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Abstract In this paper, an analytic approximation method for highly nonlinear equa-
tions, namely the homotopy analysis method (HAM), is employed to solve some
backward stochastic differential equations (BSDEs) and forward-backward stochas-
tic differential equations (FBSDEs), including one with high dimensionality (up to
12 dimensions). By means of the HAM, convergent series solutions can be quickly
obtained with high accuracy for a FBSDE in a 6-dimensional case, within less than
1 % CPU time used by a currently reported numerical method for the same case
[34]. Especially, as dimensionality enlarges, the increase of computational complex-
ity for the HAM is not as dramatic as this numerical method. All of these demonstrate
the validity and high efficiency of the HAM for the backward/forward-backward
stochastic differential equations in science, engineering, and finance.
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1 Introduction

The backward stochastic differential equations (BSDEs) are widely existed in sci-
entific and engineering fields, such as stochastic control, stock markets, chemical
reactions, and so on. The general form of BSDEs read{−dyt = f (t, yt , zt )dt − zt dWt, 0 ≤ t ≤ T ,

yT = ξ,
(1.1)

in which Wt = (W 1
t , · · ·, Wd

t )∗ is a d-dimensional Brownian motion defined in
some complete, filtered probability space (�,F, P , {Ft }0≤t≤T ), T > 0 denotes the
deterministic terminal time, and the notation ∗ is the transpose operator for matrix or
vector. In finance, yt and zt denote the dynamic value of the replicating and hedging
portfolios, respectively.

In 1990, the existence and uniqueness of solutions of nonlinear BSDEs were
proved by Pardoux and Peng [1], which laid the theoretical foundation of the forward-
backward stochastic differential equations (FBSDEs). In 1991, Peng [2, 3] further
found the relationship between FBSDEs and a kind of second-order quasi-linear
parabolic partial differential equation. Since then, extensive researches of the BSDEs
and FBSDEs have been done [4–9]. Besides, many interesting properties and applica-
tions of BSDEs were presented [10]. So, how to efficiently obtain accurate solutions
of BSDEs or FBSDEs becomes a significant problem.

In the complete, filtered probability space (�,F, P , {Ft }0≤t≤T ), the general form
of FBSDEs read⎧⎨

⎩
dxt = b(t, xt , yt , zt )dt + σ(t, xt , yt , zt )dWt,

−dyt = f (t, xt , yt , zt )dt − ztdWt, 0 ≤ t ≤ T ,

x0 = ε, yT = ξ,

(1.2)

where ε ∈ F0, ξ ∈ FT , Wt is a r-dimensional Brownian motion; b : � × [0, T ] ×
R

d × R
m × R

m×r → R
d ; σ : � × [0, T ] × R

d × R
m × R

m×r → R
d×r ; f :

� × [0, T ] × R
d × R

m × R
m×r → R

m; xt ∈ R
d ; and yt ∈ R

m and zt ∈ R
m×r are

unknown stochastic processes needed to be solved.
From the general Feynman-Kac formula [3, 10], and also based on some smooth

assumptions [5], the solution (yt , zt ) of (1.2) can be represented as

yt = u(t, xt ), zt = (∇xuσ)(t, xt ), (1.3)

in which u(t, x) is the classical solution of the partial differential equation

∂u

∂t
+

d∑
i=1

bi

∂u

∂xi

+ 1

2

d∑
i,j=1

[σσ ∗]ij · ∂2u

∂xi∂xj

+ f (t, x, u, ∇xuσ) = 0, (1.4)

subjects to the boundary condition

u(T , x) = ξ. (1.5)

In finance, there is an another important type of stochastic differential equations,
namely the second-order forward-backward stochastic differential equations (2FBS-
DEs). As an extension of the FBSDEs, the 2FBSDEs were first introduced and
studied by Cheridito, Soner, Touzi, and Victoir [11], and the relations between the
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2FBSDEs and fully nonlinear parabolic PDEs were revealed [11, 12]. Since then,
variety of studies regarding the 2FBSDEs are carried out [13]. In the complete filtered
probability space (�,F, P , {Ft }0≤t≤T ), the general form of the coupled 2FBSDEs
read ⎧⎪⎪⎨

⎪⎪⎩

dxt = b(t,�t )dt + σ(t,�t )dWt,

−dyt = f (t, �t )dt − ztdWt,

dzt = Atdt + �tdWt, 0 ≤ t ≤ T ,

x0 = ε, yT = ξ,

(1.6)

in which �t = (xt , yt , zt , At , �t ) ∈ R
m × R × R

d × Sd is an unknown stochas-
tic process needed to be solved; (�, F , P ) is a given probability space; Wt is a
d-dimensional Brownian motion; Sd is the set of all d × d real-valued symmetric
matrices; b : � × [0, T ] ×R

m ×R×R
d × Sd → R

m; σ : � × [0, T ] ×R
m ×R×

R
d × Sd → R

m×d ; f : � × [0, T ] × R
m × R × R

d × Sd → R.
Under some assumptions [11, 12], the solution (yt , zt , At , �t ) of (1.6) can be

represented as{
yt = u(t, xt ), zt = (∇xuσ) (t, xt ),

�t = (∇x(∇xuσ)σ ) (t, xt ), At =
(
L̃(∇xuσ)

)
(t, xt ),

(1.7)

where L̃ is a second-order elliptic differential operator

L̃φ = ∂φ

∂t
+ ∇xφ(t, x)b(t, x) + 1

2
tr
(
σ(t, x)σ ∗(t, x)∇2

xφ
)

(1.8)

with ∇xφ = (∂x1φ, · · · , ∂xmφ), and ∇2
xφ being the Hessian matrix [14] of φ with

respect to the spatial variable x.
In the last 20 years, many numerical methods are proposed to solve the BSDEs,

FBSDEs, and 2FBSDEs. In 1994, Ma, Protter, and Yong [15] proposed a four-step
scheme to numerically solve the corresponding parabolic partial differential equa-
tions of FBSDEs. Based on the four-step scheme, some numerical algorithms [16–19]
are proposed. In 2006, a time-space discretization scheme was proposed by Delarue
and Menozzi [20] for quasi-linear parabolic PDEs, which weakens the regularity
assumptions required in [16]. In 2008, Delarue and Menozzi [21] improved this
scheme by introducing a interpolation procedure. Apart from solving the parabolic
partial differential equations, some numerical schemes are proposed to directly solve
the BSDEs and FBSEDs [22–29]. In 1999, Peng [30] proposed a linear approxima-
tion algorithm to solve the Chow’s lagrangean one-dimensional BSDEs [31]. In 2006,
Zhao, Chen, and Peng [32] proposed a θ -scheme for BSDEs with high accuracy, and
they gave a rigorous proof that this scheme is of first-order convergence for general
θ , and especially is of second-order when θ = 1

2 . Unfortunately, most of the above-
mentioned numerical methods are not very efficient for high-dimensional FBSDEs
(i.e., dimension exceeds three), since the computational complexity increases dra-
matically as the dimension increases. To the best of our knowledge, up to now, quite
few numerical schemes are proposed for high-dimensional FBSDEs [26, 33, 34].

In this paper, the BSDEs, FBSDEs, 2FBSDEs, and high-dimensional FBSDEs
(i.e., up to 12 dimensions) are successfully solved by means of an analytic approx-
imation technique for highly nonlinear differential equations, namely the homotopy
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analysis method (HAM) [35–38]. Unlike perturbation technique, the HAM is inde-
pendent of any small/large physical parameters. Besides, the HAM provides us
great freedom to choose equation-type and solution expression of the high-order
approximation equations. Especially, there is a convergence-control parameter c0 in
the series solutions, which provides us a convenient way to guarantee the conver-
gence of series solutions gained by the HAM. It is these merits that distinguish the
HAM from other analytic approaches, and thus enable the HAM to be successfully
applied to many complicated problems with high nonlinearity [39–47]. Note that
the HAM was successfully applied to give an analytic approximation with much
longer expiry for the optimal exercise boundary of an American put option than
perturbation approximations [48]. In this paper, by choosing proper auxiliary linear
operator and convergence-control parameter c0, convergent results of the BSDEs,
FBSDEs, 2FBSDEs, and high-dimensional FBSDEs (up to 12 dimensions) are effi-
ciently obtained by means of the HAM. Our HAM approximations agree well with
the exact solutions. All of these demonstrate the validity and potential of the HAM
for the backward/forward-backward stochastic differential equations.

