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HIGHER-ORDER STREAMFUNCTION-VORTICITY 
FORMULATION OF 2D STEADY-STATE NAVIER-STOKES 

EQUATIONS 

S. J. LIAO* 
Institute of Shipbuilding, University of Hamburg, Liimmersieth 90, 2000 Hamburg 60, Germany 

SUMMARY 

Based on regular boundary element method and a kind of linearity invariance under homotopy, a kind of 
numerical scheme of 2D steady-state Navier-Stokes equation in streamfunction-vorticity formulation is 
described. The flow inside a square cavity is used to illustrate this numerical scheme. 
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Linearity invariance under homotopy 

1. INTRODUCTION 

Boundary element techniques in solving Navier-Stokes equations' - 4  have developed very 
quickly in recent years. The fundamental solutions have been found for steady and unsteady 
incompressible viscous flow via integral formulations with primitive variables, as mentioned in 
References 8 and 9. The boundary element methods of solving both steady and unsteady 
Navier-Stokes equations in streamfunction-vorticity formulation were presented in References 
6 and 7. The latter is based on a set of fundamental solutions providing a complete coupling 
between the streamfunction and vorticity equations, so that iteration is not needed in the case 
Re = 0. The non-linear terms are considered as inhomogeneities and treated by simple direct 
iteration, but this numerical scheme seems unstable for Reynolds number greater than 300, as 
mentioned in Reference 7. 

Perhaps, the divergence in the case of Re > 300 comes from the simple direct iteration. We 
know that nearly all iterative models are more or less sensitive to the initial solutions. In the case 
of strong non-linearity, the initial solutions obtained generally from the corresponding simplified 
linear problem are often far from the exact solution, so that more attempts must be done in order 
to make the iteration convergent. 

The author has tried to avoid iteration in solving non-linear problems in order to make 
numerical schemes insensitive to initial solutions. In Reference 10, the process of the continuous 
change of homotopy is investigated and a kind of linear property of homotopy is described. 
A numerical method, namely the finite process method, is obtained by discretizing this continu- 
ous-change process of homotopy in the imbedding region. By means of the finite process method, 
we can indeed avoid the use of iterative techniques in solving non-linear problems, although 
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much CPU time is needed. A more thorough study reported in Reference 11 shows that the finite 
process method can give a family of iterative formulas, which are more insensitive to the initial 
solutions than other simple iterative models and, therefore, can be seen as iterative models at 
higher orders. In fact, the more complex the formula in this family, the more insensitive it is to the 
initial solutions. In the limiting state, no iteration is necessary. So, iteration seems to be a special 
case of the finite process method. 

In this paper, the linear property of homotopylO-” is applied to give a numerical model of 2D 
steady-state Navier-Stokes equation in streamfunction-vorticity formulation. Instead of dis- 
cretizing a homotopy in embedding domain, p e [ O ,  13, as mentioned in Reference 10, we analyse it 
by Taylor’s series. A higher-order streamfunction-vorticity formula of the boundary element 
method of 2D steady-state Navier-Stokes equations is given. As an example, the flow inside 
a square cavity is used to examine the numerical scheme. The results are obtained for the case of 
Re % 300. 

2. MATHEMATICAL FORMULATION 

Two-dimensional steady flow of an incompressible Newtonian fluid is formulated in terms of the 
streamfunction (+) and the vorticity (0) as follows: 

with boundary conditions 

The above equations are expressed in dimensionless form. Re = puo L / p  is the Reynolds number 
expressed in terms of a characteristic length L and a characteristic velocity vo. The two 
independent co-ordinates x and y have also been made dimensionless. 

For simplicity, let 

where 
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and u o ( x ,  y )  and Jl0(x, y) are either the known approximate solutions or the solutions in the case 
Re = 0. Note that the streamfunction $ and vorticity u in equations (6H9) are dependent not only 
on the original variables x ,  y but also on the embedding variable pc[O, 11. 

When p = O ,  we obtain from equations (6H9) the initial equations as follows: 

V 2 u ( x ,  y ;  0 ) = V 2 u o ( x ,  Y) ,  (11) 

v 2 $ ( x , y ; o ) + u ( x , Y ;  ~ ~ = ~ 2 $ o ~ ~ , Y ~ + ~ o ~ ~ , Y ~ ,  (12) 

$(x ,  Y ;  O)=1cl0 on r, (13) 

with the corresponding boundary conditions 

So, t,bo(x, y) and o o ( x ,  y )  are just the solutions of the initial equations (1 l)-14), called the initial 
solutions. 

