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under Arbitrary Uniform Pressure
Part I: Equations in Differential Form

Xiaoxu Zhong 3, Shijun Liao 1,2,3 ∗

1 State Key Laboratory of Ocean Engineering, Shanghai 200240, China
2 Collaborative Innovative Center for Advanced Ship and Deep-Sea

Exploration, Shanghai 200240, China
3 School of Naval Architecture, Ocean and Civil Engineering
Shanghai Jiao Tong University, Shanghai 200240, China

Abstract The large deflection of a circular plate under a uniform external
pressure is a classic problem in mechanics, dated back to Von Kármán [1].
In this paper, we solve this famous problem by means of the homotopy anal-
ysis method (HAM), an analytic approximation method for highly nonlinear
equations. Convergent series solutions with four kinds of boundaries are suc-
cessfully obtained, with large enough ratio of central deflection to thickness
w(0)/h > 20 that is large enough for the majority of applications. In fact,
by means of this approach, accurate analytic approximations can be obtained
for a circular plate with arbitrary uniform external pressure. Especially, we
proved that the perturbation methods for any a perturbation quantity (includ-
ing Vincent’s [2] and Chien’s [3] methods) and the modified iteration method
[4] are only the special cases of the HAM. However, the HAM approach works
well even if these perturbation methods become invalid. In addition, our re-
sults agree well with Zheng’s excellent work [5]. All of these indicate the va-
lidity and potential of the HAM for the famous Von Kármán’s plate equations
in solid mechanics, and show the superiority of the HAM over perturbation
methods.

Key Words circular plate, arbitrary uniform external pressure, homotopy
analysis method, HAM

1. Introduction

The large deflection of a circular plate under a uniform external pressure
is a classic problem that has received much attention over the past century,

∗Corresponding author. Email address: sjliao@sjtu.edu.cn
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since it plays an important role in many engineering fields, such as mechanical
and marine engineering, the precision instrument manufacture, and so on.
The Kirchhoff−Love plate theory developed by Love [6] in 1888 used some
assumptions proposed by Kirchhoff, which characterizes the small transverse
displacement of a thin plate. Out of the assumption of small deflections,
by neglecting all terms higher than quadratic in the energy expression under
given forces, Love derived the linear differential equations for the equilibrium
position of the shell [7]. However, this model is valid only if the transverse
displacement is small, compared to the thickness of plate. To construct
a theory for large displacements, Von Kármán [1] assumed that stress is
linear with strain, and took the correct nonlinear relations between the in-
plane strains and the displacements. In this way, he came up in 1910 with
the celebrated Von Kármán’s plate equations [1], which are coupled and
have strong nonlinearity. The Von Kármán’s plate equations in differential
form describing the large deflection of a circular thin plate under a uniform
external pressure are:

y2
d2ϕ(y)

dy2
= ϕ(y)S(y) +Qy2, (1)

y2
d2S(y)

dy2
= −

1

2
ϕ2(y), y ∈ (0, 1), (2)

subject to the boundary conditions

ϕ(0) = S(0) = 0, (3)

ϕ(1) =
λ

λ− 1
·
dϕ(y)

dy

∣

∣

∣

∣

y=1

, S(1) =
µ

µ− 1
·
dS(y)

dy

∣

∣

∣

∣

y=1

, (4)

with the definitions

y =
r2

R2
a

, W (y) =
√

3(1− ν2)
w(y)

h
, ϕ(y) = y

dW (y)

dy
, (5)

S(y) = 3(1− ν2)
R2

aNr

Eh3
y, Q =

3(1− ν2)
√

3(1− ν2)R4
a

4Eh4
p, (6)

where r is the radial coordinate whose origin locates at the center of the plate,
E, ν, Ra, h, w(y), Nr and p are Young’s modulus of elasticity, the Poisson’s
ratio, radius, thickness, deflection, the radial membrane force of the plate
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and the external uniform load, respectively, λ and µ are parameters related
to the boundary conditions at y = 1. The dimensionless central deflection

W (y) = −

∫ 1

y

1

ε
ϕ(ε)dε (7)

can be derived from Eq.(5). Note that Q is a constant, dependent upon
the uniform external pressure p. In this paper, we consider four kinds of
boundaries:

(a) Clamped: λ = 0 and µ = 2/(1− ν);
(b) Moveable clamped: λ = 0 and µ = 0;
(c) Simple support: λ = 2/(1 + ν) and µ = 0;
(d) Simple hinged support: λ = 2/(1 + ν) and µ = 2/(1− ν).
Over the past century, lots of analytic approximation methods and nu-

merical techniques are proposed [8–15] for the Von Kármán’s plate equations.
Especially, some perturbation methods [2–4] based on small physical param-
eters (called perturbation quantity) are widely used. In 1931, Vincent [2]
used the load Q as a small physical parameter to solve the Von Kármán’s
plate equations. By means of expanding ϕ(y) and S(y) into a power series
of the load Q:

ϕ(y) = ϕ(V )(y) =
+∞
∑

i=1

ϕ
(V )
i (y)Q2i−1, (8)

S(y) = S(V )(y) =
+∞
∑

i=1

S
(V )
i (y)Q2i, (9)

with the definition of the initial guess

S
(V )
0 (y) = 0,

the procedures of Vincent’s perturbation method [2] are:

y2
d2ϕ

(V )
m (y)

dy2
=

m
∑

i=1

ϕ
(V )
i (y)S

(V )
m−i(y) + (1− χm)y

2, (10)

y2
d2S

(V )
m (y)

dy2
= −

1

2

m
∑

i=1

ϕ
(V )
i (y)ϕ

(V )
m+1−i(y), (11)

subject to the boundary conditions

ϕ(V )
m (0) = S(V )

m (0) = 0, (12)
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ϕ(V )
m (1) =

λ

λ− 1
·
dϕ

(V )
m (y)

dy

∣

∣

∣

∣

y=1

, S(V )
m (1) =

µ

µ− 1
·
dS

(V )
m (y)

dy

∣

∣

∣

∣

y=1

. (13)

Unfortunately, Vincent’s perturbation method [2] is valid only for a rather
small ratio of central deflection to plate thickness w(0)/h < 0.52 for a cir-
cular plate with clamped boundary [16]. Thereafter, extensive researches
regarding the selection of a proper perturbation quantity were done. For
example, Chien [3], Chien and Yeh [17], and Hu [18] took different physical
parameters such as the central deflection and the average angular deflection
as the perturbation quantity to solve this problem. In order to find out
which physical parameter is the most suitable as the perturbation quantity,
Chen and Kuang [16] compared the results given by the different pertur-
bation quantities and got the conclusion that the central deflection is the
best, which gives convergent results within w(0)/h < 2.44 for a circular plate
with clamped boundary. Thus, it is reasonable to expand the load Q into
the series of W (0), because the corresponding Q increases sharply as W (0)
enlarges. Therefore, W (0) is more appropriate than Q, and it makes sense
to introduce the W (0) into Von Kármán’s plate equations to enlarge the
convergent region. Procedures of Chien’s perturbation method [3] using the
central deflection as the perturbation quantity are as follows

ϕ(y) = ϕ(C)(y) =
+∞
∑

m=1

ϕ(C)
m (y)W 2m−1(0), (14)

S(y) = S(C)(y) =
+∞
∑

m=1

S(C)
m (y)W 2m(0), (15)

Q = Q(C) =

+∞
∑

m=1

Q(C)
m W 2m−1(0), (16)

where ϕ
(C)
m (y) and S

(C)
m (y) are governed by

y2
d2ϕ

(C)
m (y)

dy2
=

m
∑

i=1

ϕ
(C)
i (y)S

(C)
m−i(y) +Q(C)

m · y2, (17)

y2
d2S

(C)
m (y)

dy2
= −

1

2

m
∑

i=1

ϕ
(C)
i (y)ϕ

(C)
m+1−i(y), (18)
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subject to the boundary conditions

ϕ(C)
m (0) = S(C)

m (0) = 0, (19)

ϕ(C)
m (1) =

λ

λ− 1
·
dϕ

(C)
m (y)

dy

∣

∣

∣

∣

y=1

, S(C)
m (1) =

µ

µ− 1
·
dS

(C)
m (y)

dy

∣

∣

∣

∣

y=1

, (20)

with the restriction condition

−

∫ 1

0

1

ε
· ϕ(C)

m (ε)dε = (1− χm) (21)

for Q
(C)
m and the definition of the initial guess

S
(C)
0 (y) = 0,

and the definition of χm in (21):

χm =

{

1 when m = 1,
0 when m ≥ 2.

