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a b s t r a c t 

Based on the homotopy analysis method (HAM) and the generalized Coiflet-type orthogo- 

nal wavelet, a new analytic approximation approach for solving nonlinear boundary value 

problems (governed by nonlinear ordinary differential equations), namely the wavelet ho- 

motopy analysis method (wHAM), is proposed. The basic ideas of the wHAM are described 

using the one-dimensional Bratu’s equation as an example. This method not only keeps 

the main advantages of the normal HAM, but also possesses some new properties and ad- 

vantages. First of all, the wHAM possesses high computational efficiency. Besides, based 

on multi-resolution analysis, it provides us a convenient way to balance the accuracy and 

efficiency by simply adjusting the resolution level. Furthermore, different from the normal 

HAM, the wHAM provides us much larger freedom to choose the auxiliary linear operator. 

In addition, just like the normal HAM, iteration can greatly accelerate the computational 

efficiency of the wHAM without loss of accuracy. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Since the homotopy analysis method (HAM) was proposed in 1992 by Liao [1–7] , this powerful and easy-to-use analytical

tool has been widely and successfully used to solve many nonlinear problems in science and industry [8–18] . Compared with

perturbation techniques [19,20] and some non-perturbative techniques (such as the artificial small parameter method [21] ,

the δ-expansion method [22] , the Adomian’s decomposition method [23] and so on), the HAM has the following advantages

[3] : 

(1) Based on the homotopy, a basic concept in topology, the HAM is independent of any small/large physical parameters

at all; 

(2) Unlike other analytic techniques, the HAM provides us a convenient way to guarantee the convergence of solution

series; 

(3) It can provide us extremely large freedom to choose equation type of linear sub-problems and the corresponding base

functions of solution. 

All of these advantages have been illustrated by various examples [2,3] . Thanks to all of the above advantages, it be-

comes possible to gain convergent series solution of many strongly nonlinear differential equations through the HAM by
∗ Corresponding author. 
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choosing proper base functions and the corresponding auxiliary linear operator, and especially a proper value of the so-

called convergence-control parameter. 

However, due to the nonlinearity, as the order of approximation increases, the computational complexity of the high-

order equations grows rapidly. Therefore, just as noted in [3,24] , the CPU time to gain the high-order approximation often

increases exponentially for the normal HAM. To improve the computational efficiency, some techniques have been devel-

oped, such as the truncation technique (called tHAM) [3,24] , the iteration approach (called iHAM) [3,24] , the spectral homo-

topy analysis method (called sHAM) [25–29] and so on. It is found that, in most cases, the truncation and iteration technique

can greatly accelerate the convergence of the solution. However, it should be emphasized that the iteration technique must

be based on the truncation of the right-hand side term of the high-order equation [24] . Besides, in the frame of the normal

HAM, the solution expression is strongly dependent upon the auxiliary linear operator. For example, if the linear operator is

chosen in the form of L [ φ] = 

∂ 2 φ
∂x 2 

+ φ, the trigonometric function should be selected as the base function for the solution

expression. If not, say, the linear operator is chosen in the form of L [ φ] = 

∂ 2 φ
∂x 2 

+ φ while polynomial or exponential func-

tion is used as the base function, it is impossible to gain the solution correctly. The sHAM [25–29] overcomes some of the

problems by using Chebyshev polynomials as base functions and solving high-order deformation equations by the spectral

method. 

Therefore, without doubt, the base function plays a significant role for efficiently obtaining a good approximation of a

highly nonlinear equation. Our purpose is to develop such a new HAM approach that: 

(A) It is insensitive to the choice of the auxiliary linear operator so that it can be more flexible and adaptive to choose

the auxiliary linear operator; 

(B) The exponential expansion of the right-hand side term in high-order deformation equation can be overcome in a

convenient way; 

(C) It can provide a convenient way to balance the computational efficiency and approximative accuracy so that an ac-

ceptable approximation can be obtained efficiently. 

For these purposes, the generalized Coiflet-type orthogonal wavelet developed by Wang and Zhou et al. [30–34] is ap-

plied as base functions to develop such a new HAM approach. The history of wavelet theory and its applications can be

traced back to Morlet [35] , a French geophysicist who first put forward the concept of wavelet transformation in 1974, and

Haar [36] , who first constructed a wavelet orthonormal basis (called Haar’s orthogonal wavelet) in 1910. Since then, the

wavelet theory has been widely applied to pure mathematics, signal analysis, image processing, seismic prospecting, medi-

cal science, chemistry, biology, solid mechanics, turbulent and electromagnetism, etc [30] . The early applications of wavelet

in differential equations could be traced back to 1990s [37–39] . However, as the theory of wavelet method for differential

equations was not established, many basic problems such as boundary leaping and computation of connection coefficients

were needed to solve [30,40,41] . Wang and Zhou et al. [30–34] developed the generalized Coiflet-type orthogonal wavelet

and proposed a new boundary extension technique [30,34,41–43] similar to Taylor’s expansion, and Chen et al. [44] put for-

ward a high accuracy algorithm in accordance with the basic operational rules of wavelet analysis. Now, the wavelet method

becomes a widely applied numerical technique with high accuracy for differential equations. 

