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The heat and mass transfer of two-layer flows of non-Newtonian (third-grade) fluid in a
vertical channel is investigated in details, when one layer of water is nano-fluid and the
other is clear, with the viscous dissipation. In each layer, the boundary-layer flow is gov-
erned by coupled nonlinear ordinary differential equations (ODEs). The systems of coupled
nonlinear ODEs are solved analytically by means of a Mathematica package BVPh 2.0 based
on the homotopy analysis method (HAM), an analytic approximation method for highly
nonlinear problems. The influence of the physical parameters is studied in detailed. It is
found that the layer of nano-fluid has many different properties from that of clear fluid.
This paper also illustrates the validity and power of the HAM-based Mathematica package
BVPh 2.0 for some complicated boundary-layer flows.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The mixed or combined convection arises in many situations such as, natural convection in the presence of ambient fluid
circulations, the externally induced flow in heated channels, etc. The flow and heat transfer in mixed convection situations
are topic of great interest due to its applications in chemical processing equipment, cooling of electronic circuitry by means
of fan, solar technology, nuclear reactors cooled during emergency shut down, etc. Sparrow et al. [1] was the first to study the
mixed convection flows, followed by Sparrow and Gregg [2], Tao [3], Szewczyk [4] and Merkin [5]. Due to its wide applica-
tions, a lots of investigations were made on fully developed mixed convection flows in a vertical channel. Rajagopal and Na
[6] studied third-grade fluid between two infinite parallel vertical plates. Aung and Worku [7] investigated flows in a vertical
channel with asymmetric wall temperature. Further, Aung and Worku [8] examined mixed convection flows in a vertical
channel with different wall temperatures. They found that flow is reversed for large values of buoyancy parameter. Massoudi
and Christie [9] studied the influences of the non-Newtonian nature of fluid on the skin friction and heat transfer. Barletta
[10] investigated combined forced and free convection flows in a rectangular duct for laminar, fully developed regime.
Boulama and Galanis [11] presented analytical solutions for fully developed mixed convection between parallel plates.
Recently, Baoku and Olajuwon [12] investigated viscoelastic third-grade fluid past an infinite vertical insulated plate subject
to suction across the boundary layer. Some more recent studies for flows of third-grade fluid can be consulted through the
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Refs. [13–18]. Note that the aforementioned studies investigate models with only a single-fluid. However, in practice, most
of the problems relating to petroleum industry, geophysics, plasma physics, magneto-fluid dynamics, etc., involve multi-
fluid flow situations. A number of complex interfacing transport phenomena may take place in non-isothermal multi-fluid
systems. An important assumption usually met in these models is the interfacial thermal and chemical equilibrium between
the fluids. Beckermann et al. [19] performed numerical investigation to analyze the flow and heat transfer between a fluid
layer and a porous layer inside a rectangular enclosure. Kimura et al. [20] studied the influence of ratio of the depth of two-
layers on the heat transfer. Malashetty et al. [21] presented analytical solutions for two region vertical enclosure with one
region electrically conducting and the other electrically non-conducting. Kumar et al. [22] investigated the influences of the
governing parameters on the flow and heat transfer for two-layer fluid with one region filled with micropolar fluid and the
other with clear fluid. Umavathi et al. [23] examined three-layer flows with a porous media sandwiched between clear fluids.
Nikodijevic et al. [24] obtained closed-form solutions for magnetohydrodynamic Couette flow of two immiscible fluids. Part-
hab et al. [25] studied two-layer mixed convective flow and heat transfer in a vertical channel with one region filled with
conducting fluid and other with nonconducting ones.