(22)

It is a pity that, as pointed out by Volmir [19], the deformation curve given
by the Chien’s perturbation method [3] becomes concave at centre when the
central deformation increases to a certain level. This is obviously in contra-
diction with physical phenomena. In summary, the perturbation methods
[2, 3] for a circular plate are valid only for small physical parameters.

In 1965, a modified iteration method was presented by Yeh and Liu [4]
to solve the stability of a shell and the large deflection of circular plate,
which inherits the merits of Chien’s perturbation method [3] and iteration
technique. Using this approach, the iterative process becomes clear and
simple, and the problems of plate and shell are, therefore, convenient to be
solved. Their iteration procedures [4] are as follows:

y2
d2ψn(y)

dy2
= −

1

2
ϑ2n(y), y ∈ (0, 1), (23)

y2
d2ϑn+1(y)

dy2
= ϑn(y)ψn(y) +Qny

2, (24)

subject to the boundary conditions:

ϑn+1(0) = ψn(0) = 0, (25)
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ϑn+1(1) =
λ

λ− 1
·
dϑn+1(y)

dy

∣

∣

∣

∣

y=1

, ψn(1) =
µ

µ− 1
·
dψn(y)

dy

∣

∣

∣

∣

y=1

, (26)

with the restriction condition for Qn:

W (0) = a = −

∫ 1

0

1

ε
ϑn+1(ε)dε (27)

and the definition of the initial guess

ϑ1(y) =
−2a

2λ+ 1
[(λ+ 1)y − y2]. (28)

In 1989, the relationship between Chien’s perturbation solutions [3] and the
modified iterative solutions [4] was studied by Zhou [20], who found that
they have the same convergent region. Therefore, even the modified itera-
tive method [4] is valid only for a small central deflection, too. According
to Zhou’s work [20], iteration itself can not enlarge the convergence radius
of perturbation series, although it can greatly enhance the computational
efficiency.

In 1958, an iterative technique was presented by Keller and Reiss [21] for
a thin circular plate under a uniform lateral pressure. It was found that, with
a simple iterative technique, they gained convergent results only in a limited
range of the load that is used as the perturbation quantity. Physically, it is
the amplification of the so-called “normal force” at each step of iteration that
leads to the divergence of the stresses and displacements. In order to remedy
the discrepancy, Keller and Reiss [21] introduced an interpolation parameter
to their iteration procedure. Fortunately, the interpolation iterative method
yields convergent solutions for loads as large as Q = 7000. However, Keller
and Reiss [21] did not prove the convergence of the interpolated iteration
scheme for arbitrary values of load. Moreover, while all of the iterations can
be obtained explicitly as polynomials, their degrees increase geometrically.
Consequently the iterations rapidly become unwieldy and unpractical for nu-
merical tabulation. Therefore, Keller and Reiss [21] computed the iterations
approximately by means of finite differences and gave the numerical results.

The above-mentioned methods largely enrich the approaches for the Von
Kármán’s plate equations. However, they do not give answers to the con-
vergence of solutions. In 1988, the convergent solutions of Von Kármán’s
plate equations were obtained by Zheng and Zhou [22] using the interpo-
lation iterative method. Especially, they successfully proved that solution
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series given by the interpolation iterative method are convergent for arbi-
trary values of load if proper interpolation iterative parameter is chosen [22].
Zheng and Zhou’s work [22] is indeed a milestone about the Von Kármán’s
plate equations.

In addition, many numerical methods, such as the finite element method
[23] and the boundary element methods [24], were used to solve the Von
Kármán’s plate equations. However, numerical error increases rapidly as the
central deflection increases, therefore these numerical methods are no longer
valid when deflection becomes large. In 2015, a wavelet method [25, 26] was
proposed to solve large deflection of circular plates, which can guarantee both
of the approximation accuracy and the computational efficiency.

In this paper the large deflection of a circular plate under a uniform exter-
nal pressure is solved by means of an analytic technique for highly nonlinear
problems, namely, the homotopy analysis method (HAM) [27–33], which was
proposed by Liao [27] in 1992. Unlike perturbation technique, the HAM is
independent of any small/large physical parameters. Besides, unlike other
analytic techniques, the HAM provides a simple way to guarantee the conver-
gence of solution series by means of introducing the so-called “convergence-
control parameter”. In addition, the HAM provides us great freedom to
choose equation-type and solution expression of the high-order linear equa-
tions. As a powerful technique to solve highly nonlinear equations, the HAM
was successfully employed to solve various types of nonlinear problems over
the past two decades [34–44]. Especially, as shown in [45–49], the HAM
can bring us something completely new/different: the steady-state resonant
waves were first predicted by the HAM in theory and then confirmed exper-
imentally in a lab [47]. So, the HAM should provide us a suitable analytic
approach for Von Kármán’s plate equations, too. In Part (I), we first take Von
Kármán’s plate equations in the differential form with the clamped bound-
ary as an example, and obtain the convergent analytic results in the case
of w(0)/h = 4.24 by means of the HAM (without iteration), which is larger
than the maximum convergence range (w(0)/h < 2.44) of the perturbation
method [16]. Further, the HAM−based iteration approach is presented to
gain convergent solutions within a large enough ratio of w(0)/h > 20. Our
results given by the HAM−based iteration approach agree very well with
those given by Zheng’s [5]. Furthermore, convergent solutions of the Von
Kármán’s plate equations with other three boundaries (moveable clamped,
simple support and simple hinged support) are presented. Finally, we prove
that the perturbation methods for any a perturbation quantity (including
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Vincent’s [2] and Chien’s [3] perturbation methods) and the modified itera-
tion method [4] are only special cases of the HAM. In Part (II), two HAM-
based approaches are proposed to solve the Von Kármán’s plate equations
in the integral form for arbitrary uniform pressure, and it is proved that the
interpolation iterative method [21] is only a special case of the HAM, too.

