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Abstract

In this paper, the unsteady boundary-layer flow and heat transfer in an incompressible viscous electrically conducting fluid,
caused by an impulsive stretching of the surface in two lateral directions and by suddenly increasing the surface temperature from
that of surrounding fluid are studied analytically. By using the homotopy analysis method, the accurate series solutions are obtained
which are uniformly valid for all dimensionless time in the whole spatial region 0 � η < ∞. To the best of our knowledge, such
kind of solutions have not been reported.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Investigations of boundary layer flow and heat transfer of viscous fluids over a stretching sheet are important in
many manufacturing processes, such as polymer extrusion, drawing of copper wires, continuous stretching of plastic
films and artificial fibers, hot rolling, wire drawing, glass-fiber, metal extrusion, and metal spinning. Sakiadis [1] firstly
studied the boundary layer flow over a stretched surface moving with a constant velocity. Tsou et al. [2] considered
the effect of heat transfer on a continuous moving surface with a constant velocity and experimentally confirmed the
numerical results of Sakiadis. Erickson et al. [3] extended the work of Sakiadis to include blowing or suction at the
stretched sheet surface on a continuous moving surface with a constant speed and investigated its effects on the heat
and mass transfer in the boundary layer. Chen and Strobel [4] considered the effect of a buoyancy-induced pressure
gradient in a laminar boundary layer of a stretched sheet with constant velocity and temperature. Chakrabarti and
Gupta [5] studied the MHD flow of Newtonian fluids initially at rest, over a stretching sheet at a different uniform
temperature. Vajravelu and Hadjinicolaou [6] made a analysis to flows and heat transfer characteristics in an electri-
cally conducting fluid near an isothermal sheet. Recently, Liao [7] obtained an accurate series solution of unsteady
boundary layer flows over an impulsively stretching plate uniformly valid for all non-dimensional time τ . Cheng and
Huang [8] considered the problem of unsteady flows and heat transfer in the laminar boundary on a linearly accelerat-
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ing surface with suction or blowing in the absence and presence of a heat source or sink. Xu and Liao [9] investigated
the unsteady MHD flows of a non-Newtonian fluid over an impulsively stretching flat sheet and presented an accurate
series solution.

The homotopy [10] is a basic concept in topology [11]. Based on the homotopy, some numerical techniques such
as the continuation method [12] and the homotopy continuation method [13] were developed. In 1992, using the
concept of homotopy, Liao [14] proposed an analytic method for highly nonlinear problems, namely the homotopy
analysis method (HAM), which was modified step by step [15–19]. Different from perturbation techniques, the ho-
motopy analysis method is independent upon small parameters at all, so that it is valid for highly nonlinear problems,
especially those without small/large physical parameters. Besides, it logical contains the non-perturbation techniques
such as Lyapunov’s artificial small parameter method [20], Adomian decomposition method [21] and δ-expansion
method [22], as proved by Liao [23]. The so-called “homotopy perturbation method” [24] proposed in 1999 is only
a special case of the homotopy analysis method, as pointed out by Liao [25]. Thus, it is more general and is a unifi-
cation of previous non-perturbation techniques. Besides, different from all previous analytic methods, the homotopy
analysis method always gives us a family of series solutions whose convergence region can be adjusted and controlled
by an auxiliary parameter. For details, please refer to Liao [23]. The homotopy analysis method has been successfully
applied to many types of nonlinear problems [7,9,23,26–30]. Some new solutions of a few nonlinear problems [31,32]
are even found by means of it. The aim of the present paper is to study analytically the unsteady three-dimensional
MHD flow and heat transfer in the boundary layer over an impulsively stretching flat plate. To the best of our knowl-
edge, no one has reported such accurate series solutions which are valid for all dimensionless time 0 � τ < ∞ in the
whole spatial region 0 � η < ∞.