Nanotechnology grows rapidly due to its immense applications in many electronic devices, vehicles, space craft, metrol-
ogy, artificial organs and cooling applications of nano-fluids, and so on. Choi [26] is the first to use the term nano-fluid, who
proposed that nanometer sized metallic particles can be suspended in industrial heat transfer fluids. Therefore, a nano-fluid
is a suspension of nano-particles (metallic, non-metallic, or polymeric) in a conventional base fluid which enhances its heat
transfer characteristics. Enhanced thermal properties of nano-fluids enable them to use in automotive industry, power
plants, cooling systems, computers, etc. An in-depth review on nano-fluids can be found in the book by Das et al. [27]
and in the review paper by Wang and Mujamdar [28]. Recently, the flows due to a mixed convection in a vertical channel
in nano-fluids have drawn considerable attention. Kuznetsov and Nield [29] investigated natural convective boundary layer
flows of a nano-fluid past a vertical plate. Xu and Pop [30] studied the influences of nano-particle volume fraction on the
temperature and velocity distributions for fully-developed mixed convection flow in a vertical channel filled with nano-flu-
ids. Gorsan and Pop [31] investigated mixed convection nano-fluid flow in a vertical channel for different physical param-
eters. Xu et al. [32] obtained series solutions for mixed convection flow of a nano-fluid in a vertical channel. Recently, Gorder
et al. [33] investigated fully-developed two-layer fluid flows in a vertical channel with one region filled with nano-fluid and
the other filled with clear fluid. In the same two-layer model by Gorder et al. [33], Farooq and Lin [34] proposed new non-
dimensional quantities for physical parameters and exhibited the flow reversal phenomenon for sufficiently high buoyancy.
Vajravelu et al. [35] investigated heat and mass transfer properties of three-layer fluid flow in which nano-fluid layer is
squeezed between two clear viscous fluid.

To the best of our knowledge, the two-layer model with one region filled with non-Newtonian third-grade clear fluid
and the other with non-Newtonian third-grade nano-fluid has never been investigated. Due to the non-Newtonian third-
grade fluid, the flows are governed by more complicated, coupled ODEs in each layer. The systems of these coupled non-
linear ODEs are solved by means of the Mathematica package BVPh 2.0 [40], which is valid for nonlinear boundary-value or
eigen-value problems with boundary conditions at multiple points, governed by coupled nonlinear ODEs. The BVPh 2.0 is
free available online (http://numericaltank.sjtu.edu.cn/BVPh.htm). It is based on the homotopy analysis method (HAM)
[36–39], an analytic approximation method for highly nonlinear problems. Unlike perturbation techniques, the HAM
has nothing to do with small/large physical parameters, so that it is essentially a non-perturbation method. Besides, based
on the homotopy in topology, the HAM provides us great freedom to choose the equation-type and base function of equa-
tions for high-order approximations. Especially, unlike all other analytic techniques, the HAM provides us a convenient
way to control and adjust the convergence of solution series, so that the convergence of solution series can be guaranteed.
Therefore, unlike other traditional analytic methods, the HAM is valid for highly nonlinear problems. The HAM has been
widely applied to solve lots of nonlinear problems in science, engineering and finance. The BVPh 2.0 [40] is a HAM-based
Mathematica package, which provides us an easy-to-use tool for nonlinear boundary-value or eigenvalue problems gov-
erned by coupled nonlinear ODEs.

In this paper, the complicated system of the coupled nonlinear ODEs in each layer of non-Newtonian fluid is solved con-
veniently by means of the BVPh 2.0. The influence of physical parameters on the flow, temperature, concentration, heat and
mass transfer is investigated in detail. Reversed flow is observed for sufficiently large values of mixed convection parameter.
These are helpful to deepen and enrich our understandings about the considered two-layer flows of third-grade fluid in a
vertical channel.
2. Problem formulation

Consider steady-state, laminar, incompressible flow between two infinite vertical parallel plates extending in the x and z
directions, with x-axis upwards and y-axis pointing to the right, as shown in Fig. 1. The region-I in the domain 0 6 y 6 h is
filled with a third-grade clear-fluid, and the region-II in the domain �h 6 y 6 0 is occupied by a third-grade nano-fluid,
respectively. In each layer, let qi denote the density, li the viscosity, ai the thermal diffusivity and ci the non-Newtonian
parameter, respectively, where i ¼ 1;2. The right and left walls have temperatures Tw1 and Tw2, respectively. In the two
regions, the fluid thermo-physical properties keep the same.

http://numericaltank.sjtu.edu.cn/BVPh.htm
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Fig. 1. Physical configuration.
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Incompressibility condition is automatically satisfied and the governing equations of momentum, energy and nanoparti-
cle volume fraction become:

(i) Region-I
m1
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Here the subscripts i ¼ 1;2 denote the values for region-I and region-II, respectively. Moreover, ui;v i denote the x and y-com-
ponent of fluid velocities, Ti the temperatures, Qi the internal heat generation or absorption parameters, cp the specific heat,
mi the kinematic viscosities, bi the coefficients of thermal expansion, g the gravitational acceleration, C the nano-particle vol-
ume fraction, DB the Brownian diffusion coefficient, DT the thermophoretic diffusion coefficient, and s ¼ ðqCpÞp=ðqCpÞf the
heat capacity ratio, respectively. Here, the subscripts p and f respectively denote the nanoparticles and the base fluid.