When p = 1, we have the final equations as follows: 

with the corresponding boundary conditions 

For convenience, let i,bf(x, y )  and u f ( x ,  y )  denote the solutions of the non-linear final equations 
(15)-(lS), called thefinal solution. Clearly, the final equations (15H18) are the same as the original 
equations ( lH4) .  So, the final solutions &(x, y )  and u f ( x ,  y )  are just what we want to know. 

Let lo denote the initial equations (1 1H14), lf denote the final equations (15H18). Clearly, 
equations (6H9) connect the initial equations bo with the final equation bf. The process of the 
continuous change of p from zero to unity is just that of the continuous deformation from initial 
equations do to final equations lf. So, equations (6H9) construct, in fact, a homotopy 
B(p) : do N lf; lo and 8, are called homotopic in topology. 

Suppose that equations (6H9) have solutions at any p s [ O .  13. Then, equations (6H9) connect 
also the initial solutions $o(x,  y )  and u o ( x ,  y )  with the final solutions $f (x ,  y )  and u f ( x ,  y )  by the 
embedding variable p. The process of the continuous change of p from zero to unity is also just the 
process of u ( x ,  y ;  p) and $(x ,  y ;  p) from the initial solutions u o ( x ,  y), rCl0(x, y )  to the final solutions 
u f ( x ,  y), &(x, y). Thus, $o(x, y )  and $f (x ,  y )  are also homotopic, and so are oo(x, y )  and u f ( x ,  y) ,  
denoted, respectively, as $ o  (x, y) cy $f (x, y) and wo (x, y) H uf (x, y). 

So, equations (6H9) construct in fact, two kinds of homotopy. One is for equations, 
B (p):bo * Jf, and the other is for the functions (solutions), (x, y; p) : $o (x, y )  = qf (x, y )  and 
o ( x ,  y; p )  : u o ( x ,  y ) = u f ( x ,  y) .  For convenience, we call equations (6H9) the zero-order process 
equations. 

Suppose $(x ,  y ;  p) and w(x ,  y ;  p) have Mth-order partial derivatives with respect to p at p=O,  
denoted as follows: 
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(20) 
apt y; I P’O * 

*t’(x, Y )  = 

For simplicity, call ws](x,  y )  and $tl(x,  y )  the kth-order process deriuatiues of vorticity and 

Suppose o ( x ,  y ;  p), $(x, y ;  p) ,  dk l ( x ,  y; p )  and $Ikl(x, y ;  p )  (k>O) exist and are continuous. Then, 
streamfunction at p = 0, respectively. 

according to Taylor’s theory, we have 

Pk 

=oo(x,y)+ c Pk 9 

O0 wt’(x, Y )  

4?(x ,y )  

4 x 9  y; p ) = d x ,  Y,  O)+ c k !  k =  1 

k = 1  k! 

OD $ g 1 ( x 9 y ) p k  
$(x,Y;P)=$(X,Y,o)+ c k! 

k = l  

(22) y )  p k .  
=$o(x, Y )+  c 

k = l  k !  

For convenience, call the above expressions Taylor’s homotopy series. Clearly, Taylor’s series have 
generally a finite radius p of convergence. If the radius p of convergence is equal to or greater than 
unity, then a kind of relation between oo(x,  y),  $o(x, y )  and o f ( x ,  y), $f(x, y )  can be given in the 
form of process derivatives as follows: 

(23) 

(24) 

O0 0 6 L ] ( X , Y ) ,  

O3 $t1(X, Y )  

d x ,  y)=wo(x, Y)+ c 
$&, y)=$o(x, Y)+ c 

k = l  k! ’ 

k s l  k! . 

The above two expressions give a kind of relation between the initial solutions $o(x, y),  wo(x, y )  
and the final solutions (x, y), of (x, y )  by means of the kth-order process derivatives 
$s](x,  y) ,  wtl(x, y )  (k=  1,2, . . . , 00). We call this kind of relation Taylor’s series relation under 
homotopy. 

The equations of the kth-order process derivatives oS1(x, y )  and Jl$](x, y )  can be obtained in 
the following way. 

Differentiating equation (6) k times with respect to p, we have 

k 

= c (:) -$ ( p )  
’; p)-DkV200(x, y )  

i = O  apk-’ 

where 
1.0 when k = l ,  

Dk={ 0.0 when k > 1. 
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ay ax ax ay 

(k 2 2). 
ti] a m [ k  - 1-0 a [ I 1  l k -  I -il 

0 -- * o  am0 
ax ay hk(x, y )=kRe  'il ( 

i = o  k - 1  ) (9 ax 

Differentiating equation (7) k times with respect to p and then setting p = O ,  we have 

V2$t1(X, y ) + W t l ( X ,  y)= -Dk(v2$o +COO). 