2. Mathematical description

Consider the unsteady, three-dimensional laminar flow of an electrically conducting fluid caused by an impulsive
stretching flat surface in two lateral directions in an otherwise quiescent fluid in the presence of a transverse magnetic
field. It is assumed that at time t = 0, the flat plate and the fluid are at rest and they have the same constant temper-
ature T∞. Then at time t = 0, the flat plate is stretched with the velocity uw = ax and vw = by. At the same time
the surface temperature is raised from T∞ to the constant value Tw , where Tw > T∞. It is assumed that the magnetic
Reynolds number is small. Under these conditions the governing equations for the unsteady boundary layer flow and
heat transfer for this problem are (see [33])
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where u, v and w are the velocity components in the x-, y- and z-directions, t denotes the time, ρ, σ , B and α are the
density, electrical conductivity, magnetic field and the thermal diffusivity of the fluid, respectively. The corresponding
initial and boundary conditions are

t < 0: u = v = w = Q, T = T∞, (5a)

t � 0: u = ax, v = by, w = 0, T = Tw at z = 0, (5b)

t � 0: u → 0, v → 0, T → 0 as z → +∞, (5c)

here, a and b are positive constants. Following Williams and Rhyne [34] and Takhar [33], we use the similarity
transformations
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η = z
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Then, the governing equations (1)–(4) become
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subject to the boundary conditions

f (0, ξ) = s(0, ξ) = 0, g(0, ξ) = f ′(0, ξ) = 1, s′(0, ξ) = c, g(∞, ξ) = f ′(∞, ξ) = s′(∞, ξ) = 0, (10)

where primes denote differentiation with respect to η, c = b/a is a positive constant, M = σB2/(ρa) is the magnetic
parameter and Pr = ν/a is the Prandtl number.

When ξ = 0, corresponding to τ = 0, we have from (7), (8) and (9) that
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subject to the boundary conditions (10) for ξ = 0. The above equations (11), (12) and (13) have the exact solutions
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where

erfc(η) = 1 − 2√
π

η∫
0

exp
(−x2)dx. (17)

When ξ = 1, corresponding to τ → +∞, Eqs. (7), (8) and (9) reduce to

f ′′′ + (f + s)f ′′ − (f ′)2 − Mf ′ = 0, (18)

s′′′ + (f + s)s′′ − (s′)2 − Ms′ = 0, (19)

1

Pr
g′′ + (f + s)g′ = 0, (20)

subject to the boundary conditions (10) for ξ = 1.
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3. Homotopy analysis solution

3.1. Zeroth-order deformation equation

In general, asymptotic solutions of boundary-layer flows over a stretching plate decay exponentially at infinity
(refer to [23] and [33]). Further, Liao [7] obtained accurate solutions of a kind of unsteady boundary layer flows in
a Newtonian fluid caused by an impulsively stretching flat plate. Following Takhar [33] and Liao [7], we express
f (η, ξ), s(η, ξ) and g(η, ξ) by a set of base functions{

ξkηj exp(−nγ η) | k � 0, n � 0, j � 0
}

(21)

in the form
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where ak
j,n, bk

j,n and ck
j,n are coefficients, γ is a spatial-scale parameter. These provide us with the Solution Expressions

for f (η, ξ), s(η, ξ) and g(η, ξ). On basis of the Solution Expressions (22a)–(22c) and from the boundary conditions
(10), it is straightforward to choose

f0(η, ξ) = 1 − exp(−γ η)

γ
, (23a)
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γ

, (23b)
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as the initial approximations of f (η, ξ), s(η, ξ) and g(η, ξ) besides to choose
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as the auxiliary linear operators, which have the following properties

Lf

[
C1 exp(−γ η) + C2 exp(γ η) + C3

] = 0, (25a)

Ls

[
C4 exp(−γ η) + C5 exp(γ η) + C6

] = 0, (25b)

Lg

[
C7 exp(−γ η) + C8 exp(γ η)

] = 0, (25c)

where C1, C2, C3, C4, C5, C6, C7 and C8 are constants. According to the base function denoted by (21), we can first
decide the solution expressions of f (η, ξ), s(η, ξ) and g(η, ξ). Then we can choose initial guesses f0(η, ξ), s0(η, ξ)

and g0(η, ξ) based on the solution expressions defined by (22a)–(22c) and the boundary conditions (10). Note also that
we have freedom to choose the different initial guesses of f0(η), s0(η) and g0(η) as long as they satisfy the Solution
Expressions denoted by (22a)–(22c) and the boundary conditions (10). For the convenience of symbol calculation
(it is a prominent merit of the HAM), we usually choose them as simple as possible. The linear operators can be
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chosen on basis of two rules. Firstly, they must satisfy the solution expressions denoted by (22a)–(22c). The basic
solutions of these linear operators should be only contained (at most) the four terms η, exp(−η), exp(η) or constant.
Secondly, to decide the basic solutions of these linear operators, all of boundary conditions in (10) must be used to
determine integral constants. Note that we also have freedom to choose the linear operators as long as they satisfy
above-mentioned rules. For details, the readers are referred to [23].