In this paper, we propose a HAM-based approach, namely the wavelet homotopy analysis method (wHAM), which suc-

cessfully combines the homotopy analysis method and the generalized Coiflet-type orthogonal wavelet. In Section 2 , some

related theories of the generalized Coiflet-type orthogonal wavelet are introduced. In Section 3 , the basic ideas of wHAM is

described by using the Bratu’s problem as an example. In Section 4 , numerical results are given to illustrate the validity and

computational efficiency of the wHAM. In Section 5 , the concluding remarks about the wHAM are described. 

2. Wavelet approximation 

For the generalized Coiflet-type orthogonal wavelet, the scaling function ϕ( x ) and wavelet function ψ( x ) possess the

following properties [30,34] : 

(a ) ϕ(x ) = 

∑ 

l∈ Z 
p k ϕ(2 x − l) ; (1) 

(b) ψ(x ) = 

∑ 

l∈ Z 
(−1) k p 1 −k ψ(2 x − l) ; (2) 

(c) M n = M 

n 
1 , f or 0 ≤ n < N; (3) 

(d) 

∫ + ∞ 

−∞ 

x n ψ(x ) dx = 0 , f or 0 ≤ n < N; (4) 

(e ) 
∑ 

l∈ Z 
p k ϕ(x − l) = 1 ; (5) 
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Fig. 1. Scaling function of the generalized Coiflet-type orthogonal wavelet with number of vanishing moment N = 6 and first order moment M 1 = 7 . 

 

 

 

 

 

 

 

 

 

 

 

where p k are the low-pass filter coefficients that can be found in [41,43] , N is the number of vanishing moment, and

M n = 

∫ + ∞ 

−∞ 

x n ϕ(x ) dx is the nth-order moment of the scaling function. In this paper, the generalized Coiflet-type orthogo-

nal wavelet with N = 6 , M 1 = 7 is adopted. Note that the scaling function of the generalized Coiflet-type orthogonal wavelet

has no analytical expression so that the values of this function are obtained using the procedure described in [30] . The

basic graph of the scaling function ϕ( x ) is shown in Fig. 1 . Using the above-mentioned scaling function, a multiresolution

analysis [30,35] of the L 2 (R ) can be constructed, which consists a sequence of nested subspaces { 0 } ⊂ · · · ⊂ V 0 ⊂ V 1 ⊂ · · · ⊂
V j ⊂ V j+1 ⊂ · · · ⊂ L 2 (R ) , where 

V j = span 

{
ϕ(2 

j x − l) 
}

l∈ Z , (6)

in which all the base functions are mutually orthogonal. Note that j denotes the resolution level in the whole paper. Using

the generalized Gaussian integral method developed by Zhou et al. [45] , an arbitrary function f (x ) ∈ L 2 (R ) can be approxi-

mated by 

f (x ) ≈ P j f (x ) = 

∑ 

l∈ Z 
f 

(
M 1 + l 

2 

j 

)
ϕ(2 

j x − l) , (7)

where j denotes the resolution level. 

Furthermore, through the boundary extension technique [30,34,42] , the modified wavelet basis is constructed as 

ϕ j,l (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−1 ∑ 

i =2 −3 N+ M 1 

T 0 ,l 

(
i 

2 

j 

)
ϕ(2 

j x − i + 7) + ϕ(2 

j x − l + 7) , 

l ∈ [0 , 3] , 

ϕ(2 

j x − l + 7) , l ∈ [4 , 2 

j − 4] , 

2 j −1+ M 1 ∑ 

i =2 j +1 

T 1 , 2 j −l 

(
i 

2 

j 

)
ϕ(2 

j x − i + 7) + ϕ(2 

j x − l + 7) , 

l ∈ [2 

j − 3 , 2 

j ] , 

(8)

where 

T 0 ,l (x ) = 

3 ∑ 

i =0 

p 0 ,i,l 
i ! 

x i , T 1 ,l (x ) = 

3 ∑ 

i =0 

p 1 ,i,l 
i ! 

(x − 1) i , (9)



442 Z. Yang, S. Liao / Commun Nonlinear Sci Numer Simulat 48 (2017) 439–453 

 

 

 

 

 

 

 

 

 

 

and coefficients p 0, i, l and p 1, i, l are assigned as 

P 0 = 

⎡ 

⎢ ⎢ ⎣ 

1 0 0 0 

−11 / 6 3 −3 / 2 1 / 3 

2 −5 4 −1 

−1 3 −3 1 

⎤ 

⎥ ⎥ ⎦ 

, (10) 

P 1 = 

⎡ 

⎢ ⎢ ⎣ 

1 0 0 0 

11 / 6 −3 3 / 2 −1 / 3 

2 −5 4 −1 

1 −3 3 −1 

⎤ 

⎥ ⎥ ⎦ 

(11) 

through relations P 0 = { 2 −i j p 0 ,i,l } and P 1 = { 2 −i j p 1 ,i,l } with i = 0 , 1 , 2 , 3 . 