Similarly, from boundary conditions (8) and (9), we can easily obtain 

The system of equations (27) and (30)-(32) is called the kth-order process equation (k a 1). 
Define 

$ ] ( X ,  Y )=W$](X,  y)+&Oo(X, y) ( k 2  I), (33) 

W ( X ,  y)=*'J(x, Y ) + & J l O ( X ,  Y )  (k2 1). (34) 

Then, according to equations (27) and (30)-(32), Otl (x ,  y) and $t1(x ,  y) can be described in the 
same form as follows: 

k 2  1, 2 - tk l  
O O  (x,  Y)'hk(X, y), 

V2$F1(x, y)+~@(x, y)=O, k> 1, 

with boundary conditions 

(35) 

(36) 

Perhaps, it should be emphasized that hk(x, y) ( k =  1,2, . . . , 00) are just functions of +tl(x,  y) and 
wtl(x,  y)  for i=O,  1,2, . . . , k- 1. Therefore hk(X, y) is known in solving ci$](x, y) and $ t l ( x ,  y). 
Note that the above equations are linear in 6 t 1 ( x ,  y)  and $ t l ( x ,  y). According to Reference 7, 
equations (35H38) can be written in the form of a boundary integral as follows: 
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and 

where R is the domain of fluid flow, r is the boundary of R and the integrations are performed 
with respect to r. The parameter a(() is a geometric factor with the following values, depending on 
the location of (: 

1 if 564 I 8 / 2 ~  if (er, 
a(()= 0 if t.&', (41) 

where R' denotes the exterior of the domain R, excluding its boundary r. 8 is the angle formed 
between the tangents to the boundary at point 5, approaching it from each side. For points at 
which the boundary is differentiable, 8 = n. 

G,  and G* are fundamental solutions which satisfy, respectively, the following equations: 

V2G,= -d(r-(), 

V2G, + G ,  = - 6 (r - 0. 
According to Reference 7, 

1 

G , = - l l n r  
2n 

1 r2 
G, = -- In r +- (In r -  1). 2n 8n 

Subtracting equation (39) from equation (40), we have 

where 

F ,  = G ,  - G ,  

According to equations (39) and (46), we obtain 

Substituting boundary conditions (37) and (38) into the above equations, we obtain 
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(51) 
According to equation (41), if <dlC then a(t)=O. Thus, for points in the exterior of the domain 

Q excluding the boundary r, we have 

These are the equations for the determination of both cdkl and ac;irkl/dn (k = 1,2,3, . . . , 00) on 
boundary r. Note that the points are now in the exterior of the flow domain R, so that the 
integrals on boundary r appearing in the above two equations are regular. This is the basic idea 
of the regular boundary element method described in detail in Reference 5. Note that both dkl 
and a d k l / d n  on boundary r are now as unknowns, so that no boundary conditions about 
vorticity are necessary. This is one of the advantages of this method. 

Note that, after discretizing the above two equations by the regular boundary element method, 
the matrix of the set of the corresponding linear algebraic equations is the same in solving dk1 and 
a d k 1 / 8 n  for any k >  1. Thus, once its inverse matrix is obtained, it can be stored and then used 
again and again. Then a little more CPU time of computer is needed to solve the corresponding 
sets of algebraic equations. This is especially important in case many similar linear problems must 
be solved. 

Once fit1 and &$]/an on the boundary r are known, then according to equations (50), (51) 
and (41), we can obtain 6t1, I,@] in the domain R: 

(54) 

If the Taylor's homotopy series of #(x, y; p), o(x, y; p) have the radius of convergence equal to 
or greater than unity, then according to equations (23) and (34), the final solutions at Mth-order 
of approximation are as follows: 

But unfortunately, the radius p of convergence is generally less than unity. In this case, we can 
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obtain the results only at p = l < p  < 1, as follows: 

Clearly, the above approximate solutions are better than the initial solutions wo(x, y) and 
$,,(x, y). So, they can be used as the new initial solutions to make a new similar computation. This 
is the basic idea of iteration. Formulas (58)  and (59) give a family of iterative models. Clearly, the 
larger the M, the more complex is the corresponding iterative model. When M = 1, it is just the 
same as SOR model mentioned in Reference 7. This means that the above formulas can be seen as 
a kind of higher-order iterative model for 2D Navier-Stokes equations. Note that if the initial 
solutions wo(x, y) and i,b0(x,y) are just the exact solutions of the original equations, then 
w$l(x, y)=O and t#=O for any k 2 1, so that the radii p of convergence of the corresponding 
Taylor's homotopy series are infinite. It is obvious that a couple of better initial solutions would 
be corresponding to a greater radius p of convergence. So, the radius p of convergence would be 
greater and greater in the process of iteration. 