Based on (7), (8) and (9), we are led to define the nonlinear operators
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Let h̄f , h̄s and h̄g denote the non-zero auxiliary parameters. We construct the zeroth-order deformation equations
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where q ∈ [0,1] is an embedding parameter.
Obviously, when q = 0 and q = 1, the above zeroth-order deformation equations (27a)–(27c) have the solutions

Φ(η, ξ ;0) = f0(η, ξ), Θ(η, ξ ;0) = s0(η, ξ), Ψ (η, ξ ;0) = g0(η, ξ), (29a)

and

Φ(η, ξ ;1) = f (η, ξ), Θ(η, ξ ;1) = s(η, ξ), Ψ (η, ξ ;1) = g(η, ξ), (29b)

respectively. Thus as q increases from 0 to 1, Φ(η, ξ ;q), Θ(η, ξ ;q) and Ψ (η, ξ ;q) vary from the initial guesses
f0(η, ξ), s0(η, ξ) and g0(η, ξ) to the solutions f (η, ξ), s(η, ξ) and g(η, ξ) of the considered unsteady problem,
respectively. So, expanding �(η, ξ ;q), �(η, ξ ;q) and �(η, ξ ;q) in Taylor’s series with respect to the embedding
parameter q , we have
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sm(η, ξ) = 1
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Note that (27a), (27b) and (27c) contain the auxiliary parameter h̄f , h̄s and h̄g . Assuming that h̄f , h̄s and h̄g are
properly chosen so that the series (30a)–(30c) are convergent at q = 1, we have, using (29a) and (29b), the solution
series

f (η, ξ) = f0(η, ξ) +
+∞∑
m=1

fm(η, ξ), (32a)

s(η, ξ) = s0(η, ξ) +
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g(η, ξ) = g0(η, ξ) +
+∞∑
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3.2. High-order deformation equation

For simplicity, we define the vector

�fm = {f0, f1, . . . , fm}, �sm = {s0, s1, . . . , sm}, �gm = {g0, g1, . . . , gm}. (33)

Differentiating the zeroth-order deformation equations (27a)–(27c) m times with respect to q , then setting q = 0, and
finally dividing them by m!, we obtain the mth-order deformation equations
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Wm(�gm−1) = 1
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and

χm =
{

0, m = 1,

1, m > 1.
(37)

Let f ∗
m(η, ξ), s∗

m(η, ξ) and g∗
m(η, ξ) denote the particular solutions of (34a)–(34c). Using (25a)–(25c), we have the

general solutions

fm(η, ξ) = f ∗
m(η, ξ) + C1 exp(−γ η) + C2 exp(γ η) + C3, (38a)

sm(η, ξ) = s∗
m(η, ξ) + C4 exp(−γ η) + C5 exp(γ η) + C6, (38b)

gm(η, ξ) = g∗
m(γ η, ξ) + C7 exp(−γ η) + C8 exp(γ η), (38c)

where the coefficients C1, C2, C3, C4, C5, C6, C7 and C8 are determined by the boundary conditions (35), i.e.

C2 = C5 = C8 = 0, C1 = 1

γ

∂f ∗
m(η, ξ)

∂η

∣∣∣∣
η=0

, C3 = −C1 − f ∗
m(0, ξ),

(39)

C4 = 1

γ

∂s∗
m(η, ξ)

∂η

∣∣∣∣
η=0

, C6 = −C4 − s∗
m(0, ξ), C7 = −g∗

m(0, ξ).

In this way, it is easy to solve the linear equations (34a)–(34c) after the other in the order m = 1,2,3, . . . by means of
the symbolic computation software such as Mathematica, Maple.