Using the modified wavelet base functions (8) and considering that the scaling function ϕ( x ) has a support interval [0,

17], an arbitrary bounded function f ( x ) ∈ L 2 [0, 1] can be approximated as 

f (x ) ≈ P j f (x ) = 

2 j ∑ 

l=0 

f 

(
l 

2 

j 

)
ϕ j,l (x ) , (12) 

where P j is a projection operator on the subspace V j . Then, the derivative of the function can be approximated by 

f (n ) (x ) ≈ d n [ P j f (x )] 

dx n 
= 

2 j ∑ 

l=0 

f 

(
l 

2 

j 

)
ϕ 

(n ) 
j,l 

(x ) , (13) 

where the values of ϕ 

(n ) 
j,l 

(x ) on equinoxes can be calculated through the method described in [30] . These two properties

provide us a rather convenient way to express a known function by means of the wavelet. 

According to [41,46] , the accuracy of the approximation (12) and its derivatives (13) can be estimated by the following

lemma: 

Lemma 1. For f (x ) ∈ L 2 ([0 , 1]) 
⋂ 

C N ([0 , 1]) , the accuracy of the approximation (12) and its derivative (13) can be estimated as∥∥∥∥d n f (x ) 

dx n 
− d n P j f (x ) 

dx n 

∥∥∥∥
L 2 

≤ C 2 

− j(N−n ) , (14) 

where C is a positive constant that depends only on the function f ( x ) and low-pass filter coefficients p k , N is the number of

vanishing moment, and 0 ≤ n < N. 

3. Basic ideas of the wHAM 

To illustrate the basic ideas of the wHAM, let us consider the one-dimensional Bratu equation 

d 2 u (x ) 

dx 2 
+ λe u (x ) = 0 , x ∈ (0 , 1) , (15) 

with the boundary conditions 

u (0) = u (1) = 0 , (16) 

where λ is a positive number, known as the Frank–Kamenetskii parameter [47] . Bratu’s equation is used in a large variety

of applications such as the fuel ignition model of the thermal combustion theory, the model of thermal reaction process,

the Chandrasekhar model of the expansion of the Universe, questions in geometry and relativity about the Chandrasekhar

model, chemical reaction theory, radiative heat transfer, nanotechnology, and so on [47] . 

In accordance with [47–49] , there exist two known bifurcated solutions for 0 < λ < λc , no solutions for λ > λc and a

unique solution when λ = λc , where λc ≈ 3.513830719. For simplicity, the lower branch of the solution when 0 < λ < λc is

considered in this paper. In the case of 0 < λ < λc , the Bratu’s equation has analytical solution in the following form: 

u (x ) = −2 ln 

[
cosh ( θ

2 
(x − 1 

2 
)) 

cosh ( θ
4 
) 

]
, (17) 

where the constant θ is determined by the algebraic equation 

θ = 

√ 

2 λ cosh 

(
θ

4 

)
. (18) 
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Note that Bratu’s equation (15) contains a transcendental nonlinear term e u ( x ) , which leads to the complexity for the

calculation of right-hand side term in the frame of HAM, as mentioned in [3,5] . In order to simplify the calculation, let us

first introduce the following transformation 

V (x ) = exp 

[ 
−1 

2 

u (x ) 
] 
. (19)

Then, the Bratu’s equation (15) can be rewritten as 

V (x ) 
d 2 V (x ) 

dx 2 
−
(

dV (x ) 

dx 

)2 

− λ

2 

= 0 , x ∈ (0 , 1) , (20)

with the boundary conditions 

V (0) = V (1) = 1 . (21)

In this form, the right-hand side in the HAM can be calculated much more efficiently. The solution of the original equation

(15) can be obtained by the inverse transformation 

u (x ) = −2 lnV (x ) . (22)

3.1. Basic HAM 

The HAM is essentially based on the homotopy, a basic concept of topology, which describes a continuous deformation

or variation from a topological space to another. Therefore, the foremost to use the HAM for the considered problem is to

construct a continuous variation between two functions, i.e. the known initial guess V 0 ( x ) and the unknown solution V ( x ).

Let q ∈ [0, 1] denote an embedding parameter for homotopy, c 0 the convergence-control parameter, L an auxiliary linear

operator and N a nonlinear operator, respectively. Then a continuous variation (with respect to the embedding parameter

q ∈ [0, 1]) from the initial guess V 0 ( x ) to the solution V ( x ) can be built by means of the so-called zeroth-order deformation

equation 

(1 − q ) L [ φ(x ; q ) − V 0 (x )] = c 0 q N [ φ(x ; q )] , q ∈ [0 , 1] , (23)

subject to the boundary conditions 

φ(0 ; q ) = φ(1 ; q ) = 1 , (24)

where 

N [ φ(x ; q )] = φ(x ; q ) 
∂ 2 φ(x ; q ) 

∂x 2 
−
(

∂φ(x ; q ) 

∂x 

)2 

− λ

2 

. (25)

Obviously, we have the solution φ(x ; 0) = V 0 (x ) when q = 0 , and φ(x ; 1) = V (x ) when q = 1 , respectively. In other words,

φ( x ; q ) denotes a continuous variation from the initial guess V 0 ( x ) to the solution V ( x ), as q increases from 0 to 1. Then,

expand φ( x ; q ) in Maclaurin series with respect to the embedding parameter q , i.e. 