2 The HAM for BSDEs

In this section, we employ the HAM to solve the backward stochastic differential
equations (BSDEs). According to (1.2)–(1.5), if we let xt be a standard Brownian
motion (i.e., b = 0, σ = 1), then the corresponding PDE related to the BSDEs reads

∂u

∂t
+ 1

2

d∑
i=1

∂2u

∂x2
i

+ f (t, u,∇xu) = 0, 0 ≤ t ≤ T , (2.1)

subjects to the boundary condition

u(T , x) = ξ, (2.2)

in which d denotes the dimensionality. The solutions of the BSDEs satisfy

yt = u(t, Wt ), zt = ∇xu(t, Wt ). (2.3)

2.1 An example of one-dimensional BSDE

At first, we consider the following BSDE with both yt and Wt in one dimension
{

−dyt = (−y3
t + 2.5y2

t − 1.5yt )dt − ztdWt, 0 ≤ t ≤ T ,

yT = exp(WT +T )
exp(WT +T )+1 ,

(2.4)

with the exact solutions:

yt = exp(Wt + t)

exp(Wt + t) + 1
, zt = exp(Wt + t)

(exp(Wt + t) + 1)2
. (2.5)
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Without loss of generality, we choose T = 1. SinceW0 = 0, the exact solutions at the
initial moment are: y0 = 1/2, z0 = 1/4. According to (2.1)–(2.3), the corresponding
PDE reads

∂u

∂t
+ 1

2

∂2u

∂x2
− u3 + 5

2
u2 − 3

2
u = 0, 0 ≤ t ≤ 1, (2.6)

subjects to the boundary condition

u(1, x) = ex+1

ex+1 + 1
. (2.7)

Set

θ = ex+1

ex+1 + 1
. (2.8)

Then θ ∈ (0, 1), and we have

yt = u(t, θ), zt = θ(1 − θ)
∂u(t, θ)

∂θ
. (2.9)

Equations (2.6) and (2.7) become

N [u] = ∂u

∂t
+ θ

2
(1 − θ)(1 − 2θ)

∂u

∂θ
+ 1

2
θ2(1 − θ)2

∂2u

∂θ2
− u3

+ 5

2
u2 − 3

2
u = 0, (2.10)

subjects to

u(t, θ)

∣∣∣
t=1

= θ, (2.11)

with the exact solution

u(t, θ) = θet

θet + (1 − θ)e
. (2.12)

Here, N denotes a nonlinear operator.
Since t ∈ [0, 1] is a finite interval, it is natural to express u(t, θ) in a power series

u(t, θ) =
+∞∑
m=0

am(θ) · tm, (2.13)

where am(θ) is coefficient to be determined. This provides us the so-called “solution
expression” of u(t, θ) in the frame of the HAM.

Let ϕ0(t, θ) denote the initial guess of u(t, θ), which satisfies the boundary
condition (2.11). Moreover, let L denote an auxiliary linear operator with prop-
erty L[0] = 0, c0 a non-zero auxiliary parameter, called the convergence-control
parameter, and q ∈ [0, 1] the embedding parameter for constructing a homotopy,
respectively. Then we construct a family of differential equations

(1 − q)L
[
�(t, θ, q) − ϕ0(t, θ)

]
= c0 q N

[
�(t, θ, q)

]
, (2.14)

subject to the boundary condition

�(t, θ, q)

∣∣∣
t=1

= θ, (2.15)
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where the nonlinear operatorN is defined by (2.10). Note that�(t, θ, q) corresponds
to the unknown u(t, θ), as mentioned below.

When q = 0, due to the property L[0] = 0, (2.14) and (2.15) have the solution

�(t, θ, 0) = ϕ0(t, θ). (2.16)

When q = 1, (2.14) and (2.15) are equivalent to the original equations (2.10) and
(2.11), provided

�(t, θ, 1) = u(t, θ). (2.17)
So, as the embedding parameter q increases from 0 to 1, �(t, θ, q) varies (or deform)
continuously from ϕ0(t, θ) to u(t, θ). Equations (2.14) and (2.15) are called the
zeroth-order deformation equations.

Using (2.16), we have the Maclaurin power series with respect to the embedding
parameter q:

�(t, θ, q) =
+∞∑
m=0

ϕm(t, θ) · qm, (2.18)

where
ϕm(t, θ) = Dm

[
�(t, θ, q)

]
, (2.19)

in which

Dm[f ] = 1

m!
∂mf

∂qm

∣∣∣∣
q=0

(2.20)

is called the mth-order homotopy-derivative [36, 37] of f .
In general, the convergence radius of a power series is finite. Fortunately, in the

frame of the HAM, we have great freedom to choose the auxiliary linear operator L
and the so-called convergence-control parameter c0. Assume that all of them are so
properly chosen that the power series (2.18) is convergent at q = 1. Then, according
to (2.17), we have the so-called homotopy-series solution

u(t, θ) =
+∞∑
m=0

ϕm(t, θ). (2.21)

Substituting (2.18) into the zeroth-order deformation equations (2.14) and (2.15),
and then equating the like-power of q, we have the so-called mth-order deformation
equations

L
[
ϕm − χmϕm−1

] = c0 δm−1(t, θ), (2.22)
subject to the boundary condition

ϕm(t, θ)

∣∣∣
t=1

= 0, (2.23)

where

δn(t, θ) = Dn

{
N [�(t, θ, q)]

}

= ∂ϕn

∂t
+ 1

2
θ(1 − θ)(1 − 2θ)

∂ϕn

∂θ
+ 1

2
θ2(1 − θ)2

∂2ϕn

∂θ2

−
n∑

i=0

n−i∑
j=0

ϕiϕjϕn−i−j + 5

2

n∑
i=0

ϕiϕn−i − 3

2
ϕn, (2.24)
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and

χm =
{
0, m ≤ 1,
1, m > 1.

(2.25)

Here, Dn is defined by (2.20). To satisfy the condition (2.11), we choose

ϕ0(t, θ) = θ (2.26)

as the initial guess of u(t, θ). Since there are no boundary conditions for θ , we simply
choose such an auxiliary linear operator

L[ϕ] = ∂ϕ

∂t
. (2.27)

Note that, using the auxiliary linear operator (2.27), the solution ϕm(t, θ) of the linear
high-order deformation equations (2.22) and (2.23) can be easily obtained step by
step, say,

ϕm(t, θ) = χm ϕm−1(t, θ) + c0

∫ t

1
δm−1(z, θ)dz, (2.28)

starting from m = 1, especially by means of computer algebra software such as
Mathematica. The Mth-order homotopy approximation of u(t, θ) reads

ϕ̃M(t, θ) =
M∑

m=0

ϕm(t, θ), (2.29)

which gives us the initial values:

ỹ0 = ϕ̃M(0, θ)

∣∣∣
θ= e

e+1

, z̃0 =
[
θ(1 − θ)

∂ϕ̃M(0, θ)

∂θ

]∣∣∣∣
θ= e

e+1

.

c0

-2 -1.5 -1 -0.5 0
10-20

10-15

10-10

10-5

100

105

Fig. 1 The squared residual error versus c0 of (2.14). Dash-dotted line: 5th-order approximation; dashed
line: 10th-order approximation; solid line: 15th-order approximation
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Table 1 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0 and the exact solutions y0, z0 of (2.4), respectively

m Ẽ ỹ0 − y0 z̃0 − z0 Time (s)

3 1 × 10−6 −5 × 10−3 −8 × 10−4 0.1

6 8 × 10−10 8 × 10−5 2 × 10−4 0.2

9 5 × 10−13 3 × 10−7 −1 × 10−5 0.4

12 4 × 10−16 −8 × 10−8 5 × 10−7 1.0

15 6 × 10−19 3 × 10−9 −8 × 10−9 2.2

Here, m denotes the order of approximation

In other words, in the frame of the HAM, the nonlinear partial differential equa-
tion (2.10) with the boundary condition (2.11) can be solved just by means of
integrations with respect to the time t .

