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Abstract  
In this paper, the basic ideas of a new (malytic techniq,te, ntmwly the llomotopy 

Analysis:Method (HAM). are described. Diff'erent from perturl~ttioJt methods, the 

ralidit.r of the t lAM is huh'l)ende, t o, whether or not there exist sin,l/pammwters h~ 

considered notdinear equations. Therefore, it provides tls with a poweJ]'zd alttdytic tool 

Jbr strongly nonlhtear problems. A typical no,lhwar problem is used as an example to 

ver(])' the validity and the great potential of the HAM. 

Key words nonlinear analytic technique, strong nonlinearity, homotopy, 

topology 

I. Introduct ion 

Although the rapid development of digital computers makes it easier and easier to 

numerically solve nonlinear problems, it is still rather difficult to give their analytic 

approximations. Currently, most of our nonlinear analytic techniques are unsatisl:actory. For 

instance, although perturbation techniques are widely applied to an:tlyze nonlinear problems in 

science and engineering, they are however so strongly dependent on small parameters appeared 

in equations under consideration that they are restricted only to weakly nonlinear problems, 

For strongly nonlinear problems which don' t  contain any small para))a~ters, perturbation 

techniques are invalid. So, it seems necessary and worthwhile developing at new kind of 

analytic technique independent of small parameters. 

kiao t~-~'l has made some attempts in this direction. Liao t~. 21 propq~ed a new analytic 

technique in his P h . D .  dissertation, namely the Homotopy Analysis Method (HAM). Based 

on homotopy of topology, the validity of the HAM is independent of whether or not there 

exist small parameters in considered equations. Therefore, the HAM can.overcome the 

foregoing restrictions and limitations of perturbation techniques so that.it provides us with a 

powerful tool to analyze strongly nonlinear problems. Liao t3-61 successfully applied the HAM 

to solve some nonlinear problems while he has been making unremitting efforts to improve it 

step by step. Moreover, Liao tT" ~I and Liao & Chwang l~l applied the basic ideas of the HAM to 

propose the so-called "general boundary element method" (GBEM), which is valid even for 

those strongly nonlinear problems whose governing equations and boundary conditions don't  

contain any linear terms so that it greatly generalizes the traditional BEM. All of these verify 

the validity and great potential of the HAM. 
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In this paper, we use a simple but typical example to simply iatroduce the basic ideas of 
th-" HAM so as to further show its validity and great potential. 

II .  Bas i c  I d e a s  of  t he  H o m o t o p y  A n a l y s i s  M e t h o d  

Consider the following equation 

u ' ( t )  +2tu2(t) = 0, u(0)  = 1 (2.1) 

whose exact solution is 

u(t)  = 1 
1 + t 2 (2 .2)  

Assuming t is small, we can obtain by perturbation techniques the following power series 
+ ~  

l $ ( t )  = 1 -- 12 + t 4 -- 1 6 +  " = ~ 1 ( - -  1 )  kt2k (2.3) 
k f U  

whose convergence radius is however rather small, say, p=  I, so that the above perturbation 
approximation is nearly worthless. 

Now we apply the HAM to solve Eq. (2.1). Firstly, we construct such a continuous 

mapping U(t,p,H):[O, + ~ )  x [0,1] • ~q~---)-,~, governed by 

( i - p )  O U ( t ' P ' H )  = ptf[OU(t,p,H) + 2tU2(t,p,H)] 
at at (2.4) 

t ~> o ,p  E [ o , 1 ] , H  # o 

with boundary condition 

so that 

u(o,p,H) = 1, p 6 [ o , 1 3 , ~  ~ o 

u(t,O,?i) = 1, U ( t , I , H )  = u(t)  _ 1 
l + t  2 

(2.5) 

(2.6) 

where . q ~ = ( -  r162 zo), and -.r = ( -  oo,0) U ( 0 , +  cr Note that we let here "~ be a 

nonzero real number. Clearly, as p increases from 0 to 1, U ( t , p , H )  varies continuously from 

U(t ,O,H)=I  to the exact solution u ( t ) = l / ( ! + t  2). This kind of continuous variation is 

called deformation in topology so that we call Eqs. (2.4),(2.5) the zeroth-order deformation 
equations. Secondly, assuming that U ( t , p , H )  is so smooth that 

@ ] ( t  H) a k U ( t ' P ' H )  I (k >~ 1) 
' = O P  k t) = o 

namely the kth:order deformation derivatives, exists, and 
Maclaurin series of U(t,p,?~) at p = 0 ,  say, 