φ(x ; q ) = V 0 (x ) + 

+ ∞ ∑ 

k =1 

V k (x ) q k , (26)

where 

V k (x ) = D k [ φ(x ; q )] = 

1 

k ! 

∂ k φ(x ; q ) 

∂q k 

∣∣∣
q =0 

. (27)

Here, D k [ φ] is called the mth-order homotopy-derivative operator of φ, as defined by Liao [5] . Assuming that the auxiliary

linear operator L and especially the convergence-control parameter c 0 is so properly chosen that the Maclaurin series

(26) converges at q = 1 , we gain the series solution 

V (x ) = V 0 (x ) + 

+ ∞ ∑ 

k =1 

V k (x ) . (28)

And the corresponding m th-order approximation is given by 

V (x ) ≈ ˜ V m 

(x ) = V 0 (x ) + 

m ∑ 

k =1 

V k (x ) . (29)

Taking the m th-order homotopy-derivative operator on both sides of the zeroth-order deformation equation (24) as well

as the boundary conditions (31) , we have the m th-order deformation equation 

L [ V m 

(x ) − χm 

V m −1 (x )] = c 0 R m 

(x ) , (30)



4 4 4 Z. Yang, S. Liao / Commun Nonlinear Sci Numer Simulat 48 (2017) 439–453 

 

 

 

 

 

 

 

 

 

 

 

 

subject to the boundary conditions 

V m 

(0) = V m 

(1) = 0 , (31) 

where 

R m 

(x ) = D m −1 { N [ φ(x ; q )] } 
= 

m −1 ∑ 

k =0 

[
V k (x ) V 

′′ 
m −1 −k (x ) − V 

′ 
k (x ) V 

′ 
m −1 −k (x ) 

]
− λ

2 

(1 − χm 

) (32) 

and 

χk = 

{
0 , k ≤ 1 , 

1 , k > 1 . 
(33) 

Therefore, by the HAM, the original nonlinear problem described by Eqs. (20) and (21) is transformed into an infinite number

of linear sub-problems governed by Eqs. (30) and (31) . Note that, unlike perturbation techniques, such kind of transformation

has nothing to do with any small/large physical parameters. 

Besides, unlike perturbation techniques, the HAM provides us great freedom to choose the initial guess, the auxiliary

linear operator and so on. According to the boundary conditions (21) , the initial guess V 0 ( x ) can be chosen in the simplest

form 

V 0 (x ) = 1 . (34) 

Since the highest-order derivative of Eq. (20) is second-order, we choose the auxiliary linear operator 

L [ φ(x ; q )] = 

∂ 2 φ(x ; q ) 

∂x 2 
+ κ1 

∂φ(x ; q ) 

∂x 
+ κ0 φ(x ; q ) , (35) 

where κ0 and κ1 are two constants to be chosen later. 

3.2. High-order wavelet-Galerkin equation 

The solution V ( x ) can be expressed by many different base functions, such as polynomial series, trigonometric series,

Chebyshev polynomial series and so on. The key point of the wHAM is to use the modified wavelet base functions (8) to

express the solution. 

Using the properties (12) and (13) of the modified wavelet base functions (8) and considering the boundary conditions

(31) , the function V m 

( x ) and the right-hand side term in the m th-order ( m ≥ 1) deformation equation (30) can be approxi-

mated by 

V m 

(x ) ≈ P j V m 

(x ) = 

2 j ∑ 

l=0 

V m 

(
l 

2 

j 

)
ϕ j,l (x ) = 

2 j −1 ∑ 

l=1 

V m 

(
l 

2 

j 

)
ϕ j,l (x ) , (36)

and 

R m 

(x ) ≈ P j R m 

(x ) = 

2 j ∑ 

l=0 

R m 

(
l 

2 

j 

)
ϕ j,l (x ) , (37)

where 

R m 

(
l 

2 

j 

)
= 

m −1 ∑ 

k =0 

[
V k 

(
l 

2 

j 

)
V 

′′ 
m −1 −k 

(
l 

2 

j 

)
− V 

′ 
k 

(
l 

2 

j 

)
V 

′ 
m −1 −k 

(
l 

2 

j 

)]
− λ

2 

(1 − χm 

) , (38) 

in which the derivatives can be approximated by 

V 

(n ) 
m 

(x ) ≈ d n P j V m 

(x ) 

dx n 
= 

2 j −1 ∑ 

l=1 

V m 

(
l 

2 

j 

)
ϕ 

(n ) 
j,l 

(x ) , m ≥ 1 , n = 1 , 2 . (39)

In addition, 

V 

(n ) 
0 

(0) = 0 , n = 1 , 2 . (40) 

Note that the boundary condition (31) is embedded in (36) . In other words, the expressions (36) satisfies the boundary

condition (31) . 
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Substituting (36) and (37) into (30) , we have the m th-order deformation equation in the wavelet form: 

2 j −1 ∑ 

l=1 

[
V m 

(
l 

2 

j 

)
− χm 

V m −1 

(
l 

2 

j 

)]
L 

[
ϕ j,l (x ) 

]

= c 0 

2 j ∑ 

l=0 

R m 

(
l 

2 

j 

)
ϕ j,l (x ) . (41)

Since the wavelet approximation (36) of V m 

( x ) satisfies the boundary conditions (31), (41) needs no additional boundary

condition at all. 