Assume that the velocity, the shear stress, the temperature, and the heat flux at the interface are continuous. The no-slip
boundary conditions require the x-component of the velocity to vanish at the wall. The boundary conditions on the temper-
ature are isothermal. With these assumptions, the boundary and interface conditions for the problem are
u1ðyÞ ¼ 0; T1ðyÞ ¼ Tw1; at y ¼ h;
u1ðyÞ ¼ u2ðyÞ; T1ðyÞ ¼ T2ðyÞ; CðyÞ ¼ 0

l1
du1
dy þ 2c1

du1
dy

� �3
¼ l2

du2
dy þ 2c2

du2
dy

� �3
; k1

dT1
dy ¼ k2

dT2
dy ;

9=
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8>>>>><
>>>>>:

ð6Þ
where ki ði ¼ 1;2Þ are the thermal conductivities in the regions I and II. Following Buongiorno [41], we use the coupled Eqs.
(1)–(5) for the nano-particle concentration. Define the following non-dimensional quantities
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ð7Þ
where ~ui is the average velocity. The non-dimensional equations after dropping asterisks become
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(i) Region-I (0 6 y 6 1):
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(ii) Region-II (�1 6 y 6 0):
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In the above equations, the parameters ki; Pri, Nb; Nt ; Di and Ci are the mixed convection parameters, the Prandtl numbers,
the Brownian motion parameter, the thermophoresis parameter, the non-Newtonian coefficient and the Eckert number in
the region-I and region-II, respectively, defined by
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Here, d1 and d2 are the heat source/sink parameter in the region-I and II, respectively, and
d1 ¼
Q1h2

1

q1Cpm1
; d2 ¼

Q 2h2
2
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:

The corresponding boundary conditions in non-dimensional form are
u2ðyÞ ¼ 0; h2ðyÞ ¼ 0; /ðyÞ ¼ 1 at y ¼ �1;
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:
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ð15Þ
where the ratios of the absolute viscosities and thermal conductivities are defined by
l ¼ l2

l1
; k ¼ k1

k2
: ð16Þ
The additional conditions related to the mass flux conservation at any cross section in the channel read
Z 0

�1
u1ðyÞdy ¼ 1 ð17Þ
and
 Z 1

0
u2ðyÞdy ¼ 1: ð18Þ
Noted that the pressure gradients P1 and P2 are unknown constants in Eqs. (8) and (10), since we have two additional Eqs.
(17) and (18). Instead of solving the original Eqs. (8)–(12), we first differentiate Eqs. (8) and (10) w.r.t to the independent
variable y: (i) Region-I (0 6 y 6 1):
d
dy
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dy2 þ P1 þ 6D1
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dy
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 !
¼ 0: ð19Þ
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(ii) Region-II (�1 6 y 6 0):
d
dy

d2u2

dy2 þ P2 þ 6D2
d2u2

dy2

du2

dy
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þ k2h2

 !
¼ 0 ð20Þ
and then solve Eqs. (19), (9) for the region-I and (20), (11), (12) for the region-II, subject to the boundary conditions (15), (17)
and (18), respectively, by means of the HAM-based Mathematica package BVPh 2.0. Thereafter, the values of P1 and P2 are
given by the original Eqs. (8) and (10), respectively.

3. Analytic solutions given by the HAM

As a kind of analytic approximation method for highly nonlinear problems, the HAM has attracted the attention of many
researchers: in the past two decades it has been successfully applied to solve lots of nonlinear problems in science, finance
and engineering. To simplify the applications of the HAM, a few packages have been developed. In 2012, Liao [39] issued the
HAM-based package BVPh 1.0 for nonlinear boundary-value/eigenvalue problems with singularity, multi-point boundary
conditions and multiple solutions, governed by one ordinary differential equation (ODE). Currently, Zhao and Liao [40] issued
its new version BVPh 2.0 for coupled nonlinear ODEs. By means of the Mathematica package BVPh 2.0, the system of the
coupled nonlinear ODEs (19), (9), (20), (11) and (12), subject to the boundary conditions (15), (17) and (18), can be easily
solved in the frame of the HAM, as shown below.