2. Analytic approach based on the HAM

According to Zheng [5], ϕ(y) and S(y) are power series in y. Therefore,
we express ϕ(y) and S(y) in power series

ϕ(y) =

+∞
∑

m=1

am · ym, S(y) =

+∞
∑

m=1

bm · ym, (29)

where am and bm are constant coefficients to be determined. They provide
us the so-called “solution expression” of ϕ(y) and S(y) in the frame of the
HAM. Given

W (0) = a, (30)

we have due to Eq.(7) an algebraic equation for the corresponding unknown
value of Q:

∫ 1

0

1

ε
ϕ(ε)dε = −a. (31)

Let ϕ0(y) and S0(y) be initial guesses of ϕ(y) and S(y), respectively, which
satisfy the boundary conditions (3), (4) and (31). Moreover, let L denote
an auxiliary linear operator with property L[0] = 0, H1(y) and H2(y) the
auxiliary functions, c0 a non-zero auxiliary parameter, called the convergence-
control parameter, and q ∈ [0, 1] the embedding parameter, respectively.
Then, we construct a family of differential equations in q ∈ [0, 1]:

(1− q)L[Φ(y; q)− ϕ0(y)] = c0qH1(y)N1(y; q), (32)

(1− q)L[Ξ(y; q)− S0(y)] = c0qH2(y)N2(y; q), (33)

subject to the boundary conditions

Φ(0; q) = Ξ(0; q) = 0, (34)

Φ(1; q) =
λ

λ− 1
·
∂Φ(y; q)

∂y

∣

∣

∣

∣

y=1

, Ξ(1; q) =
µ

µ− 1
·
∂Ξ(y; q)

∂y

∣

∣

∣

∣

y=1

, (35)
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with the restriction condition
∫ 1

0

1

ε
Φ(ε; q)dε = −a, (36)

where

N1(y; q) = y2
∂2Φ(y; q)

∂y2
− Φ(y; q)Ξ(y; q)−Θ(q)y2, (37)

N2(y; q) = y2
∂2Ξ(y; q)

∂y2
+

1

2
Φ2(y; q) (38)

are two nonlinear operators. Here we rewrite the unknown Q (for a given a)
in a power series:

Θ(q) =

+∞
∑

m=0

Qm qm,

where Qm is determined by the algebraic equation (36).
When q = 0, due to the property L(0) = 0, Eqs.(32)-(36) have the

solution:
Φ(y; 0) = ϕ0(y), Ξ(y; 0) = S0(y). (39)

When q = 1, they are equivalent to the original equations (1)-(4) and (31),
provided

Φ(y; 1) = ϕ(y), Ξ(y; 1) = S(y), Θ(1) = Q. (40)

Write
Θ(0) = Q0, (41)

where Q0 denotes the initial guess of Q. Therefore, as q increases from 0 to 1,
Φ(y; q) varies continuously from the initial guess ϕ0(y) to ϕ(y), so do Ξ(y; q)
from the initial guess S0(y) to S(y), and Θ(q) from the initial guess Q0 to
Q, respectively. In topology, these kinds of continuous variation are called
deformation. Eqs.(32)-(36) constructing the homotopies Φ(y; q), Ξ(y; q) and
Θ(q) are called the zeroth−order deformation equations.

Expanding Φ(y; q), Ξ(y; q) and Θ(q) into Taylor series with respect to the
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embedding parameter q, we have the so-called homotopy-series:

Φ(y; q) = ϕ0(y) +
+∞
∑

m=1

ϕm(y) q
m, (42)

Ξ(y; q) = S0(y) +
+∞
∑

m=1

Sm(y) q
m, (43)

Θ(q) = Q0 +

+∞
∑

m=1

Qm qm. (44)

where

ϕm(y) = Dm[Φ(y; q)], (45)

Sm(y) = Dm[Ξ(y; q)], (46)

Qm = Dm[Θ(q)], (47)

in which

Dm[f ] =
1

m!

∂mf

∂qm

∣

∣

∣

∣

q=0

(48)

is called the mth-order homotopy-derivative of f .
Note that the radius of convergence of a power series is finite in general.

Fortunately, in the frame of the HAM, apart from the great freedom to choose
the auxiliary linear operator L, there is a convergence-control parameter c0
contained in the homotopy-series (42)-(44). Assume that L and c0 are so
properly chosen that the homotopy-series (42)-(44) are convergent at q = 1.
Then according to Eq. (40), the so-called homotopy-series solutions read:

ϕ(y) = ϕ0(y) +

+∞
∑

m=1

ϕm(y), (49)

S(y) = S0(y) +

+∞
∑

m=1

Sm(y), (50)

Q = Q0 +
+∞
∑

m=1

Qm. (51)

In addition, the governing equations and boundary conditions of ϕm(y),
Sm(y) and Qm can be derived by substituting the series (42)-(44) into the
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zeroth-order deformation equations (32)-(36) and then equating the like-
power of the embedding parameter q. The so-called mth-order deformation
equations read

L[ϕm(y)− χmϕm−1(y)] = c0H1(y)δ1,m−1(y), (52)

L[Sm(y)− χmSm−1(y)] = c0H2(y)δ2,m−1(y), (53)

subject to the boundary conditions

ϕm(0) = Sm(0) = 0, (54)

ϕm(1) =
λ

λ− 1
·
∂ϕm(y)

∂y

∣

∣

∣

∣

y=1

, Sm(1) =
µ

µ− 1
·
∂Sm(y)

∂y

∣

∣

∣

∣

y=1

, (55)

with the restriction condition for Qm−1:

∫ 1

0

1

ε
· ϕm(ε)dε = 0, (56)

where χm is defined by (22) and

δ1,m−1(y) = Dm−1[N1(y; q)]

= y2
∂2ϕm−1(y)

∂y2
−

m−1
∑

k=0

ϕk(y)Sm−1−k(y)−Qm−1y
2, (57)

δ2,m−1(y) = Dm−1[N2(y; q)]

= y2
∂2Sm−1(y)

∂y2
+

1

2

m−1
∑

k=0

ϕk(y)ϕm−1−k(y). (58)

Note that the mth-order deformation equations (52)-(56) are linear. Be-
sides, we have great freedom to choose the auxiliary linear operator L ,the
initial guesses ϕ0(y) and S0(y). According to [28], the choice of L, ϕ0(y) and
S0(y) should guarantee the solution expression (29) and the solution existence
of the high-order deformation equations (52)-(56). Thus, we choose

ϕ0(y) =
−2a

2λ+ 1
[(λ+ 1)y − y2], (59)

S0(y) = (µ+ 1)y − y2 (60)

11



as the initial guesses of ϕ(y) and S(y). Since the original equations (1) and
(2) are of 2nd order, it is natural to choose such a 2nd-order auxiliary linear
operator

L[u(y)] =
du2(y)

dy2
(61)

with the property
L[c3 + c4y] = 0. (62)

Considering the solution expression (29) and the property (62) of the
auxiliary linear operator L, H1(y) and H2(y) should be properly chosen so
as to make sure that the right-hand side term of the high-order deformation
equations (52) and (53) are in the forms:

c0H1(y)δ1,m−1(y) =
∑

k=0

d1,k y
k, (63)

c0H2(y)δ2,m−1(y) =
∑

k=0

d2,k y
k, (64)

where d1,k and d2,k are the coefficients, respectively. Therefore, the auxiliary
function H1(y) and H2(y) must be in the form:

H1(y) = H2(y) =
1

y2
. (65)

Substituting Eqs.(61) and (65) into Eqs.(52) and (53), we have the general
solutions of the high-order deformation equations (52) and (53):

ϕm(y) = χmϕm−1(y) +

∫ y

0

∫ η

0

c0
1

τ 2
δ1,m(τ)dτdη +D1,my +D2,m, (66)

Sm(y) = χkSm−1(y) +

∫ y

0

∫ η

0

c0
1

τ 2
δ2,m(τ)dτdη +D3,my +D4,m, (67)

where D1,m, D2,m, D3,m, D4,m are four unknown constants, which are deter-
mined by the four linear boundary conditions (54) and (55). The unknown
Qm−1 is given by the algebraic equation (56). As a consequence, ϕm(y) ,
Sm(y) and Qm−1 of Eqs. (52) and (53) are obtained. Then, we have the
nth-order approximation of ϕ(y) and S(y):

ϕ̃n(y) =
n

∑

m=0

ϕm(y), (68)
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S̃n(y) =
n

∑

m=0

Sm(y), (69)

and the (n− 1)th-order approximate solution of Q:

Q̃n−1 =
n−1
∑

m=0

Qm. (70)

Define the sum of the two discrete squared residuals

Err =
1

K + 1

K
∑

i=0

{

[

N1

(

i

K

)]2

+

[

N2

(

i

K

)]2
}

, (71)

where K = 100 is used in this paper. Obviously, the smaller the Err, the
more accurate the HAM approximation is.

