)] = 0, (A5)

the kinematic interface condition (A2) becomes

N1[φ1,φ2] =
2

∑
i=1

2

∑
j=1
σiσj

∂2φ2

∂ξi∂ξj
+ g(1 − Δ)∂φ2

∂z

−Δ
2

∑
i=1

2

∑
j=1
σiσj

∂2φ1

∂ξi∂ξj
+ ∇̂φ2 ⋅ ∇̂f2

− 2
2

∑
i=1
σi
∂f2
∂ξi

+ Δ(
2

∑
i=1
σi
∂f1
∂ξi

−h21 − ∇̂φ2 ⋅ ∇̂f1) = 0, (A6)

Phys. Fluids 32, 087104 (2020); doi: 10.1063/5.0015581 32, 087104-14

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

and another kinematic interface condition (A4) becomes

N2[φ1,φ2] = g(1 − Δ)
∂(φ2 − φ1)

∂z

+ ∇̂(φ2 − φ1) ⋅ ∇̂f2 − h12 −
2

∑
i=1
σi
∂f2
∂ξi

−Δ[
2

∑
i=1
σi
∂f1
∂ξi

+ h21 + ∇̂(φ2 − φ1) ⋅ ∇̂f1] = 0.

(A7)

The three interface conditions (A5)–(A7) are all satisfied at the
unknown interface z = η(ξ1, ξ2).

APPENDIX B: EXPRESSIONS OF HIGH-ORDER
DEFORMATION EQUATIONS IN HAM

Substituting the series (30) and (31) into the zeroth-order
deformation equations (27)–(29) with z = η̌, then equating like pow-
ers of q, results in the following three linear equations (which we call
the high-order deformation equations):

Li[φm,1,φm,2] = c0Δφm−1,i + χm(Sm−1,i − Sm,i),
i = 1, 2, m ≥ 1,

(B1)

ηm = c0Δηm−1 + χmηm−1, m ≥ 1, (B2)

where

Δφm,1 = σ
2
1 ϕ̄

2,0,2
m + 2σ1σ2ϕ̄1,1,2

m + σ2
2 ϕ̄

0,2,2
m + g(1 − Δ)ϕ̄0,0,2

z,m

−Δ(σ2
1 ϕ̄

2,0,1
m + 2σ1σ2ϕ̄1,1,1

m + σ2
2 ϕ̄

0,2,1
m )

+Λ2,2
m,1 − 2(σ1Γ2

m,1 + σ2Γ2
m,2)

+Δ(σ1Γ1
m,1 + σ2Γ1

m,2 −Λ2,1
m,2 −Λ

2,1
m,1), (B3)

Δφm,2 = g(1 − Δ)(ϕ̄
0,0,2
z,m − ϕ̄0,0,1

z,m ) − σ1Γ2
m,1

− σ2Γ2
m,2 + Λ2,2

m,1 −Λ
1,2
m,2 −Λ

1,2
m,1

+Δ(Λ1,1
m,1 −Λ

2,1
m,2 −Λ

2,1
m,1 − σ1Γ1

m,1 − σ2Γ1
m,2), (B4)

Δηm = ηm +
1

g(1 − Δ) [Γ
2
m,0 − σ1ϕ̄1,0,2

m − σ2ϕ̄0,1,2
m

+Δ(σ1ϕ̄1,0,1
m + σ2ϕ̄0,1,1

m − Γ1
m,0)], (B5)

where

Γkm,0 =
m

∑
n=0
(k

2
1

2
ϕ̄1,0,k
n ϕ̄1,0,k

m−n + k1 ⋅ k2ϕ̄1,0,k
n ϕ̄0,1,k

m−n

+
k2

2

2
ϕ̄0,1,k
n ϕ̄0,1,k

m−n +
1
2
ϕ̄0,0,k
z,n ϕ̄0,0,k

z,m−n), k = 1, 2, (B6)

Γkm,1 =
m

∑
n=0
[k2

1ϕ̄
1,0,k
n ϕ̄2,0,k

m−n + k1 ⋅ k2

×(ϕ̄1,0,k
n ϕ̄1,1,k

m−n + ϕ̄2,0,k
n ϕ̄0,1,k

m−n)

+k2
2ϕ̄

0,1,k
n ϕ̄1,1,k

m−n + ϕ̄0,0,k
z,n ϕ̄1,0,k

z,m−n], k = 1, 2, (B7)

Γkm,2 =
m

∑
n=0
[k2

1ϕ̄
1,0,k
n ϕ̄1,1,k

m−n + k1 ⋅ k2

×(ϕ̄1,0,k
n ϕ̄0,2,k

m−n + ϕ̄0,1,k
n ϕ̄1,1,k

m−n)

+k2
2ϕ̄

0,1,k
n ϕ̄0,2,k

m−n + ϕ̄0,0,k
z,n ϕ̄0,1,k

z,m−n], k = 1, 2, (B8)

Γkm,3 =
m

∑
n=0
[k2

1ϕ̄
1,0,k
n ϕ̄1,0,k

z,m−n + k1 ⋅ k2

×(ϕ̄1,0,k
n ϕ̄0,1,k

z,m−n + ϕ̄0,1,k
n ϕ̄1,0,k

z,m−n)