4.a) 

v(1,0,H) + >2[ k=l k! pk (2 .7)  

moreover, the corresponding 

converges at p = 1, then, we have by (2.6) that 

~,(t) = 1 +  ~ "~ 
k.~ k! (2.8) .  
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Here, u~kl(t,7~)(k >~ 1) is governed by the kth-order deformation equations 

au~kl(t [ 2-~t ) 
at k (1 + ~ )  a t  ~-~-~,(k-1) "]( t.,7~ )u ] + 2t/~" u~ Ik- l - ' ]  ( t  ,~ )  

m=0 

(k = 1) 

(~ ~ > 2 )  

(2.9) 
under boundary condition 

,,~k](o,n) = o, n # o,k ~ i (2.1o) 

Eqs. (2.9) and (2.10~ are obtained by differentiating the zeroth-order deformation equations 
(2.4),(2.5) h" times. (k~>l)with respect to p and then setting p=O. The above linear first-order 
differential equation can be rather easily solved, especially by software such as 
MATHEMATICA or MAPLE. Then, substituting these solutions into (2.8), we obtain 

u(t) = lira ~ j [ ( -  1)kt2k]Cbm ~(;r (2.11) 

where ~,,,,n(R). is defined by 

r . . . .  (~ )  = _ ~),,  ,,~ n + k - I 

�9 = m - n - k k ;g'*' ( l  ~< n <~ m)  ( 2 . 1 2 )  

( n  ~ O) 

namely the approaching function. 

The approaching function ~,,,,~(/~) has very general meanings. Liao i~~ rigorously proved 
that ~,,,,n(/~) has the following properties: 

L e m m a  I For complex number ~ and positive in~.egers m, n (1 ~< n ~ ra), it holds 

@; .... (~ )  = ( -  l)"n ~"'-'(I + (2.13) 
n i 

Lemma 2 For complex number C and positive integers m, n(1 ~< n ~< m), it holds 

~ , , , . 1 , , , ( ~ . ) _ r  ...... (~,) = ( m ) ( _  ~ ' ) " ( 1 +  ~') § 

n - 1 (2.14) 

L e m m a  3 For positive integers m , n  (.n ~< m) ,  it holds 

r ...... ( -  1) = 1 ( 2 . 1 5 )  

L e m m a  4 For complex number ~ and finite positive integer n (n  ~>.1), it holds 

li, m.~,,,,,(~) = 1 (I 1 + ~ I<  1) (2.16) 

Furthermore, Liao l'~ rigorously proved the so-called General Taylor Theorem which is simply 
cited in the Appendix. We emphasize that the General Taylor Theorem contains in logic the 
traditional Taylor theorem. Moreover, it may greatly enlarge the convergence region of a 
traditional Taylor series by means of the approaching function r ..... (~") if a proper { is 
selected. The example considered in this paper is a good case to show this point. Notice that 
the exact solution of Eq. (2;1) is I / ( 1 +  t 2) and the related complex function f (z)  = 
I / (1  + z 2) has two singularities ,~l = i and ~2 = - i. So, according to the so-called General 
Taylor Theorem, series (2.11) is valid in the region 
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! 2 
4 - 1 ( -  2 < ~ < O) (2.17) I t l <  I 7i: I' 

III. Discussions and-Conclusions 

Now, let us compare the perturbation approximation (2.3) with the series (2.1 l). ]'he form. 

er converges only in the regionl t 1< 1, but the latter converges in a region which is however a 

function of ~ .  Firstly, according to (2.15) and (2.17), the series (2.11) gives in case of  

7~,= - 1 the same result as (2.3), so that the series (2.3) is just a special member of the family 

of the series (2.1 1). It means that (2.1 1) contains the perturbation approximation (2.3) in logic. 

This kind of logical continuation has been proved rather important in science and 

naathematics. Second, as ~ increases f rom-1  to 0, the convergence region of  the power series 

(2.11) becomes larger and larger. In limit ~--'~'0, the series (2.11) is valid even in the whole 

real axis! However, as ~" decreases f i 'om-I  t o -2 ,  its convergence regio,a becomes smaller and 

smaller. So, the perturbation approximation (2.3) is neither the best nor the worst: it is just 

one special but common member among the family of the series (2.1 1). At last, we emphasize 

that the whole approach mentioned above needs not the small parameter assumption. In other 

words, the validity of  the HAM is independent on whether or not there exist small parameters 

in considered problems. In form, the HAM seems able to be applied to any nonlinear 

problems, although there should certainly exist some restrictions for its applications which we 

currently don't know very clearly. 