According to Liao [28], the convergence of the homotopy-series solutions
can be greatly accelerated by means of iteration technique, which uses the
Mth-order homotopy-approximations

ϕ̌(y) ≈ ϕ0(y) +
M
∑

m=1

ϕm(y), (72)

Š(y) ≈ S0(y) +
M
∑

m=1

Sm(y) (73)

as the new initial guesses ϕ0(y) and S0(y) for the next iteration. This provides
us theMth-order iteration of the HAM. Moreover, we neglect all higher-order
terms of the right-hand side terms in Eqs. (52) and (53), say,

c0H1(y) · δ1,m(y) ≈
N
∑

k=0

Em,k · y
k, (74)

c0H2(y) · δ2,m(y) ≈
N
∑

k=0

Fm,k · y
k, (75)

where Em,k and Fm,k are constant coefficients, N is called the truncation
order, respectively. Note that the appropriate value of the truncation order
N is dependent upon the boundary condition, as shown later.
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3. Result analysis

At first, the Von Kármán’s plate equations with the clamped boundary
are used as an example to illustrate the validity of the HAM-based approach
within a quite large region of w(0)/h, i.e. the ratio of central deflection to
thickness of the plate. Then, other three boundaries (moveable clamped, sim-
ple support and simple hinged support) are considered. Finally, we reveal
that the perturbation methods for any a perturbation quantity (including
Vincent’s [2] and Chien’s [3] perturbation methods) and the modified itera-
tion method [4] are only special cases of the HAM. Without loss of generality,
the Poisson’s ratio ν is taken to be 0.3 in all cases considered in this paper.

3.1. The HAM-based approach without iteration

The HAM-based approach (without iteration) is used to solve the Von
Kármán’s plate equations with the clamped boundary at first. Unlike other
analytic approximation methods, the HAM-based approach contains the so-
called convergence-control parameter c0, which provides us a convenient way
to guarantee the convergence of the solution series. The optimal value of
c0 is determined by the minimum of Err defined by (71), i.e. the sum of
the squared residual errors of the two governing equations. Take the case
of a = 5 as an example, equivalent to w(0)/h = 3.0. As shown in Fig 1,
the sum of the squared residuals arrives its minimum at c0 ≈ −0.28, which
suggests that the optimal value of c0 is about −0.28. As shown in Table 1,
the sum of the squared residual errors quickly decreases to 4.9 × 10−12 by
means of c0 = −0.28 in the case of a = 5, equivalent to w(0)/h = 3.0. Note
that the largest convergent range of the perturbation results [16] is only
w(0)/h < 2.44. This illustrates the superiority of the HAM-based approach
over the perturbation method.

In a similar way, for any a given value of a, we can always find the
corresponding optimal value of c0 for the Von Kármán’s plate equations with
the clamped boundary, which can be fitted by the formula:

c0 =

{

−1 + 0.052a+ 0.0325a2 − 0.023a3 + 0.0047a4 (0 ≤ a ≤ 4),
−3.892a · e−0.845a (4 < a ≤ 7),

(76)

as shown in Fig.2. It should be emphasized that it is the convergence-control
parameter c0 that enables us to guarantee the convergence of the homotopy-
series solutions. Therefore, the convergence-control parameter indeed plays
a very important role in the frame of the HAM.
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Figure 1: The sum of squared residual errors Err versus c0 in the case of a = 5 for a
circular plate with the clamped boundary, gained by the HAM-based approach (without
iteration).

3.2. Convergence acceleration by means of iteration

Iteration can be introduced naturally into the frame of the HAM to
greatly accelerate the convergence of the homotopy-series solutions. With-
out loss of generality, let us consider the same case of a = 5, equivalent to
w(0)/h = 3.0. As shown in Fig 3, the sum of the squared residual errors
arrives its minimum at c0 ≈ −0.55 by means of the HAM-based 1st-order
iteration approach with the truncation order N = 100. Note that the sum of
the squared residual errors quickly decreases to 1.7×10−24 in only 25 seconds
of CPU time, which is about 50 times faster than the HAM approach without
iteration, as shown in Table 1 and 2. Thus, the computational efficiency can
be greatly improved by iteration. So, from the viewpoint of computational
efficiency, the HAM approach with iteration is applied for other three bound-
aries (moveable clamped, simple support and simple hinged support) in the
subsequent part of this paper.

3.3. Choice of the auxiliary parameters

To use the HAM-based iteration approach, we need choose the order M
of iteration formula in (72)-(73) and the truncation order N in (74)-(75).
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Figure 2: The optimal convergence-control parameter c0 versus a in the case of a circular
plate with the clamped boundary, in the frame of the HAM (without iteration). Symbols:
optimal convergence-control parameter calculated in some cases; Solid line: fitting formula.

c0

E
rr

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2
10-2

100

102

104

106

108

1010

1012

Figure 3: The sum of the squared residual errors Err versus c0 in the case of a = 5 for
a circular plate with the clamped boundary, given by the HAM-based 1st-order iteration
approach using the truncation order N = 100.
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Table 1: The used CPU time, the sum of the squared residual errors Err and the
homotopy-approximations of Q in the case of a = 5 of a circular plate with the clamped
boundary, given by the HAM (without iteration) using c0 = −0.28.

m, order of approx. Err Q CPU time (seconds)
20 6.4× 10−2 131.7 6
40 5.8× 10−4 132.1 35
60 9.3× 10−6 132.1 106
80 2.0× 10−7 132.2 243
100 5.1× 10−9 132.2 465
120 1.5× 10−10 132.2 782
140 4.9× 10−12 132.2 1205

Table 2: The CPU time, the sum of the squared residual errors Err and the load Q
versus the iteration times in the case of a = 5 for a circular plate with the clamped
boundary, given by the HAM-based 1st-order iteration approach using c0 = −0.55 with
the truncation order N = 100.

m, times of iteration Err Q CPU time (seconds)
10 4.5× 10−3 132.2 5
20 4.8× 10−11 132.2 12
30 1.3× 10−18 132.2 18
40 1.7× 10−24 132.2 25

As shown in Fig. 4, the sum of the squared residual errors decreases to
the level of 10−26 for the different iteration order M in the case of a = 15
with the clamped boundary, and the iteration order M = 5 corresponds to
the least iteration times. The sum of the squared residual errors versus the
CPU time for the different iteration order M is shown in Fig. 5. Note that
the HAM-based 1st-order iteration approach (M = 1) corresponds to the
fastest convergence, i.e. the least CPU time, mainly because a higher-order
iteration needs more CPU times than the lower.