To solve the m th-order deformation equation (41) in the wavelet form, the Galerkin method is applied, where the base

functions 

ϕ j,k , k = 1 , 2 , · · · , 2 

j − 1 

are taken as weight functions. Multiplying both sides of Eq. (41) by ϕj, k 

(
k = 1 , 2 , · · · , 2 j − 1 

)
, respectively, and integrating

over the interval [0,1], we have the m th-order wavelet-Galerlin deformation equation 

A 

(
ˆ V m 

− χm ̂

 V m −1 

)
= c 0 B 

ˆ R m 

, (42)

where 

ˆ V k = 

{
V k 

(
1 

2 

j 

)
, V k 

(
2 

2 

j 

)
, · · · , V k 

(
2 

j − 1 

2 

j 

)}T 

(43)

is a (2 j − 1) -dimensional vectors, 

ˆ R m 

= 

{
R m 

(
0 

2 

j 

)
, R m 

(
1 

2 

j 

)
, R m 

(
2 

2 

j 

)
, · · · , R m 

(
2 

j − 1 

2 

j 

)
, R m 

(1) 

}T 

(44)

is a (2 j + 1) -dimensional vector, 

A = 

{
a k,l = 

∫ 1 

0 

L 

[
ϕ j,l (x ) 

]
ϕ j,k (x ) dx 

}k,l=2 j −1 

k,l=1 

(45)

and 

B = 

{
b k,l = 

∫ 1 

0 

ϕ j,l (x ) ϕ j,k (x ) dx 

}k =2 j −1 , l=2 j +1 

k =1 , l=0 

(46)

are (2 j − 1) × (2 j − 1) and (2 j − 1) × (2 j + 1) constant matrices, respectively. Define the so-called generalized connection

coefficients [41] : 

� j,n 

l,k 
= 

∫ 1 

0 

d n ϕ j,l (x ) 

dx n 
ϕ j,k (x ) dx. (47)

Then, according to the definition (35) of the auxiliary linear operator, the matrix coefficients a k, l and b k, l can be rewritten

as { 

a k,l = � j, 2 

l,k 
+ κ1 �

j, 1 

l,k 
+ κ0 �

j, 0 

l,k 
, 

b k,l = � j, 0 

l,k 
, 

(48)

where the generalized connection coefficients can be obtained through the method described in [30] . For more details,

please refer to [41] . Note that the matrices A and B are the same for all m ≥ 1. So, it is computationally efficient to solve

the m th-order wavelet-Galerlin deformation equation (42) . 

Solving the m th-order wavelet-Galerlin deformation equations (42) for m = 1, 2, 3, ��� step by step, and then using (29) ,

we have the m th-order wavelet approximation of the solution. 

4. Results and analysis 

Based on the exact solutions (17) , we define the averaged square error ErrSQ m 

and the relative error ErrRE m 

( x ) as follows:

Er r SQ m 

= 

1 

2 

j + 1 

2 j ∑ 

k =0 

[
˜ u m 

(
k 

2 

j 

)
− u e 

(
k 

2 

j 

)]2 

, (49)

Er r RE m 

(x ) = 

| ̃  u m 

(x ) − u e (x ) | 
| u e ( x ) | , 0 < x < 1 , (50)

where ˜ u m 

(x ) is the m th-order wavelet approximation ˜ u m 

(x ) = −2 ln ̃  V m 

in which 

˜ V m 

is given by (29) , and u e ( x ) is the lower

branch of the exact solution, i.e. the solution in correspondence with the smaller value of θ in (18) . 
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Fig. 2. The averaged square error of the wHAM wavelet approximations (given by different resolution level j ) versus the approximation order m by means 

of c 0 = −1 / 2 in case of the Frank–Kamenetskii parameter λ = 1 , the auxiliary linear operator L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

and the resolution level j varying from 

3 to 6. Solid line with square symbol: j = 3 ; dotted line with delta symbol: j = 4 ; dash-dotted line with diamond symbol: j = 5 ; dashed line and with 

circle symbol: j = 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Convergence of wavelet approximation 

Without loss of generality, let us first consider the cases of the Frank–Kamenetskii parameter λ = 1 , the auxiliary linear

operator L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

and the resolution level j varying from 3 to 6. In the frame of the wHAM, convergent series

solution can be conveniently obtained by means of a proper value of the convergence-control parameter c 0 . This is an

advantage of the HAM, which differs the HAM from other analytic approximation techniques, as mentioned by Liao [2,3] .