Perhaps, it should be emphasized again that the kth-order process equations (k 2 l), consisting 
of equations (27) and (30H32) are linear in w$](x, y) and +t](x, y) (k2 l), although the original 
equations (1H4)  and the zero-order process equations (6H9) are non-linear. Generally, any 
kth-order process equations (k 2 1) are linear in their corresponding kth-order process derivatives. 
This is an important invariance under homotopy. An abstract mathematical proof about it has 
been given in Reference 11. In Reference 10, we discretize the first-order process equation in 
process domain pe[O, 11; but in this paper, we analyse the continuous process of homotopy at 
p = O  by Taylor's series. So, we call this method the process analysis method. Other applications of 
it have been given in References 11 and 12. 

3. SIMPLE APPLICATIONS 

In order to examine the numerical scheme described above, consider the flow inside a square 
cavity whose upper lid is moving at a constant velocity. The geometry and the corresponding 
boundary conditions are shown in Figure 1. 

Let the number of boundary elements on each side be the same, denoted as N. For convenience, 
let N be an even number. The co-ordinates of node points on the upper and the lower side are as 
follows: 

[( $r +&ck 
(k=O, 1,2, .  . . , N/2-l), 
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$ = O  

g=0 

Y - 
Figure 1. Geometry and boundary conditions for viscous flow inside a square cavity 

where 

1 when k = O  or k=N, 
ck={ 0 otherwise, 

with y k = o  for lower side and Y k =  1.0 for upper side and where &=0-0001 is a small quantity. 
In a similar way, the co-ordinates of node points on the left and the right side are as follows: 

[( ky + &Ck 
(k=O, 1,2, .  . . , N/2-l), 

1 -  I - -  -&Ck (k=N/2+1, N/2+2, .  . . ,I?), I ( 3 
with xk=o’o for the left side and &= 1.0 for the right side. 

Here we use two nodes close to each other at the corners, one belonging to each side. This 
technique, called the double-node approach in Reference 5, is applied in order to treat the 
singularity at each corner. 

We use linear boundary elements for both Otkl and ~ % ~ ’ ] / d n  on boundary r. Similar to 
Reference 5, we locate the singular points outside the domain of the square cavity so that the 
integrals on boundary are regular. The domain of square cavity is discretized into N x N small 
regions, where the volume integrals are computed by four-point Gauss numerical integral 
method. 

Note that the solutions in case Re = 0 can be obtained without iteration in the same way as in 
Reference 7. In all cases of Re > 0, we use the solutions for the case Re =O as the initial solutions. 

All results given in this paper are obtained for the case N = 26. So, we have (26 + 1) x 4= 108 
nodes and 216 unknowns. We use formulas at second-order of approximation, i.e. we let M =  2 in 
equations (58) and (59). If the relative error (f””’-f’”)/f”<5%, then iteration is stopped. 
Double precision variables are used in our computer program. 
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The convergent results are given in Table I. The contours of streamfunction t,b and vorticity 
o and the velocity distribution of U at x=04  and Vat y = 0 3  are shown, respectively, in Figures 
2-1 3. Comparing the above results with those given by other researchers, they seem reasonable. 

Note that the formulas in case M = 1 are the same as those given in Reference 7, which are 
unstable for Reynolds number greater than 300, as mentioned in Reference 7. In case Re=400, 
q = 1.050, Iz  =Om20 but M = 1, we find that the corresponding iteration is really divergent. But, as 
shown in Table I, we obtain convergent results for the case of 0 <Re < 2000 by using formulas at 
second order of approximation. This is so mainly because the formulas at second order are more 
accurate than those at first order. This can be easily understood from the viewpoint of Taylor’s 
expansion. So, expressions (58)  and (59) can be seen as higher-order iterative formulas. In fact, 
expressions (58) and (59) can give a family of iterative formulas at different orders of approxima- 
tion M. 

It seems that the radius p of convergence of the Taylor’s homotopy series [equations (21) and 
(22)] would decrease with the increase in Reynolds number. For a higher Re, we must use smaller 

converged result in case of Re = 0 

Figure 2. Contour of streamfunction $ in the case Re=O 

Table I. Convergent results of steady viscous flow in a square cavity (M =2) 

Re 4 a. Iteration times 0, 

0 1.000 1*OOo 0 3,245 
100 1.050 0850 15 3.336 
200 1.050 0350 18 2.686 
400 1.050 0200 45 2.31 1 

1000 1.050 0050 129 2.026 
2000 1.050 0025 373 1.898 

+C 

0.099 1 
0.1054 
0.1057 
0.1089 
01092 
0 1068 

x c  

0.500 
0367 
0405 
0444 
0.444 
0500 

Y c  

0769 
0748 
0.672 
0633 
0595 
0556 



converged result in case of R e  = 0 

Figure 3. Contour of vorticity w in the case R e 3 0  

0 
0 

I I 1 I I or I 1 1 1 1 
-1.00 -0.60 -0.20 0.20 0.60 I .00 

U -- A T  X - 0.5 
R e  - 0 .  