In the cases of a = 8 and a = 15 with the clamped boundary, the sum
of the squared residual errors versus the CPU time given by the HAM-based
1st-order iteration approach with the different truncation order N is given in
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Figure 4: The sum of the squared residual errors Err versus the times of iteration in the
case of a = 15 for a circular plate with the clamped boundary, given by the HAM-based
iteration approach using c0 = −0.13, the truncation order N = 150 and different order
of iteration approach. Square: 1st-order; Triangle down: 2nd-order; Circle: 3rd-order;
Triangle up: 4th-order; Triangle left: 5th-order.
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Figure 5: The sum of the squared residual errors Err versus the CPU time in the case of
a = 15 for a circular plate with the clamped boundary, given by the HAM-based iteration
approach using c0 = −0.13, the truncation order N = 150 and different order of iteration
approach. Square: 1st-order; Triangle down: 2nd-order; Circle: 3rd-order; Triangle up:
4th-order; Triangle left: 5th-order.
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Figure 6: The sum of the squared residual errors Err versus the CPU time in the case of
a = 8 for a circular plate with the clamped boundary, given by the HAM-based 1st-order
iteration approach using c0 = −0.3 and different truncation order N . Square: N = 60;
Triangle down: N = 70; Circle: N = 80; Triangle up: N = 90; Triangle left: N = 100.

Fig. 6 and Fig. 7, respectively. The iteration converges with high accuracy as
long as the truncation orderN is large enough, although largerN corresponds
to slower convergence.

Obviously, the nonlinearity of the Von Kármán’s plate equations becomes
stronger (i.e. a is larger) as the load increases. According to our computation,
in the frame of the HAM-based 1st-order iteration approach, we have the
following empirical formula for the truncation order:

N =Max {100, γ · a} , (77)

where γ is dependent upon the type of boundary:

γ =















10, clamped boundary,
13, moveable clamped boundary,
7, simple support boundary,
5, simple hinged support boundary.

For a circular plate with the clamped boundary, its optimal convergence-
control parameter c0 for the HAM-based 1st-order iteration approach can be
expressed by the empirical formula:

c0 = −
26

26 + a2
(0 ≤ a ≤ 35). (78)
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Figure 7: The sum of the squared residual errors Err versus the CPU time in the case of
a = 15 for a circular plate with the clamped boundary, given by the HAM-based 1st-order
iteration approach using c0 = −0.13 and different truncation order N . Square: N = 100;
Triangle down: N = 110; Circle: N = 150; Triangle up: N = 170.

For example, as shown in Table 3, the convergent analytic approximations
can be obtained quickly by means of the HAM-based 1st-order iteration
approach in this way, even in the case of a = 35, corresponding to w(0)/h =
21.2. As shown in Fig. 8, Chien’s perturbation method [3] is valid only in
the region of w(0)/h < 2.4, and becomes worse and worse for larger w(0)/h.
As shown in Fig. 9, our results agree quite well with those given by Zheng
[5] using the interpolation iterative method. This verifies the validity of the
HAM-based iteration approach. Moreover, the convergent deflection curves
under different loads even up to pR4

a/Eh
4 = 34632 are shown in Fig. 10.

For a circular plate with the moveable clamped boundary, the correspond-
ing optimal convergence-control parameter c0 for the HAM-based 1st-order
iteration approach can be expressed by the empirical formula

c0 = −
39

39 + a2
(0 ≤ a ≤ 35). (79)

For example, as shown in Table 4, the convergent accurate analytic approx-
imations can be obtained even in the case of a = 35, corresponding to
w(0)/h = 21.2. The convergent deflection curves under different loads up
to pR4

a/Eh
4 = 5278.3 are as shown in Fig.11.

For a circular plate with the simple support boundary, the correspond-
ing optimal convergence-control parameter c0 for the HAM-based 1st-order
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Table 3: The convergent homotopy-approximation of the load Q in case of different values
of a for a circular plate with the clamped boundary, given by the HAM-based 1st-order
iteration approach with the truncation orderN given by (77) and the optimal convergence-
control parameter c0 given by (78).

a c0 N Q
5 -0.51 100 132.2
10 -0.21 100 957.7
15 -0.10 150 3152.1
20 -0.06 200 7386.9
25 -0.04 250 14334.1
30 -0.03 300 24665.7
35 -0.02 350 39053.6
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Figure 8: Comparison of the results given by the HAM-based 1st-order iteration approach
and Chien’s perturbation method [3] for a circular plate with the clamped boundary.
Symbols: results given by Chien’s perturbation method [3]; Solid line: results given by
the HAM.
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Figure 9: Comparison of the results given by the HAM-based 1st-order iteration approach
and the interpolation iterative method for a circular plate with the clamped boundary.
Symbols: results given by Zheng [5] using the interpolation iterative method; Solid line:
results given by the HAM.
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Figure 10: The deflection curves of a thin circular plate with the clamped boundary given
by the HAM-based 1st-order iteration approach in the case of a = 5, 15, 25, 35. Solid
line: pR4

a
/Eh4 = 117.2; Dash-double-dotted line: pR4

a
/Eh4 = 2795.2; Dash-dotted line:

pR4
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/Eh4 = 12711.2; Dashed line: pR4
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/Eh4 = 34632.0.
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Table 4: The convergent homotopy-approximation of the load Q in case of different values
of a for a circular plate with the moveable clamped boundary, given by the HAM-based
1st-order iteration approach using the truncation order N given by (77) and the optimal
convergence-control parameter c0 given by (79).

a c0 N Q
5 -0.61 100 49.3
10 -0.28 130 240.1
15 -0.15 195 657.7
20 -0.09 260 1372.5
25 -0.06 325 2450.9
30 -0.04 390 3956.8
35 -0.03 455 5952.2

iteration approach can be expressed by the empirical formula

c0 = −
80

80 + a2
(0 ≤ a ≤ 50). (80)

For example, as shown in Table 5, the convergent analytic solutions can be
obtained even in the case of a = 50, corresponding to w(0)/h = 30.3. The
convergent deflection curves under different loads up to pR4

a/Eh
4 = 8689.9

are as shown in Fig 12.
For a circular plate with the boundary of simple hinged support, the

corresponding optimal convergence-control parameter c0 for the HAM-based
1st-order iteration approach can be expressed by the empirical formula

c0 = −
40

40 + a
5

2

(0 ≤ a ≤ 50). (81)

For example, as shown in Table 6, the convergent analytic solutions can be
obtained even in the case of a = 50, corresponding to w(0)/h = 30.3. The
convergent deflection curves under different loads up to pR4

a/Eh
4 = 99279.8

are shown in Fig. 13.

4. Relations between the HAM and other methods

In this section, we prove that the perturbation methods for any a pertur-
bation quantity (including Vincent’s [2] and Chien’s [3] perturbation meth-
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Figure 11: The deflection curves of a thin circular plate with the moveable clamped bound-
ary given by the HAM-based 1st-order iteration approach in the case of a = 5, 15, 25, 35.
Solid line: pR4

a
/Eh4 = 43.7; Dash-double-dotted line: pR4
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Table 5: The convergent homotopy-approximation of the load Q in case of different values
of a for a circular plate with the simple support boundary, given by the HAM-based
1st-order iteration approach with the truncation order N given by (77) and the optimal
convergence-control parameter c0 given by (80).

a c0 N Q
10 -0.44 100 107.8
20 -0.17 140 737.4
30 -0.08 210 2304.8
40 -0.05 280 5199.8
50 -0.03 350 9799.3
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Figure 12: The deflection curves of a thin circular plate with the simple support
boundary given by the HAM-based 1st-order iteration approach in the case of a =
10, 20, 30, 40, 50. Solid line: pR4

a
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Dashed line: pR4
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Table 6: The convergent homotopy-approximation of the load Q in case of different values
of a for a circular plate with the boundary of simple hinged support given by the HAM-
based 1st-order iteration approach with the truncation order N given by (77) and the
optimal convergence-control parameter c0 given by (81).

a c0 N Q
10 -0.112 100 890.0
20 -0.021 100 7152.3
30 -0.008 150 24166.4
40 -0.004 200 57308.7
50 -0.002 250 111955.3

ods) and the modified iteration method [4] are only the special cases of the
HAM approaches.