Since the exact solution is known, we define the following squared residual error
to characterize the global error between the homotopy approximation and the exact
solution:

Ẽ =
∫ 1

0

∫ 1

0

[
ϕ̃M(t, θ) − u(t, θ)

]2
dθdt. (2.30)

Besides, we can always define such a squared residual error

E =
∫ 1

0

∫ 1

0

{
N [ϕ̃M(t, θ)]

}2
dθdt, (2.31)

where N is defined by (2.10). Obviously, the smaller the E or Ẽ , the more accurate
the HAM approximation.

The curves of E versus c0 is as shown in Fig. 1, which indicates that for any
c0 ∈ [−1.4, −0.4], E decreases as the order increases, i.e., the homotopy series is
convergent within the region c0 ∈ [−1.4, −0.4], but the optimal c0 (i.e., minimum E)
is near to −1. So, for the sake of simplicity, we choose c0 = −1, and the homotopy
approximations are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ̃1(t, θ) = tθ + θ2 − tθ2;
ϕ̃2(t, θ) = 1

2θ + 1
2 t

2θ − 1
2θ

2 + 2tθ2 − 3
2 t

2θ2 + θ3 − 2tθ3 + t2θ3;
ϕ̃3(t, θ) = 1

3θ + 1
2 tθ + 1

6 t
3θ + 2

3θ
2 − 3

2 tθ
2 + 2t2θ2 − 7

6 t
3θ2

−θ3 + 4tθ3 − 5t2θ3 + 2t3θ3 + θ4 − 3tθ4 + 3t2θ4 − t3θ4;
· · ·

(2.32)

Note that rather accurate approximations at the level of 10−9 can be obtained in
just 2.2 s CPU times,1 as shown in Table 1. Besides, as shown in Fig. 2, our homotopy
approximations agree well with the exact solutions. All of these indicate that the
HAM is valid and rather efficient for the BSDEs.

1All examples considered in this paper are computed using a laptop with a core i7 3.60GHz process and
8GB memory.
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u

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 2 Comparison between the homotopy approximations and the exact solution u of (2.10) and (2.11)
when t = 0, 0.25, 0.5, 0.75. Dash-double-dotted line: homotopy approximation at t = 0; solid line:
homotopy approximation at t = 0.25; dashed-dotted line: homotopy approximation at t = 0.5; dashed
line: homotopy approximation at t = 0.75. Square: exact solution at t = 0; triangle up: exact solution at
t = 0.25; circle: exact solution at t = 0.5; diamond: exact solution at t = 0.75

2.2 An example of two-dimensional BSDE

In this case, we consider the following BSDE of yt in two dimensions
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
(
dy(1)

t

dy(2)
t

)
=
⎛
⎜⎝
[
1
2y

(1)
t − y

(2)
t

] [ (
y

(1)
t

)2 +
(
y

(2)
t

)2 ]
[
y

(1)
t + 1

2y
(2)
t

] [ (
y

(1)
t

)2 +
(
y

(2)
t

)2 ]
⎞
⎟⎠ dt −

(
z
(1)
t

z
(2)
t

)
dWt,

yT =
[
y

(1)
T

y
(2)
T

]
=
[
sin (WT + T )

cos (WT + T )

]
,

(2.33)
with the exact solutions

yt =
[
y

(1)
t

y
(2)
t

]
=
[
sin (Wt + t)

cos (Wt + t)

]
, zt =

[
z
(1)
t

z
(2)
t

]
=
[
cos (Wt + t)

− sin (Wt + t)

]
. (2.34)

At the initial moment, the exact solutions are: y0 = [y(1)
0 , y

(2)
0 ]∗ = [0, 1]∗, z0 =

[z(1)
0 , z

(2)
0 ]∗ = [1, 0]∗. Without loss of generality, let us choose T = 1. According to

(2.1)–(2.3), the corresponding PDEs read
⎧⎨
⎩
N1[u1, u2] = ∂u1

∂t
+ 1

2
∂2u1
∂x2

+
(
1
2u1 − u2

) (
u21 + u22

)
= 0,

N2[u1, u2] = ∂u2
∂t

+ 1
2

∂2u2
∂x2

+
(
u1 + 1

2u2

) (
u21 + u22

)
= 0,

(2.35)
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subject to the boundary conditions

u1(1, x) = sin(x + 1), u2(1, x) = cos(x + 1), (2.36)

with the exact solutions

u1(t, x) = sin(x + t), u2(t, x) = cos(x + t). (2.37)

Here, N1 and N2 are nonlinear operators defined by (2.35).
In the frame of the HAM, we first of all construct a family of differential equations,

called the zeroth-order deformation equations

⎧⎨
⎩

(1 − q) ∂
∂t

[
�(t, x, q) − ϕ0(t, x)

]
= c0 q N1

[
�(t, x, q), �(t, x, q)

]
,

(1 − q) ∂
∂t

[
�(t, x, q) − S0(t, x)

]
= c0 q N2

[
�(t, x, q), �(t, x, q)

]
,
(2.38)

subject to the boundary condition

�(t, x, q)

∣∣∣
t=1

= sin(x + 1), �(t, x, q)

∣∣∣
t=1

= cos(x + 1), (2.39)

where ϕ0 and S0 are the initial guesses of u1 and u2, respectively. It is obvious that

�(t, x, 1) = u1(t, x), �(t, x, 1) = u2(t, x). (2.40)

So, as q increases from 0 to 1, �(t, x, q) varies continuously from its initial guess
ϕ0(t, x) to the unknown solution u1(t, x), �(t, x, q) varies continuously from its
initial guess S0(t, x) to u2(t, x), respectively.

Similarly, we expand �(t, x, q) and �(t, x, q) into power series of q, i.e.,

�(t, x, q) =
+∞∑
m=0

ϕm(t, x) · qm, �(t, x, q) =
+∞∑
m=0

Sm(t, x) · qm. (2.41)

Substituting (2.41) into (2.38) and (2.39), then equating the like-power of q, we have
the high-order deformation equations

∂

∂t

(
ϕm − χmϕm−1

)
= c0 δ1,m−1, (2.42)

∂

∂t

(
Sm − χmSm−1

)
= c0 δ2,m−1, (2.43)

subject to the boundary condition

ϕm(t, x)

∣∣∣
t=1

= 0, Sm(t, x)

∣∣∣
t=1

= 0, (2.44)
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where χm is defined by (2.25), and

δ1,n(t, x) = Dn

(
N1

[
�(t, x, q), �(t, x, q)

])

= ∂ϕn

∂t
+ 1

2

∂2ϕn

∂x2

+
n∑

i=0

n−i∑
j=0

(
1

2
ϕi − Si

)(
ϕjϕn−i−j + SjSn−i−j

)
, (2.45)

δ2,n(t, x) = Dn

(
N2

[
�(t, x, q), �(t, x, q)

])

= ∂Sn

∂t
+ 1

2

∂2Sn

∂x2

+
n∑

i=0

n−i∑
j=0

(
ϕi + 1

2
Si

)(
ϕjϕn−i−j + SjSn−i−j

)
, (2.46)

where the operator Dn is defined by (2.20). To satisfy the boundary condition (2.36),
we choose the initial guesses

ϕ0(t, x) = sin(x + 1), S0(t, x) = cos(x + 1). (2.47)

Note that the high-order deformation equations (2.42) and (2.43) are linear and
decoupled, and thus can be easily obtained via integration with respect to t , say,

ϕm(t, x) = χm ϕm−1(t, x) + c0

∫ t

1
δ1,m−1(t, x)dt, (2.48)

Sm(t, x) = χm Sm−1(t, x) + c0

∫ t

1
δ2,m−1(t, x)dt, (2.49)

step by step, starting from m = 1, especially by means of computer algebra software
such as Mathematica. Similarly, the Mth-order homotopy approximations of u1(t, x)

and u2(t, x) are given by

ϕ̃M(t, x) =
M∑

m=0

ϕm(t, x), S̃M(t, x) =
M∑

m=0

Sm(t, x), (2.50)

which give the approximations of the initial values

ỹ1 = ϕ̃M(0, x)

∣∣∣
x=0

, ỹ2 = S̃M(0, x)

∣∣∣
x=0

,

z̃1 = ∂ϕ̃M(0,x)
∂x

∣∣∣∣
x=0

, z̃2 = ∂S̃M(0,x)
∂x

∣∣∣∣
x=0

,

respectively. In this way, the original coupled nonlinear partial differential equa-
tions (2.35) and (2.36) are solved just by means of integrations with respect to the
time (t).
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Define the squared residual errors

⎧⎪⎪⎨
⎪⎪⎩
Ẽ = ∫ T

0

∫ +∞
−∞

[(
ϕ̃M − u1

)2 +
(
S̃M − u2

)2]
dxdt,

E = ∫ T

0

∫ +∞
−∞

{(
N1[ϕ̃M, S̃M ]

)2 +
(
N2[ϕ̃M, S̃M ]

)2}
dxdt.