+k2
2ϕ̄

0,1,k
n ϕ̄0,1,k

z,m−n + ϕ̄0,0,k
z,n ϕ̄0,0,k

zz,m−n], k = 1, 2, (B9)

Λi,j
m,1 =

m

∑
n=0
[k2

1ϕ̄
1,0,i
n Γjm−n,1 + k1 ⋅ k2

×(ϕ̄1,0,i
n Γjm−n,2 + ϕ̄0,1,i

n Γjm−n,1)

+k2
2ϕ̄

0,1,i
n Γjm−n,2 + ϕ̄0,0,i

z,n Γjm−n,3], i, j = 1, 2, (B10)

Λi,j
m,2 = −σ1

m

∑
n=0
[k2

1ϕ̄
1,0,i
n ϕ̄2,0,j

m−n + k1 ⋅ k2

×(ϕ̄1,0,i
n ϕ̄1,1,j

m−n + ϕ̄0,1,i
n ϕ̄2,0,j

m−n)

+k2
2ϕ̄

0,1,i
n ϕ̄1,1,j

m−n + ϕ̄0,0,i
z,n ϕ̄

1,0,j
z,m−n]

− σ2

m

∑
n=0
[k2

1ϕ̄
1,0,i
n ϕ̄1,1,j

m−n + k2
2ϕ̄

0,1,i
n ϕ̄0,2,j

m−n

+ ϕ̄0,0,i
z,n ϕ̄

0,1,j
z,m−n + k1 ⋅ k2

×(ϕ̄1,0,i
n ϕ̄0,2,j

m−n + ϕ̄0,1,i
n ϕ̄1,1,j

m−n)], i, j = 1, 2, (B11)

μm,n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ηn, m = 1, n ≥ 1
n−1

∑
i=m−1

μm−1,iηn−i, m ≥ 2, n ≥ m,
(B12)

ψn,m
i,j,k =

∂i+j

∂ξi1∂ξ
j
2

( 1
m!

∂mφn,k

∂zm
∣
z=0
), k = 1, 2, (B13)

βn,m
i,j,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψn,0
i,j,k, m = 0

m

∑
s=1

ψn,s
i,j,kμs,m, m ≥ 1,

(B14)

γn,m
i,j,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψn,1
i,j,k, m = 0

m

∑
s=1
(s + 1)ψn,s+1

i,j,k μs,m, m ≥ 1,
(B15)
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δn,m
i,j,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2ψn,2
i,j,k, m = 0

m

∑
s=1
(s + 1)(s + 2)ψn,s+2

i,j,k μs,m, m ≥ 1,
(B16)

ϕ̄i,j,kn =
n

∑
m=0

βn−m,m
i,j,k , ϕ̄i,j,kz,n =

n

∑
m=0

γn−m,m
i,j,k ,

ϕ̄i,j,kzz,n =
n

∑
m=0

δn−m,m
i,j,k .

(B17)

The linear operators are prescribed such that L1 = L1∣z=0 and
L2 = L2∣z=0. The expressions for Li, Sm−1,i, and Sm,i, with i = 1, 2, are
given in Sec. II B 2.

APPENDIX C: DETAILED DERIVATION OF THE
JACOBIAN MATRICES

The Jacobian matrices, including ∂Pr,s/∂Cφ1
i,j , ∂Pr,s/∂Cφ2

i,j ,
∂Qr,s/∂Cφ1

i,j , ∂Qr,s/∂Cφ2
i,j , and ∂Rr,s/∂Cη

i,j, are given by

∂Pr,s
∂Cφ1

i,j
= ∫

2π

0
∫

2π

0
( ∂N1

∂Cφ1
i,j

+
∂N1

∂z
∂η
∂Cφ1

i,j
) sin(rξ1 + sξ2)dξ1dξ2, (C1)

∂Pr,s
∂Cφ2

i,j
= ∫

2π

0
∫

2π

0
( ∂N1

∂Cφ2
i,j

+
∂N1

∂z
∂η
∂Cφ2

i,j
) sin(rξ1 + sξ2)dξ1dξ2, (C2)

∂Qr,s

∂Cφ1
i,j
= ∫

2π

0
∫

2π

0
( ∂N2

∂Cφ1
i,j

+
∂N2

∂z
∂η
∂Cφ1

i,j
) sin(rξ1 + sξ2)dξ1dξ2, (C3)

∂Qr,s

∂Cφ2
i,j
= ∫

2π

0
∫

2π

0
( ∂N2

∂Cφ2
i,j

+
∂N2

∂z
∂η
∂Cφ2

i,j
) sin(rξ1 + sξ2)dξ1dξ2, (C4)

∂Rr,s

∂Cη
i,j
= ∫

2π

0
∫

2π

0

∂N3[φ1,φ2, z]
∂z

cos(iξ1 +jξ2) cos(rξ1 +sξ2)dξ1dξ2,

(C5)

where the unknowns ∂η/∂Cφ1
i,j and ∂η/∂Cφ2

i,j are determined by the
equations

∂N3[φ1,φ2, z]
∂Cφ1

i,j
+
∂N3[φ1,φ2, z]