Vincent [2] used the load Q as a perturbation quantity to obtain pertur-
bation results that however are valid only for w(0)/h < 0.52 in the case of the

25



r/Ra

w
(0

)/
h

0.2 0.4 0.6 0.8 1
0

4

8

12

16

20

24

28

32

a = 10
a = 20
a = 30
a = 40
a = 50

Figure 13: The deflection curves of a thin circular plate with the boundary of simple
hinged support given by the HAM-based 1st-order iteration approach in the case of a =
10, 20, 30, 40, 50. Solid line: pR4

a
/Eh4 = 789.3; Dash-dotted line: pR4

a
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Long- dashed line: pR4
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clamped boundary. Chien [3] took W (0) as the perturbation quantity and
obtained the convergent results for w(0)/h < 2.44 in the case of the clamped
boundary. It is very interesting that both of Vincent’s [2] and Chien’s [3]
perturbation methods are special cases of the HAM-based approach in case
of c0 = −1, as proved in Appendix A. However, the HAM approach can
give convergent results in much larger range of w(0)/h by means of choos-
ing a proper value of the convergence-control parameter c0. For example,
as shown in Fig. 14, the convergent solution can be obtained by means of
the HAM-based approach (without iteration) with c0 = −0.2 in the case of
a = 5, corresponding to w(0)/h = 3.0, where Chien’s perturbation method
[3] is invalid.

The modified iterative method [4] inherits the merits of Chien’s pertur-
bation method [3] and iteration technique, but with the computational effi-
ciency much higher than Chien’s perturbation method. However, Zhou [20]
proved that, if the iterative parameter in the modified iterative method [4] is
the same as the perturbation quantity in the perturbation methods, results
given by the two methods have the same convergent region. Thus, itera-
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tion itself can not modify the convergence! In fact, the modified iterative
method [4] is also a special case of the HAM-based 1st-order iteration ap-
proach when c0 = −1 (for details, please see Appendix B). However, the
HAM iteration approach can give convergent results in much larger range
of w(0)/h by means of choosing a proper value of the convergence-control
parameter c0. As shown in Fig. 15, the convergent result can be obtained
by means of the HAM-based 1st-order iteration approach with c0 = −0.2 in
the case of a = 10, equivalent to w(0)/h = 6.1, where the modified iterative
method [4] is invalid.

Therefore, not only the perturbation methods for any a perturbation
quantity (including Vincent’s [2] and Chien’s [3] perturbation methods) but
also the modified iteration method [4] are only the special cases of the HAM
(without iteration) and the HAM-based iteration approach when c0 = −1,
respectively. More importantly, by means of choosing a proper value of the
convergence-control parameter c0 in the frame of the HAM approach, con-
vergent solutions can be obtained in a much larger region where perturbation
methods [2, 3] and the modified iteration method [4] fail, as shown in Fig. 14
and Fig. 15 as examples. Therefore, it is the convergence-control parameter
c0 that guarantees the convergence of solutions for a circular plate under
an arbitrary uniform external pressure. This explains why the HAM-based
approach can gain convergent results even for quite large load. So, these
relations proved in the Appendix A and B indicate the novelty and potential
of the HAM once again. Indeed, it is the convergence-control parameter c0
that differs the HAM from all other approximation methods!

In Part (II), we will prove that even the interpolation iterative method
[21] is a special case of the HAM-based iteration approach.

5. Conclusions

In this paper, the homotopy analysis method (HAM) is applied to the
large deflection of a circular plate under a uniform external pressure with
four different kinds of boundaries. Convergent analytical solutions are suc-
cessfully obtained, with large enough convergent region (w(0)/h > 20) for
the majority of applications. It is found that iteration can greatly acceler-
ate the convergence of solutions. In addition, we prove that not only the
perturbation methods for any a perturbation quantity (including Vincent’s
[2] and Chien’s [3] perturbation methods) but also the modified iteration
method [4] are only the special cases of the HAM (without iteration) and the
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Figure 14: The sum of the squared residual errors Err at different order of approximations
in the case of a = 5 for a circular plate with the clamped boundary given by the HAM-
based approach (without iteration) using c0 = −0.2.
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Figure 15: The sum of the squared residual errors Err versus times of iteration in the
case of a = 10 for a circular plate with the clamped boundary given by the HAM-based
1st-order iteration approach using c0 = −0.2.
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HAM-based iteration approach when c0 = −1, respectively†. Especially, by
choosing a proper value of the convergence-control parameter c0, convergent
solutions can be gained for an arbitrary uniform external pressure. Indeed, it
is the convergence-control parameter c0 that provides us with a simple way
to greatly enlarge convergent regions, as shown in this paper. Besides, it is
also the convergence-control parameter that differs the HAM from all other
analytic approximation methods.

This paper indicates the validity of the HAM for the famous Von Kármán
plate equation in solid mechanics, and shows the superiority of the HAM over
perturbation methods. Without doubt, the HAM can be further applied to
solve some challenging nonlinear problems in solid mechanics.
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Appendix A. Relations between the perturbation methods and the

HAM approach

Here we prove that the perturbation methods for any a perturbation
quantity (including Vincent’s [2] and Chien’s [3] perturbation methods) are
special cases of a kind of HAM approach when c0 = −1.

First, we describe the perturbation methods for a circular plate under
a uniform pressure in a general way. Let ζ denote a perturbation quantity.

†In Part (II), we will prove that even the interpolation iterative method [21] is a special
case of the HAM-based iteration approach.
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Write the perturbation series

ϕ(P )(y) =
+∞
∑

i=1

ϕ
(P )
i (y)ζ2i−1, (A-1)

S(P )(y) =

+∞
∑

i=1

S
(P )
i (y)ζ2i, (A-2)

Q(P ) =

+∞
∑

i=1

Q
(P )
i ζ2i−1, (A-3)

W (P )(0) =

+∞
∑

i=1

W
(P )
i (0)ζ2i−1, (A-4)

with the definition
S
(P )
0 (y) = 0.

Substituting Eqs.(A-1)-(A-4) into Eqs.(1)-(4) and (7), and equating the like-
power of ζ , we have the governing equation

y2
d2ϕ

(P )
m (y)

dy2
=

m
∑

i=1

ϕ
(P )
i (y)S

(P )
m−i(y) +Q(P )

m · y2,

y2
d2S

(P )
m (y)

dy2
= −

1

2

m
∑

i=1

ϕ
(P )
i (y)ϕ

(P )
m+1−i(y), (A-5)

subject to the boundary conditions

ϕ(P )
m (0) = S(P )

m (0) = 0, (A-6)

ϕ(P )
m (1) =

λ

λ− 1
·
dϕ

(P )
m (y)

dy

∣

∣

∣

∣

y=1

, S(P )
m (1) =

µ

µ− 1
·
dS

(P )
m (y)

dy

∣

∣

∣

∣

y=1

, (A-7)

with the restriction condition:

−

∫ 1

0

1

ε
· ϕ(P )

m (ε)dε = W (P )
m (0). (A-8)

Note that there is an another equation that characterizes the relation between
the physical parameter ζ and the central deflection W (0), which can provide
an another restriction condition. Thus, the above-mentioned perturbation
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approach is well defined. Note that this perturbation approach is valid for
arbitrary physical parameter ζ . So, it is rather general.

The Von Kármán’s equation for a circular plate under a uniform pressure
can be solved by the HAM in the following way that is a little different from
those mentioned in § 2.