(2.51)

Similarly, it is found that convergent results can be obtained with any c0 ∈
[−1.3, −0.4], but the optimal c0 (i.e., the minimum E) is near to −1. So we choose
c0 = −1, and the homotopy approximations are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃1(t, x) = (t − 1) cos(1 + x) + sin(1 + x);
S̃1(t, x) = (1 − t) sin(1 + x) + cos(1 + x);
ϕ̃2(t, x) = (t − 1) cos(1 + x) − 1

2 (t
2 − 2t − 1) sin(1 + x);

S̃2(t, x) = (1 − t) sin(1 + x) − 1
2 (t

2 − 2t − 1) cos(1 + x);
ϕ̃3(t, x) = − 1

6 (t
3 − 3t2 − 3t + 5) cos(1 + x) − 1

2 (t
2 − 2t − 1) sin(1 + x);

S̃3(t, x) = 1
6 (t

3 − 3t2 − 3t + 5) sin(1 + x) − 1
2 (t

2 − 2t − 1) cos(1 + x);
· · ·

As shown in Table 2, homotopy approximations with high accuracy at the level of
10−20 can be obtained in just 6.9 s CPU times. In addition, our homotopy approxima-
tions agree well with the exact solutions, as shown in Fig. 3. So, this kind of BSDEs
can also be solved by the HAM with high efficiency.

2.3 An example of BSDE with two-dimensional Brownian motion

In this case, we consider the following BSDEs with two-dimensional Brownian
motion

⎧⎨
⎩

−dyt =
(
yt − 1

2z
(1)
t − 1

2z
(2)
t

)
dt − z

(1)
t dW(1)

t − z
(2)
t dW(2)

t , 0 ≤ t ≤ T ,

yT = sin
(
W

(1)
T + W

(2)
T + T

)
,

(2.52)

Table 2 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ1, ỹ2 and the exact solutions y

(1)
0 , y(2)

0 of (2.33), respectively

m Ẽ ỹ1 − y
(1)
0 ỹ2 − y

(2)
0 Time (s)

4 8 × 10−6 6 × 10−3 −6 × 10−3 0.2

8 6 × 10−13 2 × 10−6 −2 × 10−6 0.7

12 2 × 10−21 1 × 10−10 −1 × 10−10 1.7

16 5 × 10−31 2 × 10−15 −2 × 10−15 3.5

20 2 × 10−41 1 × 10−20 −2 × 10−20 6.9

Here, m denotes the order of approximation
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Fig. 3 Comparison between the homotopy approximations and the exact solutions u1 (left), u2 (right)
of (2.35) and (2.36), respectively, at t = 0, 0.25, 0.5, 0.75. Dash-double-dotted line: homotopy approx-
imations at t = 0; solid line: homotopy approximations at t = 0.25; dashed-dotted line: homotopy
approximations at t = 0.5; dashed line: homotopy approximations at t = 0.75. square: the exact solution
at t = 0; triangle up: the exact solution at t = 0.25; circle: the exact solution at t = 0.5; diamond: the
exact solution at t = 0.75

with the exact solutions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt = sin
(
W

(1)
t + W

(2)
t + t

)
,

z
(1)
t = cos

(
W

(1)
t + W

(2)
t + t

)
,

z
(2)
t = cos

(
W

(1)
t + W

(2)
t + t

)
.

(2.53)

At the initial moment, the exact solutions are: y0 = 0, z
(1)
0 = 1, z

(2)
0 = 1. Without

loss of generality, we choose T = 1. According to (2.1)–(2.3), the corresponding
PDE reads

N3[u] = ∂u

∂t
+ 1

2

∂2u

∂x2
1

+ 1

2

∂2u

∂x2
2

+ u − 1

2

∂u

∂x1
− 1

2

∂u

∂x2
= 0, (2.54)

subjects to the boundary condition

u(1, x1, x2) = sin(x1 + x2 + 1). (2.55)

Here N3 is a nonlinear operator, defined by (2.54).
Similarly, in the frame of the HAM, we construct the following zeroth-order

deformation equations

(1 − q)
∂

∂t

[
�(t, x1, x2, q) − ϕ0(t, x1, x2)

]
= c0 q N3

[
�(t, x1, x2, q)

]
, (2.56)

subject to the boundary condition

�(t, x1, x2, q)

∣∣∣
t=1

= sin(x1 + x2 + 1), (2.57)

where ϕ0 is an initial guess of the unknown u(t, x1, x2), which satisfies the
boundary condition (2.55). The above equations construct a continuous variation
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�(t, x1, x2, q) from the initial guess ϕ0(t, x1, x2) at q = 0 to the unknown
u(t, x1, x2) at q = 1.

Similarly, the Mth-order homotopy approximation of u(t, x1, x2) is given by

ϕ̃M(t, x1, x2) =
M∑

m=0

ϕm(t, x1, x2), (2.58)

where ϕm is governed by the high-order deformation equations

∂
∂t

(
ϕm − χmϕm−1

)
= c0 δ3,m−1, (2.59)

subject to the boundary condition

ϕm(t, x1, x2)

∣∣∣
t=1

= 0, (2.60)

where

δ3,k(t, x1, x2) = Dk

(
N3

[
�(t, x1, x2, q)

])

= ∂ϕk

∂t
+ 1

2

(
∂2ϕk

∂x2
1

+ ∂2ϕk

∂x2
2

)
+ ϕk − 1

2

(
∂ϕk

∂x1
+ ∂ϕk

∂x2

)
, (2.61)

and χm is defined by (2.25), Dk is defined by (2.20), respectively. According to
(2.55), we choose the initial guess

ϕ0(t, x1, x2) = sin(x1 + x2 + 1). (2.62)

Note that it is straightforward to gain the solution

ϕm(t, x1, x2) = χmϕm−1(t, x1, x2) + c0

∫ t

1
δ3,m−1(z, x1, x2)dz, (2.63)

step by step, starting from m = 1, especially by means of the computer algebra
software Mathematica. In other words, in the frame of the HAM, the original partial
differential equations (2.54) and (2.55) are solved just by means of integrations with
respect to the time t . As long as the Mth-order approximation ϕ̃M is obtained, we
have the approximations of the initial values

ỹ0 = ϕ̃M(0, 0, 0), z̃
(1)
0 = ∂ϕ̃M(0, x1, 0)

∂x1

∣∣∣
x1=0

, z̃
(2)
0 = ∂ϕ̃M(0, 0, x2)

∂x2

∣∣∣
x2=0

.

Thanks to the symmetry, it is obvious that

z̃
(1)
0 − z

(1)
0 = z̃

(2)
0 − z

(2)
0 . (2.64)

Similarly, define the squared residual errors⎧⎨
⎩
Ẽ = ∫ T

0

∫ +∞
−∞

∫ +∞
−∞

[
(ϕ̃M − u)2

]
dx1dx2dt,

E = ∫ T

0

∫ +∞
−∞

∫ +∞
−∞

{
N3[ϕ̃M(t, x1, x2)]

}2
dx1dx2dt.