Figure 4. Velocity distribution LI at x=O5 in the cast Re=O 
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0 
0 

V - -  AT Y - 0 . 5  

Re - 0 

I 

Figure 5. Velocity distribution Vat y = 0 5  in the case Re=O 

mnvergcd result in c a w  cf He - 400 

C 

Figure 6. Contour of streamfunction II. in the case R e = W  



converged result in case of Re = 400 

Figure 7. Contour of vorticity UJ in the case Re=400 

U - -  AT X - 0 . 5  

R e  - 400 

Figure 8. Velocity distribution Lr at x=03  in the case R e = m  
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V - -  AT Y - 0 . 5  

Re - 400 

Figure 9. Velocity distribution V a t  y=@5 in the case Re=- 

converged result in case of Re = 1000 

Figure 10. Contour of strcamfunction $ in the casc Re= loo0 
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converged result in case of Re = 1000 

Figure 11. Contour of vorticity w in the cagc Re= loo0 

0 
0 

U - -  AT X - 0 . 5  

Re - 1000 

Figure 12. Velocity distribution U at x=@5 in the case Re= loo0 
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0 
0 
F 

0 

0 
u! 

0 

0 
N 

8 
0. 

0 

0. 
u! 
I 

0 
0 

1 
C. 

I I I I w 1  I I I I 
0 20 

V - -  AT Y 0 0 . 5  

R e  - 1000 

Figure 13. Velocity distribution Vat y=D5 in the case Re= lo00 

1 G p  < 1 in order to let iteration convergent. We know many researchers use a relaxation 
parameter smaller than one in their iterative procedures of Navier-Stokes equation to obtain 
convergent results. This can be easily explained from the viewpoint of the radius of convergence of 
the corresponding Taylor's homotopy series described in this paper. 

Many researchers treat the non-linear terms of Navier-Stokes equations as inhomogeneities. 
But from the viewpoint of homotopy, the treatment of the non-linear terms described in this 
paper seems more natural. 

For each value of Reynolds number, we use only a constant value of 1 in iteration. Clearly, the 
radius p of convergence of the corresponding Taylor's homotopy series [equations (21) and (22)] 
would be greater and greater in the process of iteration by modifying successively the initial 
solutions so that the value of 1 would be increased progressively. So, if we increase progressively 
the value of 1 in iteration, less iterations are needed. 

The matrix and its inverse matrix of the corresponding set of linear algebraic equations should 
be computed only once so that a little more CPU time is needed to obtain solutions of the 
corresponding set of linear algebraic equations. In fact, nearly 90% CPU time is used to compute 
the integrals in domain Q. We know that integral is suitable for parallel computation. So, if we 
could develop a kind of sufficiently effective parallel computer, this boundary element method 
should be powerful in solving Navier-Stokes equations 

In this paper, we obtain convergent results in cases Re = 0-2000. We believe that the results for 
the case of much higher Re could be obtained if we apply iterative formulas at higher orders of 
approximation and use finer numerical nets. 
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4. CONCLUSION 

In this paper, we derive a kind of higher-order iterative model of a regular boundary element 
method in solving 2D steady-state Navier-Stokes equations in streamfunction-vorticity formula- 
tion by applying a kind of linearity invariance under homotopy. The formulas at lowest order of 
approximation are the same as those given in Reference 7, which are really divergent for Re> 300. 
However, using the formulas at second order of approximation, we obtain convergent results for 
O< Re <2000. We believe that convergent results for the case Re>2000 could be obtained if we 
apply iterative formulas at higher orders of approximation and use finer numerical nets. 
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APPENDIX: NOMENCLATURE 

G,, G, 
P embedding variable of homotopy 
4 
M order of approximation 
Re Reynolds number 
u, v 

fundamental solutions of 2D Navier-Stokes equations 

parameter for distribution of node points on boundary 

velocity in x and y direction, respectively 

Greek letters 

r boundary of R 
P radius of convergence * stream function 

$b, (2) boundary conditions of streamfunction 

0 vorticity 
R domain of fluid flow 
a= exterior of domain R 

b 
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