To shorten the length of the paper, we just describe the things necessary for the BVPh 2.0, but rather briefly. For details
about the HAM and BVPh 2.0, please refer to Liao [39,40]. In the framework of the HAM, the solutions uiðyÞ; hiðyÞ and /ðyÞ
can be expressed explicitly by an infinite series in the form
uiðyÞ ¼
Xþ1
k¼0

ui;kðyÞ; hiðyÞ ¼
Xþ1
k¼0

hi;kðyÞ; /ðgÞ ¼
Xþ1
k¼0

/kðyÞ ði ¼ 1;2Þ; ð21Þ
where ui;kðyÞ; hi;kðyÞ; /kðyÞ are governed by the so-called high-order deformation equations, which are linear and dependent
upon a linear operator, called the auxiliary linear operator. The additional Eqs. (17) and (18) describing the closure property
for channel flows will be incorporated as additional boundary conditions. These additional boundary conditions will be used
to determine the unknown pressure constants in (8) and (10) for the known values of all other physical parameters. We have
differentiated Eq. (8) and Eq. (10) with respect to y and together with the 12 boundary conditions, the system of coupled
non-linear system of ODEs are solved by BVPh 2.0. In essence, the HAM transfers a nonlinear problem into an infinite number
of linear sub-problems. However, the HAM provides us great freedom to choose the equation-type of these linear sub-prob-
lems and the base-functions of their solutions. For simplicity, the BVPh 2.0 needs to input the governing equations and
boundary conditions, and choose proper initial guess of solution and auxiliary linear operators for these linear sub-problems.

In the frame of the HAM, one has great freedom to choose the auxiliary linear operator. Since the solutions are in a finite
domain, they can be expressed by the polynomial functions. Thus, we choose the auxiliary linear operators
L1½uðyÞ� ¼
d3u
dy3 ð22Þ
for the high-order deformation equations corresponding to the Eqs. (19), (20), and
L2½uðyÞ� ¼
d2u
dy2 ð23Þ
for Eqs. (9), (11) and (12), respectively. The auxiliary linear operators possess the properties
L1½C0 þ C1yþ C2y2� ¼ 0 ð24Þ

and
L2½C0 þ C1y� ¼ 0; ð25Þ

respectively, where C0; C1 and C2 are constants to be determined.

Besides, in the frame of the HAM, we also have freedom to choose the initial guess of the solution. Considering the bound-
ary conditions, we choose the following initial approximation
u1;0ðyÞ ¼
3
2
ð1� y2Þ; ð26Þ

u2;0ðyÞ ¼
3
2
ð1� y2Þ; ð27Þ

h1;0ðyÞ ¼
1

Kh
yþ 1� 1

Kh

� �
y2; ð28Þ

h2;0ðyÞ ¼ y2 þ y; ð29Þ

/0ðyÞ ¼
3
2

y2 þ 1
2

y: ð30Þ



Table 1
Averaged squared residual errors using �h1 ¼ �0:15; �h1 ¼ �1:20; �h3 ¼ �0:46 whereas k1 ¼ k2 ¼ l ¼ Pr1 ¼ Pr2 ¼ 1; Nb ¼ Nt ¼
D1 ¼ D2 ¼ C1 ¼ C2 ¼ k ¼ 0:1.

m 20 40 60

P1 5:1297 5:1291 5:1291
P2 5:8231 5:8176 5:8176
Eu1

m 28:57� 10�2 12:47� 10�4 4:38� 10�6

Eh1
m 8:48� 10�8 2:39� 10�11 1:83� 10�14

Eu2
m 35:55� 10�2 16:0� 10�4 6:37� 10�14

Eh2
m 9:01� 10�8 2:78� 10�11 2:24� 10�14

E/
m 9:92� 10�8 1:37� 10�11 8:48� 10�15

Et
m 64� 10�2 29� 10�4 10� 10�6
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Using the linear auxiliary operator (22), (23) and the initial approximations (26)–(30), the coupled nonlinear ODEs (19), (20),
(9), (11) and (12), subject to the boundary conditions (15), (17) and (18), can be solved directly by means of the Mathematica
package BVPh 2.0.