(2.65)
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Table 3 The squared residual error, used CPU time (second) and the relative error between the homotopy
approximations ỹ0, z̃

(1)
0 and the exact solutions y0, z

(1)
0 of (2.52), respectively

m Ẽ ỹ0 − y0 z̃
(1)
0 − z

(1)
0 Time (s)

4 4 × 10−6 6 × 10−3 −6 × 10−3 0.06

8 3 × 10−13 2 × 10−6 −2 × 10−6 0.12

12 8 × 10−22 1 × 10−10 −1 × 10−10 0.23

16 2 × 10−31 2 × 10−15 −2 × 10−15 0.36

20 1 × 10−41 −4 × 10−17 7 × 10−17 0.50

Here, m denotes the order of approximation

It is found that convergent results can be obtained with any c0 ∈ [−1.3, −0.4], but
the optimal c0 (i.e., the minimum E) is near to −1. So, we choose c0 = −1, and the
corresponding homotopy approximations are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ̃1(t, x) = (t − 1) cos(1 + x1 + x2) + sin(1 + x1 + x2);
ϕ̃2(t, x) = (t − 1) cos(1 + x1 + x2) − 1

2 (t
2 − 2t − 1) sin(1 + x1 + x2);

ϕ̃3(t, x) = − 1
6 (t

3 − 3t2 − 3t + 5) cos(1 + x1 + x2)

− 1
2 (t

2 − 2t − 1) sin(1 + x1 + x2);
· · ·

As shown in Table 3, accurate approximations at the level of 10−17 are obtained in
just 0.5 s CPU times. Besides, our homotopy approximations agree well with the
exact solution, as shown in Fig. 4. This again demonstrates the validity and high
efficiency of the HAM for the BSDEs.

Here, it should be emphasized that, although the three kinds of BSDEs are quite
different, our HAM approaches have no fundamental difference: the convergent
approximations are always gained simply by means of integration with respect to the
time (t), within a few seconds CPU times!

3 The HAM for FBSDEs

In this section, we further employ the HAM to solve some FBSDEs, 2FBSDEs, and
high-dimensional FBSDEs.

3.1 An example of FBSDEs

First, let us consider the following coupled FBSDE⎧⎪⎨
⎪⎩
dxt = yt sin(t + xt )dt + yt cos(t + xt )dWt,

−dyt =
[
1
2y

2
t zt − cos(t + xt )(y

2
t + 1)

]
dt − ztdWt, 0 ≤ t ≤ T ,

x0 = 1
2 , yT = sin(T + xT ),

(3.1)
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Fig. 4 Comparison between the homotopy approximation and the exact solution u of (2.54) and (2.55),
when x1 = x2 = x, t = 0, 0.25, 0.5, 0.75. Dash-double-dotted line: homotopy approximation at t = 0;
solid line: homotopy approximation at t = 0.25; dashed-dotted line: homotopy approximation at t = 0.5;
dashed line: homotopy approximation at t = 0.75. Square: exact solution at t = 0; triangle up: exact
solution at t = 0.25; circle: exact solution at t = 0.5; diamond: exact solution at t = 0.75

with the exact solutions

yt = sin(t + xt ), zt = cos2(t + xt ) sin(t + xt ). (3.2)

At the initial moment, the exact values read

y0 = sin (x0) , z0 = cos2 (x0) sin (x0) .

Without loss of generality, we choose T = 1. Then according to (1.2)–(1.5), the
corresponding PDE reads

∂u

∂t
+ sin(t + x)u

∂u

∂x
+ 1

4
cos(2t + 2x)u2

∂2u

∂x2
+ 1

4
u2

∂2u

∂x2

+ 1

2
cos(t + x)u3

∂u

∂x
− cos(t + x)(u2 + 1) = 0, (3.3)

subjects to the boundary condition

u(t, x)

∣∣∣
t=1

= sin(1 + x), (3.4)

with the exact solution u = sin(t + x).
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In the frame of the HAM, we first construct the zeroth-order deformation
equations

(1 − q) ∂
∂t

[
�(t, x, q) − ϕ0(t, x)

]
= c0 q N4

[
�(t, x, q), q

]
, (3.5)

subject to the boundary condition

�(t, x, q)

∣∣∣
t=1

= sin(q + x), (3.6)

where ϕ0 is an initial guess of u(t, x), and

N4

[
�(t, x, q), q

]

= ∂�

∂t
+ sin(tq + x)u

∂�

∂x
+ 1

4
cos(2tq + 2x)�2 ∂2�

∂x2
+ 1

4
�2 ∂2�

∂x2

+ 1

2
cos(tq + x)�3 ∂�

∂x
− cos(tq + x)(�2 + 1) (3.7)

corresponds to the original nonlinear differential equation (3.3), respectively. Note
that, in order to express u(t, x) as a power series of t , we replace sin(t + x),
cos(t + x) and cos(2t + 2x) by sin(tq + x), cos(tq + x) and cos(2tq + 2x) in the
governing equation (3.5), respectively, where q ∈ [0, 1] is the embedding parame-
ter. Besides, we replace sin(1 + x) in the boundary condition (3.6) by sin(q + x).
Otherwise, the solution ϕm contains the complicated terms such as tn cos(t + x)

and tn sin(t + x), which do not belong to the power series of t and thus lead
to difficulty to gain high-order approximations via integration with respect to the
time t . It should be emphasized that, we can do all of these mainly because the
HAM provides us such kind of great freedom to construct zeroth-order deformation
equations [36, 37].

Similarly, the above equations (3.5) and (3.6) construct a continuous deformation
(i.e., a homotopy)�(t, x, q) from the initial guess ϕ0 to the unknown solution u(t, x)

as q increases from 0 to 1. Similarly, we can expand �(t, x, q) into a power series of
q, i.e.,

�(t, x, q) =
+∞∑
m=0

ϕm(t, x) · qm. (3.8)

Differentiating the zeroth-order deformation equations (3.5) and (3.6) m times with
respect to q, then setting q = 0, and finally dividing the two sides of them by m!, we
have the high-order deformation equations

∂

∂t

(
ϕm − χmϕm−1

)
= c0 δ4,m−1, (3.9)

subject to the boundary condition

ϕm(t, x)

∣∣∣
t=1

= 1

m! sin
(
x + mπ

2

)
. (3.10)
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where

δ4,n(t, x) = Dn

(
N4

[
�(t, x, q), q

])

= ∂ϕn

∂t
+

n∑
i=0

i∑
j=0

tj

j ! sin
(

x + jπ

2

)
ϕn−i

∂ϕi−j

∂x

+
n∑

i=0

i∑
j=0

j∑
k=0

k∑
p=0

tp

2 · p! cos
(
x + pπ

2

)
ϕn−iϕi−j ϕj−k

∂ϕk−p

∂x

+
n∑

i=0

i∑
j=0

j∑
k=0

(2t)k

4 · k! cos
(
2x + kπ

2

)
ϕn−iϕi−j

∂2ϕj−k

∂x2

+
n∑

i=0

i∑
j=0

[
1

4

∂2ϕj

∂x2
− tj

j ! cos
(

x + jπ

2

)]
ϕn−iϕi−j

− tn

n! cos
(
x + nπ

2

)
, (3.11)

and χm is defined by (2.25), Dn is defined by (2.20), N4 is defined by (3.7),
respectively. According to (3.6), the initial guess of u(t, x) should be

ϕ0(t, x) = sin(x). (3.12)

Then, it is easy to gain the solution

ϕm(t, x) = χm ϕm−1(t, x) + c0

∫ t

0
δ4,m−1(t, x)dt + Am(x), (3.13)

where the integration coefficient Am(x) is determined by the boundary condition
(3.10), step by step, starting from m = 1.

The Mth-order homotopy approximation of u(t, x) is gained at q = 1 by

ϕ̃M(t, x) =
M∑

m=0

ϕm(t, x), (3.14)

which gives the approximations of the initial values

ỹ0 = ϕ̃M(0, x0), z̃0 =
[
cos(x)ϕ̃M

∂ϕ̃M

∂x

]∣∣∣∣
t=0, x=x0

.