For comparison, c 0 = −0 . 5 is used here for the results reported below. 

Fig. 2 shows the averaged square error ErrSQ m 

versus the approximation order m for the different resolution level j .

Note that, for each resolution level, the averaged square error decreases exponentially until to a constant Er r SQ 

∗
m 

that is

dependent upon the resolution level j : the larger the value of j , the smaller the final error Er r SQ 

∗
m 

. Thus, as long as the

resolution level is large enough, such as j = 6 , and the order of approximation is high enough, the wavelet approximation

given by the wHAM is rather accurate. This indicates the validity of the wHAM for the nonlinear boundary value problem. 

It is found that if the linear operator is chosen as L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

and the convergence-control parameter c 0 is

chose in the interval 

R c = { c 0 | − 0 . 5 ≤ c 0 < 0 } , (51)

convergent wavelet series solution can be obtained at the different resolution levels for the different physical parameters

λ (0 < λ ≤ λc ) of the Bratu equation (15) , as shown in Fig. 3 for the comparison between the exact solution and the

40th-order wHAM solutions with the resolution level j = 4 . 

4.2. Accuracy and efficiency control by means of the resolution level 

As mentioned in Section 2 , for an arbitrary function f ( x ) ∈ L 2 ([0, 1]), its approximation with higher accuracy can be

easily obtained by raising the resolution level j . Therefore, in the frame of the wHAM, the accuracy of the solution can be

controlled by adjusting the resolution level j , as shown in Fig. 2 . Of course, a higher resolution level needs more CPU time.

To compare the CPU time, all of the results are gained using the same desktop, i.e. DELL Inspiron 3847, Intel(R) Core(TM)

i5-4460 CPU@ 3.20 GHz, 8GB memory (SAMSUNG DDR3 1600 MHz). The averaged square errors and the corresponding CPU

times (pre-calculation included) for the 60th-order wavelet approximation in correspondence with the resolution levels are

shown in Table 1 . 

According to Table 1 , a higher resolution level leads to more accurate approximations but more CPU time. Note that, as

the resolution level j enlarges, the solution accuracy increases exponentially but with the linearly increasing CPU times. It

should be emphasized that less than one second of CPU time is needed for all cases. Therefore, the wHAM possesses rather
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Fig. 3. Comparison between the 40th-order wHAM approximations and the exact solutions in case of c 0 = −1 / 2 , the resolution level j = 4 and the auxiliary 

linear operator L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

. Solid line: exact solution when λ = 1 ; dashed line: exact solution when λ = 2 ; dash-dotted line: exact solution when 

λ = 3 ; square: wHAM approximation when λ = 1 ; circle: wHAM approximation when λ = 2 ; delta: wHAM approximation when λ = 3 . 

Table 1 

The averaged square error and the CPU time (pre-calculation in- 

cluded) for the 60th-order wavelet approximation versus the res- 

olution level j in case of λ = 1 , the convergence-control param- 

eter c 0 = −1 / 2 and the auxiliary linear operator L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

. 

The resolution level j ErrSQ 60 CPU time (sec.) 

2 2 . 839993 × 10 −08 0 .152649 

3 5 . 975293 × 10 −09 0 .295230 

4 3 . 986239 × 10 −11 0 .368240 

5 1 . 814512 × 10 −13 0 .517127 

6 6 . 509588 × 10 −16 0 .920077 

Table 2 

Comparison of the averaged square error and the CPU time (pre-calculation 

included) at the different order of approximation m given by the wHAM 

and the normal HAM in case of λ = 1 , the convergence-control parameter 

c 0 = −1 / 2 and the auxiliary linear operator L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

. 

m ErrSQ m CPU time (second) 

wHAM HAM wHAM HAM 

5 6 . 083516 × 10 −05 1 . 196418 × 10 −04 0 .902078 0 .035024 

10 1 . 155250 × 10 −06 5 . 574128 × 10 −06 0 .904739 0 .080574 

20 1 . 180741 × 10 −09 2 . 806097 × 10 −08 0 .908879 0 .266205 

30 2 . 039350 × 10 −12 2 . 337982 × 10 −10 0 .911481 0 .698994 

40 2 . 159067 × 10 −15 2 . 492056 × 10 −12 0 .914309 1 .614642 

50 4 . 885205 × 10 −16 3 . 072730 × 10 −14 0 .917086 3 .578035 

 

 

 

 

 

 

high computational efficiency. In practical applications, it is necessary to balance the accuracy and computational efficiency.

Fortunately, in the frame of the wHAM, the resolution level provides us a convenient way to obtain accurate enough approx-

imations with satisfactory accuracy in a reasonable computational times. Therefore, in the frame of the wHAM, the accuracy

and the computational efficiency can be conveniently controlled by means of adjusting the resolution level. 