Unlike other analytic approximation methods, the HAM introduces the so-called ‘‘convergence-control parameter’’ to
guarantee the convergence of solution series. In fact, it is the ‘‘convergence-control parameter’’ that differs the HAM from
all other analytic methods. The ‘‘convergence-control parameters’’ have no physical meanings, and their optimal values
can be determined by the minimum of residual square of governing equations, as pointed out by Liao [37].

Since there are five governing equations for the five unknown functions, we have five convergence-control parameters
cu1

0 ; cu2
0 ; ch1

0 ; ch2
0 ; c/

0 . For simplicity, we assume,
cu1
0 ¼ cu2

0 ¼ �h1; ð31Þ

ch1
0 ¼ ch2

0 ¼ �h2; ð32Þ

c/
0 ¼ �h3: ð33Þ
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Let Eu1
m ; E

u2
m ; E

h1
m ; E

h2
m ; E

/
m denote the residual squares of the five governing equations at the mth-order of approximation,

respectively, and Et
m their sum. The optimal value of the convergence-control parameter �h1 is determined by the minimum

of the total residual square Et
m.

For example, let us consider the case k1 ¼ k2 ¼ Pr1 ¼ Pr2 ¼ l ¼ 1; Nb ¼ Nt ¼ D1 ¼ D2 ¼ C1 ¼ C2 ¼ k ¼ 0:1. In order to
compute optimal convergence-control parameter �h1; �h2 and �h3 we minimize total average squared residual for Eqs. (19),
(20), (9), (11) and (12), by directly employing the command GetOptiVar of the BVPh 2.0. The HAM approximations are
substituted in Eqs. (8) and (10) to determine the unknown pressure constants. Using the optimal convergence control
parameters corresponding to 5-th order of approximation i.e. the optimal convergence-control parameter
�h1 ¼ �0:15; �h2 ¼ �0:1:20 and �h1 ¼ �0:46, not only the total error but also the residual squares for each equation decays:
the total error decays to the level 10� 10�6 at the 60th-order of approximation, also P1 and P2 converges to a unique value,
i.e. P1 ¼ 5:1297 and P2 ¼ 5:8231, as shown in Table 1. Thus, by means of the BVPh 2.0, we indeed gain an accurate analytic
approximation for the considered case.

4. Results and discussion

For different physical parameters, we can use the HAM-based Mathematica package BVPh 2.0 [40] to gain accurate results
in a similar way. In this section, the influence of the physical parameters on the flow and heat/mass transfer is investigated in
details.
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Figs. 2–11 depict interesting features of velocity, temperature, concentration profiles, local skin friction coefficient and
local Nusselt number. Graphical analysis has been carried out for different values of Brownian motion parameter (Nb), ther-
mophoresis parameter (Nt), mixed convection parameter (k), Prandtl number (Pr), non-dimensional coefficient (C) and non-
Newtonian third grade fluid parameter (D).

Fig. 2 shows the clear fluid and nano-fluid velocity profiles in region-I and region-II for different values of the mixed con-
vection parameter k in the absence of viscous dissipation. The physical parameter k ¼ Gr

Re describes the mixed convection. The
limiting values k! 0 and k!1 correspond to the forced and free convection, respectively. In the absence of mixed convec-
tion parameter i.e. k ¼ 0, the externally induced flow is parabolic and attains its maximum value at the interface. The
increase in the values of k results in significant buoyancy effects, which leads to the increase in the velocity profiles adjacent
to the heated right wall channel. It can be seen from Fig. 2 that the buoyancy parameter causes an adverse pressure gradient,
which results in the separation of the flow so that the flow starts reversing its direction. The extent of the reversed flow
region falls short of y ¼ 0:45 in the clear fluid and y ¼ �0:30 in the nano-fluid, respectively. The buoyancy effects are dom-
inant in the clear fluid region, i.e. the magnitude of change due to the mixed convection parameter is larger in the clear fluid
than in the nano-fluid.
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The influence of the physical parameters D and C on the local Sherwood number at the left wall are depicted in Fig. 3. It is
observed that at the left wall the local Sherwood number is a decreasing function of Nb. The increase in either D or C leads to
the increase of the mass transfer at the left wall.