Similarly, the curves of E versus c0 is as shown in Fig. 5, which indicates that the
optimal c0 is −1. It is found that the homotopy series is convergent within a rather
small region. So, we choose the optimal c0 = −1, and the corresponding homotopy
approximations are:

⎧⎪⎪⎨
⎪⎪⎩

ϕ̃1(t, x) = sin(x) + t cos(x);
ϕ̃2(t, x) = sin(x) + t cos(x) − 1

2 t
2 sin(x);

ϕ̃3(t, x) = sin(x) + t cos(x) − 1
2 t

2 sin(x) − 1
6 t

3 cos(x);
· · ·

(3.15)
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Fig. 5 The squared residual error versus c0 of (3.5). Dash-dotted line: 3th-order approximation; dashed
line: 5th-order approximation; solid line: 7th-order approximation

It is interesting that the homotopy approximation ϕ̃M(t, x) is actually the Maclau-
rin series of the exact solution u(t, x) = sin(x + t) about t , say

ϕ̃M(t, x) =
M∑
i=0

t i

i! sin
(

x + i

2
π

)
. (3.16)

A proof is given in the Appendix. This also means that our homotopy series converges
to the exact solution of the original equations. Besides, our homotopy approximations
at the initial moment ỹ0 and z̃0 are exactly the same as the exact solutions y0 and
z0, respectively, and the Ẽ which characterizes the global error between the homo-
topy approximation and the exact solution quickly decreases to 9 × 10−42 within
only 1.81 s CPU times, as shown in Table 4. It should be emphasized that the HAM

Table 4 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0 and the exact solutions y0, z0 of (3.1), respectively

m Ẽ ỹ0 − y0 z̃0 − z0 CPU time (s)

4 4 × 10−6 0 0 0.02

8 3 × 10−13 0 0 0.11

12 7 × 10−22 0 0 0.33

16 2 × 10−31 0 0 0.78

20 9 × 10−42 0 0 1.81

Here, m denotes the order of approximation
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provides us great freedom to construct such kind of zeroth-order deformation equa-
tions (3.5) and (3.6). In fact, it is such kinds of freedom that distinguishes the HAM
from other analytic methods. All of these demonstrate the power and high efficiency
of the HAM for forward-backward nonlinear differential equations.

3.2 An example of 2FBSDEs

Then, let us consider the following 2FBSDE

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxt = sin(t + xt )dt + cos(t + xt )dWt,

−dyt =
[
− cos(t + xt )zt − cos(t + xt )(y

2
t + yt ) − �t

4

]
dt − ztdWt,

dzt = Atdt + �tdWt, 0 ≤ t ≤ T ,

x0 = 1
2 , yT = sin(T + xT ),

(3.17)

with the exact solutions
⎧⎨
⎩

yt = sin(t + xt ), zt = cos2(t + xt ),

�t = −2 sin(t + xt ) cos2(t + xt ),

At = − sin(2t + 2xt ) [1 + sin(t + xt )] − cos(2t + 2xt ) cos2(t + xt ).

(3.18)

At the initial moment, the exact solutions are

{
y0 = sin (x0) , z0 = cos2 (x0) , �0 = −2 sin(x0) cos2(x0),
A0 = − sin(2x0) [1 + sin(x0)] − cos(2x0) cos2(x0).

Without loss of generality, let us choose T = 1. Then according to (1.6)–(1.8), the
corresponding PDE reads

∂u

∂t
+ 1

8
[1 + cos(2t + 2x)]

∂2u

∂x2
− cos(t + x)(u2 + u)

+
[
sin(t + x) + 1

8
sin(2t + 2x) − 1

2
cos(2t + 2x) − 1

2

]
∂u

∂x
= 0, (3.19)

subjects to the boundary condition

u(t, x)

∣∣∣
t=1

= sin(1 + x). (3.20)

Similar to § 3.1, we construct the zeroth-order deformation equations

(1 − q)
∂

∂t

[
�(t, x, q) − ϕ0(t, x)

]
= c0 q N5

[
�(t, x, q), q

]
(3.21)

subject to the boundary condition

�(t, x, q)

∣∣∣
t=1

= sin(q + x), (3.22)
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where

N5

[
�(t, x, q), q

]

= ∂�

∂t
+ 1

8
[1 + cos(2tq + 2x)]

∂2�

∂x2
− cos(tq + x)(�2 + �)

+
[
sin(tq + x) + 1

8
sin(2tq + 2x) − 1

2
cos(2tq + 2x) − 1

2

]
∂�

∂x
(3.23)

corresponds to the original nonlinear equation (3.19). Note that we replace the terms
cos(t + x), sin(t + x) and so on by cos(tq + x) and sin(tq + x), respectively, so as
to gain a solution in the power series of t .

Similarly, the Mth-order approximation is given at q = 1 by (3.14), with ϕm being
governed by the high-order deformation equations

∂

∂t

(
ϕm − χmϕm−1

)
= c0 δ5,m−1, (3.24)

subject to the boundary condition

ϕm(t, x)

∣∣∣
t=1

= 1

m! sin
(
x + mπ

2

)
, (3.25)

where

δ5,n = Dn

(
N5

[
�(t, x, q), q

])

= ∂ϕn

∂t
− 1

2

∂ϕn

∂x
+ 1

8

∂2ϕn

∂x2
+

n∑
i=0

t i

i! sin
(

x + iπ

2

)
∂ϕn−i

∂x

+
n∑

i=0

t i

i!
[
2i

8
cos

(
2x + iπ

2

)
∂2ϕn−i

∂x2
− cos

(
x + iπ

2

)
ϕn−i

]

+
n∑

i=0

(2t)i

i!
[
1

8
sin

(
2x + iπ

2

)
− 1

2
cos

(
2x + iπ

2

)]
∂ϕn−i

∂x

−
n∑

i=0

n−i∑
j=0

t i

i! cos
(

x + iπ

2

)
ϕjϕn−i−j , (3.26)

with χm, Dn, and N5 being defined by (2.25), (2.20), and (3.23), respectively. Sim-
ilarly, we choose ϕ0 = sin(x) as the initial guess of u(t, x). Then, it is easy to gain
the solution of (3.24):

ϕm(t, x) = χm ϕm−1(t, x) + c0

∫ t

0
δ5,m−1(t, x)dt + Bm(x), (3.27)

step by step, starting from m = 1, where the integration coefficient Bm(x) is deter-
mined by (3.25). This is rather efficient computationally by means of the computer
algebra software such as Mathematica.
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As long as the Mth-order approximation ϕ̃M is known, we have the approxima-
tions of the initial values

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ỹ0 = ϕ̃M(0, x0), z̃0 =
[
cos(x)

∂ϕ̃M

∂x

] ∣∣∣∣
t=0, x=x0

,

�̃0 =
{
cos(x) ∂

∂x

[
cos(x)

∂ϕ̃M

∂x

]}∣∣∣∣
t=0, x=x0

,

Ã0 =
{
L̃
[
cos(x)

∂ϕ̃M

∂x

]} ∣∣∣∣
t=0, x=x0

,

(3.28)

where L̃ is defined by (1.8).
Similarly, it is found that the optimal c0 (i.e., the minimum E) is −1. In case of

c0 = −1, the homotopy approximations read

⎧⎪⎪⎨
⎪⎪⎩

ϕ̃1(t, x) = sin(x) + t cos(x);
ϕ̃2(t, x) = sin(x) + t cos(x) − 1

2 t
2 sin(x);

ϕ̃3(t, x) = sin(x) + t cos(x) − 1
2 t

2 sin(x) − 1
6 t

3 cos(x);
· · ·

(3.29)

It is found that the homotopy approximations ϕ̃M(t, x) are the Maclaurin series of
the exact solution u(t, x) = sin(x + t) about t . Besides, as shown in Table 5, the
homotopy approximations at the initial moment ỹ0, z̃0, �̃0, and Ã0 are exactly the
same as the exact solutions y0, z0, �0, and A0, respectively. In addition, Ẽ quickly
decreases to 7 × 10−29 in just 0.28 s CPU times. So, convergent results of this kind
of 2FBSDEs can be rather efficiently obtained by means of the HAM, too.