∂z
∂η
∂Cφ1

i,j
= 0, (C6)

∂N3[φ1,φ2, z]
∂Cφ2

i,j
+
∂N3[φ1,φ2, z]

∂z
∂η
∂Cφ2

i,j
= 0 (C7)

from (17). The expressions for N1, N2, and N3 are as follows:

N1[φ1,φ2] = TF2
2φ2ξ1ξ1 + 2TF2TS2φ2ξ1ξ2 + TS2

2φ2ξ2ξ2

+φ2z[2TF2φ2ξ1z + 2TS2φ2ξ2z + g(1 − Δ) + φ2zφ2zz]
−Δ[TF2TF1φ1ξ1ξ1 + (TS1TF2 + TF1TS2)φ1ξ1ξ2

+TS2TS1φ1ξ2ξ2 + (TF1φ2z + TF2φ1z)φ1ξ1z

+(TS1φ2z + TS2φ1z)φ1ξ2z + φ2zφ1zφ1zz], (C8)

N2[φ1,φ2] = [g(1 − Δ) + φ2zφ2zz]DPz + TF2DTFφ2ξ1ξ1 + (TS2DTF

+TF2DTS)φ2ξ1ξ2 +TS2DTSφ2ξ2ξ2+(DTFφ2z+TF2DPz)φ2ξ1z

+ (DTSφ2z + TS2DPz)φ2ξ2z−Δ[TF1DTFφ1ξ1ξ1 +(TS1DTF

+TF1DTS)φ1ξ1ξ2+TS1DTSφ1ξ2ξ2+(DTFφ1z+TF1DPz)φ1ξ1z

+ (DTSφ1z + TS1DPz)φ1ξ2z + φ1zφ1zzDPz], (C9)

N3[φ1,φ2, z] = z − 1
2g(1 − Δ){(σ1 − TF2)φ2ξ1 + (σ2 − TS2)φ2ξ2

−φ2
2z − Δ[(σ1 − TF1)φ1ξ1 + (σ2 − TS1)φ1ξ2 − φ

2
1z]},
(C10)

where

TFj = k2
1φjξ1 + k1 ⋅ k2φjξ2 − σ1, TSj = k2

2φjξ2 + k1 ⋅ k2φjξ1 − σ2, j = 1, 2,
(C11)

DTF = TF2 − TF1, DTS = TS2 − TS1, DPz = φ2z − φ1z . (C12)

The formulas for ∂Nr/∂Cφ1
i,j , ∂Nr/∂Cφ2

i,j and ∂Nr/∂z, with
r = 1, 2, 3, are obtained by direct derivation.

APPENDIX D: DETAILED RESULTS OF INITIAL GUESS
IN HAM

In Sec. III B, when m = 1, nonlinear algebraic equations (58)
about Cφ2 ,0

1,0 , Cφ2 ,0
0,1 , and Cφ2 ,0

2,−1 have three groups of solutions, as listed
in Table V.

In Sec. III C, the detailed components together with the abso-
lute values of the associated coefficients in the initial guess φ0,2 (61)
for group S2 in the case of (70) are listed in Table VI.

TABLE V. The solutions of the nonlinear algebraic equations (58) in the case of (70)
with ϵ = 1.0002.

Group ∣Cφ2 ,0
1,0 ∣ (m

2/s) ∣Cφ2 ,0
0,1 ∣ (m

2/s) ∣Cφ2 ,0
2,−1∣ (m

2/s)

S1 3.66× 10−6 2.76× 10−5 3.96× 10−7

S2 3.45× 10−6 1.35× 10−5 5.39× 10−7

S3 3.25× 10−6 1.05× 10−5 1.04× 10−6
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TABLE VI. Detailed components together with the absolute values of the associated coefficients in the initial guess φ0,2 (61) for group S2 in the case of (70).

Dimensionless angular frequency ϵ

Components of φ0,2 (m2/s) 1.0002 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008

ψ2
1,0 × 10−6 3.45 7.10 9.47 8.21 7.17 5.45 3.42 1.51 0.12
ψ2

0,1 × 10−5 1.35 2.13 1.83 0.13 1.13 2.26 3.17 3.84 4.29
ψ2

2,−1 × 10−6 0.54 1.36 2.09 2.56 2.87 2.99 2.95 2.84 2.70
ψ2

3,−2 × 10−7 . . . 0.96 1.88 3.29 4.33 5.28 6.06 6.65 7.10
ψ2
−1,2 × 10−4 . . . 0.51 1.13 1.89 2.11 2.17 2.10 1.95 1.77

ψ2
4,−3 × 10−8 . . . . . . . . . 1.91 2.94 4.28 5.80 7.27 8.59
ψ2

5,−4 × 10−9 . . . . . . . . . 0.16 0.36 1.00 2.09 3.41 4.75
ψ2
−2,3 × 10−4 . . . . . . . . . 1.72 2.91 4.11 5.24 6.21 7.02
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