Fig. 4 displays the influence of the mixed convection parameter on the fluid flow in the presence of viscous dissipation.
The increase of k results in the increase of the buoyancy and hence the increase of the velocity profile near the walls but near
the interface the flow decreases with the increase in k. From Figs. 2 and 4, we may conclude that the mixed convection
parameter can effectively control the velocity profile. For brevity, in the following results, we use the fixed values of the
physical parameters k1 ¼ k2 ¼ k; D1 ¼ D2 ¼ D; C1 ¼ C2 ¼ C; Pr1 ¼ Pr2 ¼ Pr.

The influence of the third-grade non-Newtonian parameter D on the fluid velocity is shown in Fig. 5. It is found that the
velocity increases in the vicinity of the interface with the increase in D, due to the shear thinning behavior of the third-grade
fluid.

Fig. 6 illustrates the influence of the non-dimensional parameter C on the temperature and nano-particle volume fraction.
The increase of C results in the increase of the temperature profiles. The increase in the temperature profile is due to the heat
energy stored in the fluid. The nano-particle volume fraction decreases with the increase of C.
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The influence of the thermophoresis parameter on the nano-particle volume fraction is shown in Fig. 7. It is found that the
increase in the thermophoresis parameter considerably alters the nano-particle volume fraction. Besides, the increase in Nt

reduces the concentration profile. It is due to the presence of temperature difference in the thermophoresis parameter that
decreases the mixed convection mass transfer.

The continuous collision between the nano-particles and the molecules of the base fluid within the base fluid is called the
Brownian motion. Fig. 8 depicts that the Brownian motion parameter decreases the fluid temperature throughout the
channel.

The influence of Prandtl number on the fluid temperature are as shown in Fig. 9. The increase in Prandtl number leads to
the increase of the temperature profile in clear fluid region.

Figs. 10 and 11 have been plotted to show the influences of D and C on the local skin friction coefficient at the left and
right walls, respectively. At the left wall in the nano-fluid region, the local skin friction is a decreasing function of Nb, whereas
at the right wall in the clear fluid region the local skin friction is an increasing function of Nb. The increase in either D or C
leads to enhance the momentum transfer at the right wall, while quite the opposite is noticed at the right wall.

Figs. 12 and 13 illustrate the influence of D and C on the local Nusselt number at the left and right walls, respectively. At
the left wall in the nano-fluid region the local Nusselt number is an increasing function of Nb, whereas at the right wall in the
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clear fluid region the local Nusselt number is a decreasing function of Nb, respectively. The increase in either D or C leads to
the deceleration of the heat transfer at the left wall, while quite opposite is true at the right wall.

5. Conclusions

The flow and heat transfer of non-Newtonian third-grade nano-fluid layer adjacent to a non-Newtonian third-grade clear
fluid layer in a vertical channel is studied analytically. The resulting multi-point boundary-value problem governed by five
coupled nonlinear ODEs is solved by means of an easy-to-use Mathematica package BVPh 2.0 based on the HAM. The influ-
ences of the physical parameters D; C; Nb; Nt and k on the fluid flow, temperature, concentration profiles, the local skin fric-
tions, the local Nusselt number and the local Sherwood number are studied in details. Our convergent analytic results
indicate that:

(1) For sufficiently large values of mixed convection parameter, reversed flow is observed throughout the channel.
(2) Increase in k, enhances the fluid flow near the walls but fluid velocity decreases in the vicinity of interface.
(3) Increase in Nb results in the decrease of the temperature whereas temperature increases with the increase in Pr.
(4) Increase in Nt leads to the decrease of the concentration profiles.
(5) At the left wall, the local skin friction increases with the increase in Nb but decreases with the increase in either D or C,

while quite opposite is true at the right wall of channel.
(6) At the left wall, the local Sherwood number decreases with the increase in Nb but increases with the increases in either

D or C.
(7) At the left wall, the local Nusselt number increases with the increase in Nb but decrease with the increases in either D

and C, while quite opposite is true at the right wall.

All of these deepen and enrich our understanding about the considered boundary-layer flows. It also illustrates the gen-
eral validity and power of the HAM-based Mathematica package BVPh 2.0 for complicated boundary-layer flows.
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