3.3 An example of high-dimensional FBSDEs

Finally, let us consider the d-dimensional decoupled FBSDE

∂u

∂t
+

d∑
i=1

bi

∂u

∂xi

+ 1

2

d∑
i=1

σ 2
i,i · ∂2u

∂x2
i

+ f = 0, (3.30)

Table 5 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0, �̃0, Ã0 and the exact solutions y0, z0, �0, A0 of (3.17), respectively

m Ẽ ỹ0 − y0 z̃0 − z0 �̃0 − �0 Ã0 − A0 Time (s)

4 1 × 10−4 0 0 0 0 0.05

8 2 × 10−9 0 0 0 0 0.08

12 3 × 10−15 0 0 0 0 0.13

16 8 × 10−22 0 0 0 0 0.19

20 7 × 10−29 0 0 0 0 0.28

Here, m denotes the order of approximation
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in which

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi = 1
d

xi e−x2i , σi,i = 1
d
e−x2i , i = 1, 2, · · · , d,

f = −∑d
i=1 xizi + 1

d2
y − 1

d3

∑d
i=1

[(
x2
i + e−2x2i

)∏d
k = 1
k �= i

(xk + t)

]

− 1
d

∑d
i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
i

∑d

j = 1
j �= i

∏d

k = 1
k �= i

k �= j

(xk + t)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(3.31)

with the exact solutions
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt = 1
d

∑d
j=1

⎡
⎢⎢⎣x2

t,j

∏d

k = 1
k �= j

(xt,k + t)

⎤
⎥⎥⎦ ,

zt,i = 1
d2
e−x2t,i

∑d

j = 1
j �= i

⎡
⎢⎢⎢⎢⎢⎢⎣
x2
t,j

∏d

k = 1
k �= i

k �= j

(xt,k + t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ 2xt,i

d2
e−x2t,i

∏d

k = 1
k �= i

(xt,k + t).

Without loss of generality, let us choose T = 1, x0,i = 1, i = 1, 2, · · · , d . Then the
exact values at the initial moment are

y0 = 1, z0,i = d + 1

ed2
, i = 1, 2, · · · , d.

According to (1.2)–(1.5), the corresponding PDE reads

N6[u] = ∂u

∂t
+ 1

2d2

d∑
i=1

(
e−2x2i · ∂2u

∂x2
i

)
+ u

d2
− 1

d

d∑
i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x2
i

d∑
j = 1
j �= i

d∏
k = 1
k �= i

k �= j

(xk + t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

d3

d∑
i=1

⎡
⎢⎢⎢⎢⎢⎣

(x2
i + e−2x2i )

d∏
k = 1
k �= i

(xk + t)

⎤
⎥⎥⎥⎥⎥⎦

= 0, (3.32)
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subjects to the boundary condition

u(t, x)

∣∣∣∣
t=1

= 1

d

d∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

x2
j

d∏
k = 1
k �= j

(xk + 1)

⎤
⎥⎥⎥⎥⎥⎦

, (3.33)

where
x =

{
x1, x2, · · · , xd

}
is a vector, and N6 is a differential operator defined by (3.32), respectively.

In the frame of the HAM, we construct the following zeroth-order deformation
equations

(1 − q)
∂

∂t

[
�(t, x, q) − ϕ0(t, x)

]
= c0 q N6

[
�(t, x, q)

]
, (3.34)

subject to the boundary condition

�(t, x, q)

∣∣∣∣
t=1

= 1

d

d∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

x2
j

d∏
k = 1
k �= j

(xk + 1)

⎤
⎥⎥⎥⎥⎥⎦

, (3.35)

where ϕ0 is the initial guess of u that satisfies the boundary condition (3.33). In order
to satisfy the boundary condition (3.33), we choose the initial guess

ϕ0(t, x) = 1

d

d∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

x2
j

d∏
k = 1
k �= j

(xk + 1)

⎤
⎥⎥⎥⎥⎥⎦

. (3.36)

Similarly, the above equations build a continuous variation �(t, x, q) from the initial
guess ϕ0 at q = 0 to the unknown solution u at q = 1. Expand �(t, x, q) into power
series of q, i.e.,

�(t, x, q) =
+∞∑
m=0

ϕm(t, x) · qm. (3.37)

Substituting (3.37) into the zeroth-order deformation equations (3.34) and (3.35),
then equating the like-power of q, we have the high-order deformation equations

∂

∂t

[
ϕm − χmϕm−1

]
= c0 δ6,m−1, (3.38)

subject to the boundary condition

ϕm(t, x)

∣∣∣∣
t=1

= 0, (3.39)
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where

δ6,m−1 = Dm−1

{
N6

[
�(t, x, q)

]}

=
{

∂ϕm−1

∂t
+ ϕm−1

d2
+ 1

2d2

d∑
i=1

(
e−2x2i · ∂2ϕm−1

∂x2
i

)

− 1

d3

d∑
i=1

[
(x2

i + e−2x2i )

d∏
k = 1
k �= i

(xk + t)

]
(1 − χm)

− 1

d

d∑
i=1

[
x2
i

d∑
j = 1
j �= i

d∏
k = 1
k �= i

k �= j

(xk + t)

]
(1 − χm)

}
, (3.40)

and χm and Dn are defined by (2.25) and (2.20), respectively. Obviously, it is easy to
gain its solution

ϕm(t, x) = χm ϕm−1(t, x) + c0

∫ t

1
δ6,m−1(t, x)dt, (3.41)

step by step, starting from m = 1, by means of computer algebra software
Mathematica.
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Fig. 6 The squared residual error of (3.32) versus c0 in case of d = 4. Dash-dotted line: 2th-order
approximation; dashed line: 3th-order approximation; solid line: 4th-order approximation; dash-double-
dotted line: 5th-order approximation
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Fig. 7 Comparison between the homotopy approximations and the exact solution u of (3.32) and (3.33)
in case of d = 4 when t = 0, 0.25, 0.5, 0.75, xi = x, i = 1, 2, · · · , d.Dash-double-dotted line: homotopy
approximation at t = 0; solid line: homotopy approximation at t = 0.25; dashed-dotted line: homotopy
approximation at t = 0.5; dashed line: homotopy approximation at t = 0.75. Square: exact solution at
t = 0; triangle up: exact solution at t = 0.25; circle: exact solution at t = 0.5; diamond: exact solution at
t = 0.75

Similarly, at q = 1, we have the Mth-order homotopy approximation of u(t, x):

ϕ̃M(t, x) =
M∑

m=0

ϕm(t, x), (3.42)

which gives the approximations of the initial values:

ỹ0 = ϕ̃M(0, x0), z̃0,i =
[
1

d
e−x2i

∂ϕ̃M

∂xi

] ∣∣∣∣
t=0, x

= x0, i = 1, 2, · · · , d.

Table 6 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0 and the exact solutions y0, z0 of (3.30) and (3.31), respectively, when
d = 4

m Ẽ ỹ0 − y0 z̃0 − z0 Time (s)

2 1 × 10−3 8 × 10−3 3 × 10−4 0.1

4 1 × 10−10 2 × 10−6 4 × 10−7 0.7

5 1 × 10−11 −2 × 10−7 8 × 10−8 1.6

6 4 × 10−12 −3 × 10−8 3 × 10−9 3

8 1 × 10−12 2 × 10−9 −7 × 10−10 10

10 9 × 10−13 −6 × 10−11 7 × 10−11 26

Here, m denotes the order of approximation
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Table 7 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0 and the exact solutions y0, z0 of (3.30) and (3.31), respectively, when
d = 6

m Ẽ ỹ0 − y0 z̃0 − z0 Time (s)

2 2 × 10−2 9 × 10−3 2 × 10−4 0.6

4 3 × 10−11 5 × 10−7 5 × 10−8 5

5 9 × 10−15 −2 × 10−8 4 × 10−9 11

6 3 × 10−16 −1 × 10−9 5 × 10−11 21

8 5 × 10−18 1 × 10−11 −3 × 10−12 66

10 2 × 10−19 −1 × 10−13 6 × 10−14 159

Here, m denotes the order of approximation

Similarly, the curves of the residual squared error E versus c0 in the case of d = 4
is as shown in Fig. 6, which indicates that the optimal c0 (i.e., the minimum E) is
near to −1. Besides, it is found that, for any c0 ∈ [−1.1, −0.6], convergent results
can be obtained. So, for the sake of simplicity, let us choose c0 = −1. As shown in
Fig. 7, our homotopy approximations agree well with the exact solution. It is found
that convergent results can be quickly obtained in a similar way, even though in case
of high dimensionality d, such as d = 12, as shown in Tables 6, 7, 8, 9, and 10.
Note that in case of the dimensionality d = 6, it takes 18481 s CPU times (when
N = 128) with the accuracy at the level 10−7 by means of the so-called spectral
sparse grid approximations [34]. However, in the same case of the dimensionality
d = 6, it takes only 159 s CPU time by means of the HAM, which is less than
1 % of the CPU time used in [34] for the same case, to obtain the 10th-order HAM
approximation at the level of 10−13 that is much more accurate. Note that, in case of
the dimensionality d = 6, the HAM approach takes only 11 s to gain the 5th-order
approximation at the level 10−8. In fact, almost all of our 5th-order approximations
given by the HAM reach the higher accuracy level than 10−7. For example, even in