To further show the advantages of the wHAM, a comparison between the wHAM and the normal HAM is made, as

shown in Table 2 . Obviously, the wHAM approximation converges faster than that given by the normal HAM. Besides, the

CPU times increases exponentially for the normal HAM. However, for the wHAM, most of the CPU time (about 0.9 s) is
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Fig. 4. The relative error distributions given by means of the wHAM in the different resolution level j in case of λ = 1 , c 0 = −1 / 2 and the auxiliary linear 

operator L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

. Dash-dot-dotted line: j = 3 ; dashed line: j = 4 ; dash-dotted line: j = 5 ; solid line: j = 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

actually consumed for the pre-calculation of the connection coefficient matrixes, and it takes only 0.015 s more CPU time to

gain the 50th-order approximation than the 10th-order ones! Thus, the wHAM is computationally rather efficient. 

Another important problem for the wavelet approximation is the boundary leaping phenomenon [30,40,41] , say, the

error of approximation solution increases sharply near the boundary of the interval. However, for a good approximation, the

relative error is expected to be evenly distributed. For this purpose, the boundary extension technique [30] is used, so that

this boundary leaping phenomenon can be overcome, as shown in Fig. 4 . This further verifies the validity of the wHAM and

illustrates the convenience of controlling the accuracy by means of the resolution level in the frame of the wHAM. 

In summary, since the wavelet is based on the multi-resolution analysis, the resolution level j provides us a convenient

way to balance the approximation accuracy and the computational efficiency. And thanks to the high approximation accuracy

of the generalized Coiflet-type orthogonal wavelet, the wHAM is computationally rather efficient. The comparison between

the wHAM and the normal HAM shows that the wHAM has indeed some obvious advantages in both of convergence rate

and computational efficiency. 

4.3. Non-sensitivity on the choice of the auxiliary linear operator 

Generally speaking [2,3] , the HAM possesses the advantage of the flexibility on the choice of the auxiliary linear op-

erator. In the frame of the normal HAM, however, the choice of the auxiliary linear operator is strongly dependent upon

base functions of solution. In this paper, the second-order linear operator (35) containing two parameters κ0 and κ1 is

used for the considered problem. When κ1 = κ0 = 0 , power functions should be chosen as base functions; when κ1 = 0 and

κ0 > 0, trigonometric functions should be used; when κ1 = 0 and κ0 < 0, exponential functions should be chosen, respec-

tively. However, when κ1 � = 0, it becomes extremely difficult to choose a proper base function. 

Fortunately, in the frame of the wHAM, the wavelet is always the base function, no matter what kind of the auxiliary

linear operator is used. Without loss of generality, let us consider here three different types of auxiliary linear operators:

L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

, L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

+ 5 φ(x ; q ) and L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

+ 5 ∂φ(x ;q ) 
∂x 

+ 5 φ(x ; q ) . Generally speaking, it

is more time-consuming in the frame of the normal HAM to gain a trigonometric series or exponential series approximation

than a power series approximation. However, in the frame of the wHAM, the CPU time is almost the same by means of the

different types of the auxiliary linear operators, as shown in Fig. 5 . More importantly, the CPU time increases linearly with

respect to the order of approximation. In contrast, as shown in Fig. 6 , the CPU time increases exponentially by the normal

HAM, which may cause serious time-consumption. Note that, to obtain the 100th-order approximation, the wHAM needs

only one second CPU times, while the normal HAM may cost 70 s! In practice, it is always necessary to calculate high order
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Fig. 5. The CPU time (pre-calculation not included) versus the approximation order m by means of the wHAM in case of λ = 1 , the resolution level j = 6 

and the different types of auxiliary linear operators. Solid line: κ0 = 0 , κ1 = 0 ; dashed line: κ0 = 5 , κ1 = 0 ; dash-dotted line: κ0 = 5 , κ1 = 5 . 

Fig. 6. The CPU time (no pre-calculation) versus approximation order m by means of the normal HAM in case of λ = 1 , the resolution level j = 6 and the 

auxiliary linear operator defined by κ0 = 0 , κ1 = 0 . 

 

 

 

 

 

 

approximations for complicated nonlinear problems. Therefore, this property of the wHAM is of great significance. This is

another advantage of the wHAM. 

To illustrate the validity of the wHAM for the different auxiliary linear operators, let us further consider the case of

κ1 = 0 with κ0 varying from −5 to 5. The averaged square errors versus the order of approximation m are as shown in

Fig. 7 . Note that for each κ0 , the wavelet approximation given by the wHAM converges quickly to the exact solution. Thus,

the validity of the wHAM seems to be not sensitive to the choice of the auxiliary linear operator. However, the convergence

rate of the wHAM is indeed dependent upon the auxiliary linear operator: the larger the value of κ0 , the faster it converges,

as shown in Fig. 7 . 
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Fig. 7. The averaged square errors versus the order of approximation m in case of λ = 1 , the resolution level j = 6 , c 0 = −0 . 4 and the different auxiliary 

linear operators ( κ1 = 0 with κ0 varying from −5 to 5). Solid line: κ0 = 0 ; dashed line: κ0 = −1 ; dash-dotted line: κ0 = −5 ; dotted line: κ0 = 1 ; dash-dot- 

dotted line: κ0 = 5 . 