Different from the perturbation approximation (2.3), the series (2.11) provides us with a 

family of approximations. The convergence region of the series (2.11) is dete,'mined by values 

of  7/ which is introduced to construct the so-called zeroth-order deformation equations (2.4) 

and (2.5). Clearly, different values of  ~ correspond to different continuous mappings, or more 

precisely to say, different homotopies. In fact, Eqs. (2.4) and (2.5) construct a family of 

homotopies U(t,p,~) dependent on the variable ~'.  Certainly, some among them are 

'better', some are worse. Tlais ca,a well explain why the convergence region of  the series (2.1 1) 

is a function of  "/i:. The introducing of the real variable /i; really provides us with larger 

freedom to get more and even better approximations. In fact, if we substitute the real variable 

/~ in (2.4) and (2.5) by a complex variable ~, we can get in the same way such a family 

u(t) = lim ~ [ ( -  1)kt2k]r (3.1)  
~ " ' ~  + ~ k~0 

which converges to the exact solution u(t) = 1/(1 + t 2) in the region determined by 

I 1 +  ~ ' •  1 ( 1 1 + ~ ' 1 <  1) (3.2)  

Note that setting ~ to be a real variable .gives the Ibrmula (2.17). Therefore, the series (3.1) 

contains (2.1 1) and is then even more gelreral than (2.1 1). 

The foregoing example is indeed very simple and its exact solution is also known. 

However, it still verifies the validity and great potential of  the HAM. In fact, the HAM can be 

applied to solve more complicated nonlinear problems. For example, the author successfully 

applied the HAM to solve the 2D viscous flow over a semi-infinite plain in fluid mechanics, 

governed by 

f"(71) + 2f(~)f"(rl)  = 0, 7/E" [0, + 00) (3 .3)  
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with boundary conditions 

f ( 0 )  = f ' ( 0 )  = 0, f ' ( +  ~ )  = 1 (3.4) 

where the prime denotes the derivatives with respect to V. It is well-known that Blasius tj~l gave 

a solution of this problem in the form of a power series 

- + ' (  1) ~ A: "~+t 7~3k +2 
f ( r / )  ~ - "2- (3k + 2)[ (3.5) k=0 

where 

) A,~ = ~-1 3k - 1 Agtk_~_l, .k ~> 2 
,=o 3r 

(3.6) 

Here a = f " ( 0 )  = 0.33206 was given numerically by Howarth I~-'' L3). The power series (3.5) 

can also be obtained by perturbation method. However, it converges only in the region 

] r/I ~< 5.690. Liao t61 successfully applied the HAM to obtain such a family of power series 

"I( I k _ k+21 
f(77) = lim ~ - ~  (3k +2)  I'1 J 

" - + "  k=o �9 ( 3 . 7 )  

r / E  [0, + oo), - 2  < 9~ < 0 

which is valid in the region 

2 - 1 ]  1,, [ (- 2 0) (3.8) - P 0  < r/ < Pot I ~  [ < < 

where ~ is a real variable. We emphasize that, as "/i:(-2 < ~ < 0) tends to zero, the power 

series (3.7) converges in the whole positive real axis[ All of these verify that the HAM is really 

a powerful analytic tool for nonlinear problems, although it needs more applications and 
further improvements. 
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Appendix" 

General Taylor Theorem 

Let n >~ 0 bc finite integer and ~,z,z0 complex numbers. If complex function ~-) is 

analytic at "= = z0, then it holds 

t I,I. . 

m+...(~)t, x 1 
= lim ~ - ' ~ l [ ~ ( z - Z o ) ' j q ~ . . t ~ - ' ( ~ )  

a t - -+  w 

: n m  ~ k z -  
. , - . , .  , . o  t kl 

,in the region 

1+ ~- ~,~-~--~l <.I, 11+~'I< 1 

where the compZcx function O~,.k(~)is defined by (2.12) and gk(k E I) are all singularities off 

(-). Moreover, if ~" = - I, it is exactly the classical Taylor series. 

General Newtonian Binomial Theorem 

Let t,~ and ~ be real numbers. Then, the general Newtonian binomial expression 

+ 

(l+t)* =I+ ~;! , 
§ ~ z l  

holds in the region 
2 ( - 2 < ~ < o )  -I < t <T'~-I 

where O,,,.,A?[) is detined by (2.t2). 