Table 8 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0 and the exact solutions y0, z0 of (3.30) and (3.31), respectively, when
d = 8

m Ẽ ỹ0 − y0 z̃0 − z0 Time (s)

2 1 1 × 10−2 3 × 10−4 3

4 1 × 10−10 3 × 10−7 2 × 10−8 34

5 1 × 10−15 −6 × 10−9 5 × 10−10 74

6 7 × 10−19 −2 × 10−10 3 × 10−12 149

8 1 × 10−21 7 × 10−13 −8 × 10−14 451

10 5 × 10−24 −2 × 10−15 5 × 10−16 1084

Here, m denotes the order of approximation
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Table 9 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0 and the exact solutions y0, z0 of (3.30) and (3.31), respectively, when
d = 10

m Ẽ ỹ0 − y0 z̃0 − z0 Time (s)

2 58 2 × 10−2 4 × 10−4 21

4 1 × 10−9 2 × 10−7 8 × 10−9 196

5 4 × 10−15 −3 × 10−9 2 × 10−10 497

6 2 × 10−20 −6 × 10−11 4 × 10−13 876

8 2 × 10−22 1 × 10−13 −6 × 10−15 2920

Here, m denotes the order of approximation

the case of the dimensionality d = 12, our HAM approach takes only 3084 s to gain
the 5th-order approximation at the accuracy level 10−9. So, let tS and tH denote the
used CPU times for the spectral sparse grid approximations [34] and the 5th-order
HAM approximations, respectively. We have the fitted formulas:

tH = exp(−3.2 + 0.95d), (3.43)

tS = exp(−7.6 + 2.9d), (3.44)

where the dimensionality d ≥ 3 is an integer. The computational efficiency versus
the dimensionality d is as shown in Fig. 8. Note that, as the dimensionality d enlarges,
the increase of computational complexity of our HAM approach is not as dramatic as
the spectral sparse grid method [34]. This indicates the validity and high efficiency
of the HAM to solve FBSDEs with high dimensionality.

It should be emphasized that we solve the three kinds of FBDES simply via inte-
grations with respect to the time (t) in the frame of the HAM. This is exactly the
same as the BSDEs, as illustrated in § 2. Thus, there are no fundamental differences
in the frame of the HAM to solve either the BSDEs or the FBSDEs considered in
this paper.

Table 10 The squared residual error, the used CPU time (second) and the relative error between the
homotopy approximations ỹ0, z̃0 and the exact solutions y0, z0 of (3.30) and (3.31), respectively, when
d = 12

m Ẽ ỹ0 − y0 z̃0 − z0 Time (s)

2 4274 5 × 10−2 7 × 10−4 121

3 1 × 10−2 1 × 10−4 2 × 10−6 424

4 2 × 10−8 2 × 10−7 6 × 10−9 1154

5 3 × 10−14 −2 × 10−9 7 × 10−11 3084

Here, m denotes the order of approximation
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Fig. 8 The used CPU time (second) versus dimensionality d of (3.32) and (3.33). Circle: CPU times for
5th-order HAM approximations; diamond: CPU times for the spectral sparse grid approximations [34];
solid line: the fitted formula (3.43); dashed line: the fitted formula (3.44)

4 Concluding remarks and discussions

In this paper, the homotopy analysis method (HAM) is successfully employed to
solve the BSDEs, FBSDEs, 2FBSDEs, and high-dimensional FBSDEs (up to 12
dimensions). By means of the HAM, which provides us great freedom to construct
a continuous deformation and besides a simple way to guarantee the convergence
of solution series, convergent results are quickly obtained for all equations consid-
ered in this paper. Besides, all of our results agree well with the exact solutions.
All of these demonstrate the validity and high efficiency of the HAM for the
backward/forward-backward stochastic differential equations, especially in case of
high dimensionality.

Our HAM approach contains somethings unusual and different. Note that, in the
frame of the HAM, all of the BSDE, FBSDE, and 2FBSDE can be solved without any
essential differences: the governing equations for their high-order approximations are
the same in essence, related with the auxiliary linear operator

L[u] = ∂u

∂t
. (3.45)

In other words, all high-order homotopy approximations can be easily obtained by
integration with respect to the time (t). This is very easy and quite efficient by means
of computer algebra such as Mathematica. This is the reason why our HAM approach
is much more efficient than other numerical ones. It should be emphasized that, it
is the HAM that provides us great freedom to choose such a simple auxiliary linear
operator, as mentioned by Liao [36, 37]. For example, using such kind of freedom of
the HAM, one can solve the 2nd-order Gelfand differential equation even by means of
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a 2d-th-order linear differential operator in the frame of the HAM, where d = 1, 2, 3
is the dimensionality [49]. In addition, a nonlinear differential equation can be solved
in the frame of the HAM even by means of directly defining an inverse mapping, i.e.,
without calculating any inverse operators at all [50]. It should be emphasized that, if
perturbation method is used to solve (2.10) and (2.11), one had to handle governing
equations with a more complicated linear operator

L̂[u] = ∂u

∂t
+ θ

2
(1 − θ) (1 − 2θ)

∂u

∂θ
+ θ2

2
(1 − θ)2

∂2u

∂θ2
, (3.46)

which are rather difficult to solve. The above linear operator suggests that the time
(t) should be as important as other variables. However, our HAM approach reveals
that only the time (t) is important for the BSDEs and FBSDEs, which has priority
over others. So, the above linear operator (3.46) from perturbation techniques might
mislead us greatly. Fortunately, the linear operator (3.45) used in our HAM approach
could tell us the truth.

Without doubt, it is valuable to further apply the HAM to solve other types of
BSDEs and FBSDEs in science, finance, and engineering.
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Appendix

Here, we use the mathematical induction to prove (3.16), i.e.,

ϕi = t i

i! sin(x + i

2
π), i = 0, 1, 2, · · · . (3.47)

When i = 0, ϕ0 = sin(x) satisfies (3.47). Suppose when 0 ≤ i ≤ k, we have

ϕi = t i

i! sin(x + i

2
π) = Di [sin(tq + x)] , i = 0, 1, 2, · · · , k, (3.48)

where Di is defined by (2.20). Besides, it is obvious that

Di [cos(tq + x)] = t i

i! cos
(
x + iπ

2

)
,

Di [cos(2tq + 2x)] = (2t)i

i! cos
(
2x + iπ

2

)
.

(3.49)

In addition, according to Liao [37], we have

Dm

[∏j

i=1 αi(q)
]

= ∑m
r1=0Dm−r1[α1]∑r1

r2=0Dr1−r2[α2] · · ·∑rj−2
rj−1=0Drj−2−rj−1 [αj−1]Drj−1 [αj ].

(3.50)
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Substituting (3.48) and (3.49) into (3.9), we have

∂
∂t

(
ϕk+1 − χk+1ϕk

)

= −
{

∂ϕk

∂t
− tk

k! cos
(
x + k

2π
)

+ Dk

[
sin(tq + x) sin(tq + x) cos(tq + x)

+ 1
2 cos(tq + x) sin(tq + x) sin(tq + x) sin(tq + x) cos(tq + x)

− 1
4 cos(2tq + 2x) sin(tq + x) sin(tq + x) sin(tq + x)

− 1
4 sin(tq + x) sin(tq + x) sin(tq + x)

− cos(tq + x) sin(tq + x) sin(tq + x)
]}

= −
{

∂ϕk

∂t
− tk

k! cos
(
x + k

2π
)+ Dk

[
0
]}

= tk

k! sin
(
x + k+1

2 π
)

− ∂ϕk

∂t
.

(3.51)

Thus,

∂ϕk+1

∂t
= (χk+1 − 1)

∂ϕk

∂t
+ tk

k! sin
(

x + k + 1

2
π

)
= tk

k! sin
(

x + k + 1

2
π

)
.

Combining (3.10), it is easy to obtain

ϕk+1 = tk+1

(k + 1)! sin
(

x + k + 1

2
π

)
. (3.52)

So, (3.47) satisfies for any k ∈ N .
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