Fig. 8. The averaged square errors versus the order of approximation m in case of λ = 1 , the resolution level j = 6 , c 0 = −0 . 4 and the different auxiliary 

linear operators ( κ0 = 5 with κ1 varying from 0 to 5). Solid line: κ1 = 0 ; dashed line: κ1 = 1 ; dash-dotted line: κ1 = 3 ; dash-dot-dotted line: κ1 = 5 . 

 

 

 

 

 

 

 

Furthermore, let us consider the auxiliary linear operator in a more general form, i.e. L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

+ κ1 
∂φ(x ;q ) 

∂x 
+

κ0 φ(x ; q ) in case of κ0 = 5 with κ1 varying from 0 to 5. The averaged square error versus the order of approximation m

when κ1 = 0 , 1 , 3 , 5 are as shown in Fig. 8 . Note that in all considered cases we gain convergent results quickly, although

the convergence rate is dependent upon the value of κ1 : the results given by κ1 = 0 and κ1 = 1 converge faster than others.

In fact, the normal HAM also provides us great freedom to choose the auxiliary linear operator. However, in the frame

of the normal HAM, the base function is highly dependent upon the auxiliary linear operator. In the frame of the wHAM,

the base function is always the wavelet function and the validity of the wHAM is not sensitive to the choice of the auxiliary
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Fig. 9. Comparison of the square error curves of iterative and non-iterative wHAM in case of λ = 1 , the resolution level j = 6 and κ0 = κ1 = 0 . Solid line: 

non-iterative result; dashed line: IterOrder = 1 ; dash-dotted line: IterOrder = 2 ; dotted line: IterOrder = 3 dash-dot-dotted line: IterOrder = 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

linear operator, so that we have larger freedom to choose the auxiliary linear operator. So, it is convenient to search for a

better auxiliary linear operator in the frame of the wHAM. This is another advantage of the wHAM. 

4.4. Convergence acceleration by iteration 

In the frame of the normal HAM, it has been verified [3,24] that the iteration can greatly accelerate the convergence.

However, in the wHAM, the CPU time increases linearly rather than exponentially with respect to the order of approxima-

tion, as shown in Fig. 5 . Is the iteration still effective in the wHAM? To answer this question, the simplest second-order

operator L [ φ(x ; q )] = 

∂ 2 φ(x ;q ) 
∂x 2 

is chosen as the auxiliary linear operator. 

Fig. 9 shows the averaged square error versus the CPU time (pre-calculation not included), given by the iterative and

non-iterative wHAM. It is found that the iteration technique can indeed accelerate the convergence, too. Note that the 3rd

and 4th-order iteration formulas leads to faster convergence than the 1st and 2nd-order ones. Therefore, the iteration is

suggested in the wHAM, if necessary. 

5. Concluding remarks and discussions 

In this paper, a HAM-based wavelet approach for nonlinear ordinary differential equations, namely the wavelet homotopy

analysis method (wHAM), is proposed, which successfully combines the homotopy analysis method, the generalized Coiflet-

type orthogonal wavelet and the Galerkin method together. The one-dimensional Bratu’s equation is used as an example to

describe the basic ideas of the wHAM and to illustrate its validity. By means of choosing a proper value of the so-called

convergence-control parameter, the wavelet approximations given by the wHAM with various auxiliary linear operators con-

verge quickly to the exact solution. 

It is found that the wHAM not only keeps the advantages of the normal HAM, but also possesses some new merits. First

of all, the convergence-control parameter, which plays a significant role in the normal HAM, still provides us a convenient

way to guarantee the convergence of the wavelet approximation in the wHAM. Secondly, since the wavelet approximation is

based on multi-resolution analysis, the resolution level provides us a convenient way to balance the computational efficiency

and approximative accuracy so that an accurate enough approximation can be obtained efficiently. Note that the convergent

solutions for all cases considered in this paper can be gained in less than one second CPU times by means of the wHAM.

This indicates that the wHAM possesses the high computational efficiency. Besides, different from the normal HAM, the CPU

time of the wHAM just increases linearly with respect to the approximation order. Furthermore, in the frame of the wHAM,

the base function is always the wavelet function and besides the validity of the wHAM is not sensitive to the choice of the

auxiliary linear operator, so that the wHAM provides us larger freedom than the normal HAM to choose the auxiliary linear

operator. Therefore, it is possible to choose an optimal auxiliary linear operator in the frame of the wHAM, which might

lead to rather fast convergence rate. In addition, it is found that the iteration can greatly accelerate the convergence so that

the computational efficiency can be further improved. 
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However, any method has shortages and limitations, so does the wHAM. As the computation is carried out numerically

rather than analytically, it is not convenient to set the convergence-control parameter as an unknown parameter and to op-

timize it by means of minimizing the square residual errors. Besides, due to the high frequency oscillation of the derivatives

of the scaling function, the wHAM is not suggested if the governing equation contains a derivative with an order higher

than four. In addition, in the frame of the wHAM, it is unavoidable to calculate the derivatives of the scaling function, so

the approximation accuracy might more or less be affected. All of these limitations are expected to be improved in future,

which however do not limit the use of the wHAM for nonlinear boundary value problems with high nonlinearity. 
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