4. Analysis of results

It should be emphasized that the solution series (32a)–(32c) contain four auxiliary parameters h̄f , h̄s , h̄g and γ ,
which can be determined in the way described below. To decide the auxiliary parameter γ , we define a kind of error
function as

E(γ ) =
1∫

0

+∞∫
0

[
R1( �f0)

]2 dη dξ, (40)

where R1( �f0) is determined by Eq. (36a). Let

dE(γ )

dγ
= 0. (41)

Then, we can obtain a proper value of parameter γ by solving Eq. (41). To decide the auxiliary parameters h̄f , h̄s

and h̄g , we assume h̄s = h̄g = h̄f . Thus, the analytic approximations of f (η, ξ), s(η, ξ) and g(η, ξ) now are the
functions of η, ξ and h̄f . So are the derivatives of f (η, ξ), s(η, ξ) and g(η, ξ). Given any prescribed values of η = η∗
and ξ = ξ∗, the analytic approximations of f (η∗, ξ∗), s(η∗, ξ∗) and g(η∗, ξ∗) and their derivatives now are only
dependent on h̄f . Then, by plotting the curves of f ′′(η∗, ξ∗) versus h̄f (which is called the h̄-curve for f ′′(η∗, ξ∗)),
we can obtain a valid region h̄min

f � h̄f � h̄max
f . The h̄f can then be chosen in the region [h̄min

f , h̄max
f ]. Repeating the

above-mentioned processes, the proper values of h̄s and h̄g can be decided, accordingly. For more details, the readers
are referred to [23]. Note that all auxiliary parameters in our calculation should be integer so that the calculation
errors due to the precision of digital computer can be reduced. The values of parameters h̄f , h̄s , h̄g and γ used in our
analysis are listed in Table 1.

When ξ = 0, corresponding to the initial state, our analytic approximations agree well with the exact solutions
(14)–(16), as shown in Figs. 1–3. When ξ = 1, corresponding to the steady-state, our analytic approximations agree
well with the numerical ones, as shown in Figs. 4–6. In a similar way, it is found that the solution series (32a)–(32c)
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Table 1
The values of parameters used in our calculation

M = 0,1,3,5, c = 0,1/4,1/2,3/4,1

Pr = 0.72 Pr = 3 Pr = 7

h̄f −1/4 −3/2 −3/2
h̄s −1/4 −3/2 −3/2
h̄g −1/4 −2 −2
γ 1 3 3

Fig. 1. The comparison of fη(η, ξ) of the analytic approximation with
the exact solution at ξ = 0. Open circles: exact solution; Solid line:
25th-order HAM approximation.

Fig. 2. The comparisons of sη(η, ξ) of the analytic approximations
with the exact solutions at ξ = 0 for the different parameter c. Open
circles: exact solutions; Solid line: 25th-order HAM approximations.

Fig. 3. The comparisons of g(η, ξ) of the analytic approximations
with the exact solutions at ξ = 0 for the different parameter Pr. Open
circles: exact solutions; Solid line: 25th-order HAM approximations.

Fig. 4. The comparison of fn(η, ξ) of the analytic approximations
with the numerical solutions at ξ = 1 for the different parameter M

when c = 0.5. Filled circle: numerical solutions; Solid line: 25th-order
HAM approximations.
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Fig. 5. The comparison of sη(η, ξ) of the analytic approximations
with the numerical solutions at ξ = 1 for the different parameter M

when c = 0.5. Filled circle: numerical solutions; Solid line: 25th-order
HAM approximations.

Fig. 6. The comparison of g(η, ξ) of the analytic approximations with
the numerical solutions at ξ = 1 for the different parameter Pr when
c = 0.5 and M = 1. Filled circle: numerical solutions; Solid line:
25th-order HAM approximations.

Fig. 7. The analytic approximations of −fηη(0, ξ) for 0 � ξ � 1 for
different M when c = 0.5. Solid line: 20th-order HAM approxima-
tions; Filled circles: 25th-order HAM approximations.

Fig. 8. The analytic approximations of −sηη(0, ξ) for 0 � ξ � 1 for
different M when c = 0.5. Solid line: 20th-order HAM approxima-
tions; Filled circles: 25th-order HAM approximations.

are convergent in the whole range of the dimensionless time ξ ∈ [0,1] for all considered cases of M , c and Pr, as
shown in Figs. 7–13. Thus, by means of homotopy analysis method, we obtain series solutions which are accurate
and uniformly valid for all dimensionless time ξ ∈ [0,1] in the whole spatial region 0 � η < +∞. Such kind of series
solutions have not been reported, to the best of our knowledge.