Let the initial guesses of ϕ(y), S(y), Q and W (0) be zero, c0 denote the
convergence-control parameter, L the auxiliary linear operator defined by
(61), H1(y) and H2(y) the auxiliary functions defined by (65), q ∈ [0, 1] the
embedding parameter, respectively. We construct the zeroth-order deforma-
tion equation:

(1− q)L[Φ̃(y; q)] = c0 q H1(y) Ñ1(y; q), (A-9)

(1− q)L[Ξ̃(y; q)] = c0 q H2(y) Ñ2(y; q), (A-10)

subject to the boundary conditions

Φ̃(0; q) = Ξ̃(0; q) = 0, (A-11)

Φ̃(1; q) =
λ

λ− 1
·
∂Φ̃(y; q)

∂y

∣

∣

∣

∣

y=1

, Ξ̃(1; q) =
µ

µ− 1
·
∂Ξ̃(y; q)

∂y

∣

∣

∣

∣

y=1

, (A-12)

with the restriction condition

−

∫ 1

0

1

ε
Φ̃(ε; q)dε = Ψ̃(q), (A-13)

where

Ñ1(y; q) = y2
d2Φ̃(y; q)

dy2
−

(

1

q

)

Φ̃(y; q)Ξ̃(y; q)−

(

1

q

)

Θ̃(q)y2, (A-14)

Ñ2(y; q) = y2
d2Ξ̃(y; q)

dy2
+

(

1

2q2

)

Φ̃2(y; q), (A-15)

are two nonlinear operators.
When q = 0, the solutions of Eqs. (A-9)-(A-13) are the initial guess, i.e.

Φ̃(y; 0) = 0, Ξ̃(y; 0) = 0, Θ̃(0) = 0, Ψ̃(0) = 0. (A-16)

When q = 1, Eqs. (A-9)-(A-13) are equivalent to the original equations (1)-
(4) and (31), provided

Φ̃(y; 1) = ϕ(y), Ξ̃(y; 1) = S(y), Θ̃(1) = Q, Ψ̃(1) = W (0). (A-17)
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Therefore, as q increases from 0 to 1, Φ̃(y; q) varies continuously from the
initial guess ϕ0(y) = 0 to ϕ(y), so do Ξ̃(y; q) from the initial guess S0(y) = 0
to S(y), Θ̃(q) from 0 to Q, and Ψ̃(q) from 0 to W (0), respectively.

Expanding Φ̃(y; q), Ξ̃(y; q), Θ̃(q) and Ψ̃(q) into Taylor series with re-
spect to the embedding parameter q and using (A-16), we have the so-called
homotopy-series:

Φ̃(y; q) =

+∞
∑

m=1

ϕ̃m(y) q
m, (A-18)

Ξ̃(y; q) =
+∞
∑

m=1

S̃m(y) q
m, (A-19)

Θ̃(q) =

+∞
∑

m=1

Q̃m qm, (A-20)

Ψ̃(q) =
+∞
∑

m=1

W̃m(0) q
m. (A-21)

Assume that the convergence-control parameter c0 is properly chosen so that
the homotopy-series (A-18)-(A-21) are convergent at q = 1. Then, according
to Eq. (A-17), we have the homotopy-series solutions:

ϕ(y) =
+∞
∑

m=1

ϕ̃m(y), (A-22)

S(y) =

+∞
∑

m=1

S̃m(y), (A-23)

Q =

+∞
∑

m=1

Q̃m, (A-24)

W (0) =
+∞
∑

m=1

W̃m(0). (A-25)

Substituting the series (A-18)-(A-21) into the zeroth−order deformation
equations (A-9)-(A-13) and then equating the like-power of the embedding
parameter q, we have the mth-order deformation equations by means of the
definitions (61) and (65):

y2
d2

dy2
[ϕ̃m(y)− χmϕ̃m−1(y)] = c0 δ̃1,m−1(y), (A-26)
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y2
d2

dy2

[

S̃m(y)− χmS̃m−1(y)
]

= c0 δ̃2,m−1(y), (A-27)

subject to the boundary conditions

ϕ̃m(0) = S̃m(0) = 0, (A-28)

ϕ̃m(1) =
λ

λ− 1
·
∂ϕ̃m(y)

∂y

∣

∣

∣

∣

y=1

, S̃m(1) =
µ

µ− 1
·
∂S̃m(y)

∂y

∣

∣

∣

∣

y=1

, (A-29)

with the restriction condition:

−

∫ 1

0

1

ε
· ϕ̃m(ε)dε = W̃m(0), (A-30)

where χm is defined by (22) and

δ̃1,m−1(y) = Dm−1[Ñ1(y; q)]

= y2
d2ϕ̃m−1(y)

dy2
−

m
∑

i=0

ϕ̃i(y)S̃m−i(y)− Q̃my
2, (A-31)

δ̃2,m−1(y) = Dm−1[Ñ1(y; q)]

= y2
d2S̃m−1(y)

dy2
+

1

2

m
∑

i=0

ϕ̃i(y)ϕ̃m+1−i(y). (A-32)

Set c0 = −1 and write for m ≥ 1:

ϕ̃m(y) = ϕ̂m(y) ζ
2m−1, S̃m(y) = Ŝm(y) ζ

2m, (A-33)

Q̃m = Q̂m ζ2m−1, W̃m(0) = Ŵm(0) ζ
2m−1. (A-34)

Substituting Eqs.(A-33)-(A-34) into the m-th deformation equations (A-26)-
(A-30) and using (A-16), we have the governing equations (m ≥ 1):

y2
d2ϕ̂m(y)

dy2
=

m
∑

i=1

ϕ̂i(y)Ŝm−i(y) + Q̂my
2, (A-35)

y2
d2Ŝm(y)

dy2
= −

1

2

m
∑

i=1

ϕ̂i(y)ϕ̂m+1−i(y), (A-36)

subject to the boundary conditions

ϕ̂m(0) = Ŝm(0) = 0, (A-37)
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ϕ̂m(1) =
λ

λ− 1
·
dϕ̂m(y)

dy

∣

∣

∣

∣

y=1

, Ŝm(1) =
µ

µ− 1
·
dŜm(y)

dy

∣

∣

∣

∣

y=1

, (A-38)

and the restriction condition for Q̂m:

−

∫ 1

0

1

ε
· ϕ̂m(ε)dε = Ŵm(0). (A-39)

Note that Eqs.(A-35)-(A-39) are exactly the same as Eqs.(A-5)-(A-8), thus

ϕ̂m(y) = ϕ(P )
m (y), Ŝm(y) = S(P )

m (y), Q̂m = Q(P )
m , Ŵm(0) = W (P )

m (0).

Then we have

ϕ(P )(y) =
+∞
∑

i=1

ϕ
(P )
i (y)ζ2i−1 =

+∞
∑

i=1

ϕ̂i(y)ζ
2i−1 =

+∞
∑

i=1

ϕ̃i(y) = ϕ(y),

S(P )(y) =
+∞
∑

i=1

S
(P )
i (y)ζ2i−1 =

+∞
∑

i=1

Ŝi(y)ζ
2i−1 =

+∞
∑

i=1

S̃i(y) = S(y),

Q(P ) =
+∞
∑

i=1

Q
(P )
i ζ2i−1 =

+∞
∑

i=1

Q̂iζ
2i−1 =

+∞
∑

i=1

Q̃i = Q,

W (P )(0) =

+∞
∑

i=1

W
(P )
i (0)ζ2i−1 =

+∞
∑

i=1

Ŵi(0)ζ
2i−1 =

+∞
∑

i=1

W̃i(0) =W (0).

Therefore, the perturbation methods for arbitrary perturbation quantity ζ
are only special case of the HAM when c0 = −1.