It is found from Figs. 7–9 that, at the start of the motion (ξ = 0), the surface shear stresses in the x- and y-directions
(−fηη(0, ξ),−sηη(0, ξ)) and the surface heat transfer (−gη(0, ξ)) are independent on M , because M is multiplied
by ξ (see Eqs. (7)–(9)). Therefore, M increases as ξ increases. The surface shear stresses increase as the magnetic
parameter M increases, because the enhanced Lorentz force which imparts additional momentum into the boundary
layer. This reduces the boundary-layer thickness which, in turn, increases the thermal boundary-layer thickness.
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Fig. 9. The analytic approximations of −gη(0, ξ) for 0 � ξ < 1 for
different M when c = 0.5 and Pr = 0.72. Solid line: 20th-order HAM
approximations; Filled circles: 25th-order HAM approximations.

Fig. 10. The analytic approximations of −fηη(0, ξ) for 0 � ξ � 1 for
different c when M = 1. Solid line: 20th-order HAM approximations;
Filled circles: 25th-order HAM approximations.

Fig. 11. The analytic approximations of −sηη(0, ξ) for 0 � ξ � 1 for
different c when M = 1. Solid line: 20th-order HAM approximations;
Filled circles: 25th-order HAM approximations.

Fig. 12. The analytic approximations of −gη(0, ξ) for 0 � ξ � 1 for
different c when M = 1 and Pr = 0.72. Solid line: 20th-order HAM
approximations; Filled circles: 25th-order HAM approximations.

The variation of the surface shear stresses in x- and y-directions and the surface heat transfer (−fηη(0, ξ),

−sηη(0, ξ),−gη(0, ξ)) with dimensionless time ξ , for several values of the stretching parameter c (0 � c � 1) when
M = 1, Pr = 0.72, is drawn in Figs. 10–12. Especially, when c = 0, the problem reduces to the two-dimensional
case. The surface shear stresses in x- and y-directions (−fηη(0, ξ),−sηη(0, ξ)) increase with ξ almost linearly when
0 � c � 1. The surface heat transfer (−gη(0, ξ)) increases with ξ for ξ � ξ0 (ξ0 ≈ 0.8). Beyond this value, it de-
creases. The surface shear stresses and the surface heat transfer also increase as the stretching parameter c increases,
because increasing c implies higher surface velocity which accelerates the fluid in the boundary-layer. The variation
of the surface heat transfer (−gη(0, ξ)) with dimensionless time ξ , for several values of the Prandlt number Pr when
M = 1, c = 0.5, is drawn in Fig. 13. It is found that as the Prandtl number increases, the surface heat transfer increases,
too.
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Fig. 13. The analytic approximations of −gη(0, ξ) for 0 � ξ � 1 for
different Pr when M = 1 and c = 0.5. Solid line: 20th-order HAM
approximations; Filled circles: 25th-order HAM approximations.

Fig. 14. The variation of the velocity profile fη(η, ξ) when M = 1
and c = 0.5.

Fig. 15. The variation of the velocity profile sη(η, ξ) when M = 1 and
c = 0.5.

Fig. 16. The variation of the temperature profile g(η, ξ) when M = 1,
c = 0.5 and Pr = 0.72.

The development of the velocity profiles in the x- and y-directions (fη(η, ξ), sη(η, ξ)) and the temperature profiles
(g(η, ξ)) for c = 0.5, M = 1 and Pr = 0.72 is shown in Figs. 14–16. We can see that these profiles become smoothly
as τ increases from zero to ∞.

5. Conclusions

In this paper, the homotopy analysis method is employed to study the unsteady three-dimensional magnetohydro-
dynamic boundary layer flows with heat transfer over an impulsively stretching plate. Accurate series solutions are
obtained which are valid for all dimensionless time 0 � τ < ∞ in the whole spatial region 0 � η < ∞. To the best of
our knowledge, such kind of series solutions have not been reported. Note that, different from the numerical methods,
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we can obtain the explicit analytic approximations of f (η, ξ), s(η, ξ) and g(η, ξ), which can help us to understand
better the solution structure of the considered problem than the numerical ones.

The present work can be also deemed as a development of the homotopy analysis method. Most previous papers and
book on this analytic technique only considered the steady problems governed by differential equation(s). Liao [7],
Xu and Liao [9] investigated some unsteady phenomena governed by a partial differential equation. However, in this
paper, we applied the homotopy analysis method to study the unsteady boundary-flow problem governed by a set of
three partial differential equations, which are much more difficult to do with. In this sense, it is an innovation of the
homotopy analysis method.
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