If we choose the perturbation quantity ζ = Q, Eqs. (A-35)-(A-39) become

y2
d2ϕ̂m(y)

dy2
=

m
∑

i=1

ϕ̂i(y)Ŝm−i(y) + (1− χm)y
2, (A-40)

y2
d2Ŝm(y)

dy2
= −

1

2

m
∑

i=1

ϕ̂i(y)ϕ̂m+1−i(y), (A-41)

subject to the boundary conditions

ϕ̂m(0) = Ŝm(0) = 0, (A-42)

ϕ̂m(1) =
λ

λ− 1
·
dϕ̂m(y)

dy

∣

∣

∣

∣

y=1

, Ŝm(1) =
µ

µ− 1
·
dŜm(y)

dy

∣

∣

∣

∣

y=1

. (A-43)
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Note that Eqs. (A-40)-(A-43) are exactly the same as Eqs. (10)-(13) for the
Vincent’s perturbation method [2].

If we choose the perturbation quantity ζ = W (0), Eqs.(A-35)-(A-39)
become

y2
d2ϕ̂m(y)

dy2
=

m
∑

i=1

ϕ̂i(y)Ŝm−i(y) + Q̂my
2, (A-44)

y2
d2Ŝm(y)

dy2
= −

1

2

m
∑

i=1

ϕ̂i(y)ϕ̂m+1−i(y), (A-45)

(A-46)

subject to the boundary conditions

ϕ̂m(0) = Ŝm(0) = 0, (A-47)

ϕ̂m(1) =
λ

λ− 1
·
dϕ̂m(y)

dy

∣

∣

∣

∣

y=1

, Ŝm(1) =
µ

µ− 1
·
dŜm(y)

dy

∣

∣

∣

∣

y=1

, (A-48)

and the restriction condition for Q̂m:

−

∫ 1

0

1

ε
· ϕ̂m(ε)dε = (1− χm). (A-49)

Then Eqs. (A-44)-(A-49) are the same as Eqs. (17)-(21) for the Chien’s per-
turbation method [3].

So, both of the perturbation methods for any a perturbation quantity
(including Vincent’s [2] and Chien’s [3] perturbation methods) are only spe-
cial cases of the HAM when c0 = −1, as mentioned above. It is found that,
unlike perturbation methods, the convergence of solution series given by the
HAM approach mentioned in the Appendix A can be guaranteed by prop-
erly choosing the convergence-control parameter c0. Thus, the convergence-
control parameter c0 plays a very important role in the frame of the HAM.
Indeed, it is the convergence-control parameter c0 that differs the HAM from
all other analytic approximation methods.

Appendix B Relations between the modified iteration method and

the HAM-based iteration approach

Substituting the auxiliary linear operator L defined by (61) and the aux-
iliary functions H1(y) and H2(y) defined by (65) in Eqs. (52) and (53), we
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have the first-order deformation equation:

y2
d2ϕ1(y)

dy2
= c0

[

y2
d2ϕ0(y)

dy2
− ϕ0(y)S0(y)−Q0y

2

]

, (B-1)

y2
d2S1(y)

dy2
= c0

[

y2
d2S0(y)

dy2
+

1

2
ϕ2
0(y)

]

. (B-2)

Let
ϕ∗(y) = ϕ0(y) + ϕ1(y), S∗(y) = S0(y) + S1(y)

denote the first-order approximation of ϕ(y) and S(y), respectively. We have
the governing equation

y2
d2ϕ∗(y)

dy2
= (1 + c0)y

2d
2ϕ0(y)

dy2
− c0

[

ϕ0(y)S0(y) +Q0y
2
]

, (B-3)

y2
d2S∗(y)

dy2
= (1 + c0)y

2d
2S0(y)

dy2
−
c0
2
ϕ2
0(y). (B-4)

subject to the boundary conditions:

ϕ∗(0) = S∗(0) = 0, (B-5)

ϕ∗(1) =
λ

λ− 1
·
dϕ∗(y)

dy

∣

∣

∣

∣

y=1

, S∗(1) =
µ

µ− 1
·
dS∗(y)

dy

∣

∣

∣

∣

y=1

, (B-6)

and the restriction condition for Q0:

W (0) = −

∫ 1

0

1

ε
ϕ∗(ε)dε. (B-7)

This provides us the first-order iteration approach from the initial guesses
ϕ0(y), S0(y) to their first-order approximations ϕ∗(y), S∗(y) and the updated
value of Q0. Note that this iteration approach is dependent upon the so-
called convergence-control parameter c0, which plays an important role in
guarantee of convergence of the iteration procedure, as illustrated in § 3.2.

In the special case of c0 = −1, we have

y2
d2ϕ∗(y)

dy2
= ϕ0(y)S0(y) +Q0y

2, (B-8)

y2
d2S∗(y)

dy2
=

1

2
ϕ2
0(y). (B-9)
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subject to the boundary conditions:

ϕ∗(0) = S∗(0) = 0, (B-10)

ϕ∗(1) =
λ

λ− 1
·
dϕ∗(y)

dy

∣

∣

∣

∣

y=1

, S∗(1) =
µ

µ− 1
·
dS∗(y)

dy

∣

∣

∣

∣

y=1

, (B-11)

and the restriction condition for Q0:

W (0) = −

∫ 1

0

1

ε
ϕ∗(ε)dε. (B-12)

Assume that ϕ0, S0 are known. We take the following iterative procedure:

(a) Calculate S∗(y) according to Eqs.(B-9)-(B-11).

(b) S0(y) is replaced by S∗(y) that is used as the new initial guess, i.e.
S0(y) = S∗(y).

(c) Calculate ϕ∗(y) and Q0 according to Eqs. (B-8), (B-10)-(B-12).

(d) ϕ0(y) is replaced by ϕ∗(y) that is used as the new initial guess, i.e.
ϕ0(y) = ϕ∗(y).

After each step of iteration, ϕ∗(y) and S∗(y) become the new initial guesses
for the next iteration. In the nth times of iteration, we set

Θn(y) = ϕ∗(y), Υn−1(y) = S∗(y), Fn−1 = Q0.

Then, the HAM-based 1st-order iteration approach in case of c0 = −1
mentioned-above is expressed by:

y2
d2Υn−1(y)

dy2
= −

1

2
Θ2

n−1(y), (B-13)

y2
d2Θn(y)

dy2
= Θn−1(y)Υn−1(y) + Fn−1y

2, (B-14)

subject to the boundary conditions:

Θn(0) = Υn−1(0) = 0, (B-15)

37



Θn(1) =
λ

λ− 1
·
dΘn(y)

dy

∣

∣

∣

∣

y=1

, Υn−1(1) =
µ

µ− 1
·
dΥn−1(y)

dy

∣

∣

∣

∣

y=1

, (B-16)

and the restriction condition for Fn−1:

W (0) = a = −

∫ 1

0

1

ε
Θn(ε)dε. (B-17)

We choose the initial guess:

Θ0(y) =
−2a

2λ+ 1
[(λ+ 1)y − y2]. (B-18)

Then Eqs. (B-13)-(B-18) are exactly the same as Eqs. (23)-(28) for the mod-
ified iteration method [4]. Thus, the modified iterative method [4] is only a
special case of the HAM-based 1st-order iteration approach when c0 = −1.

As shown in § 3.2, the convergence-control parameter c0 plays an impor-
tant role in guarantee of iteration convergence. Note that iteration itself can
only increase the computational efficiency, but unfortunately has no effect
on modifying iteration convergence. As shown in § 3, it is the convergence-
control parameter that can guarantee the convergence of iteration. This also
explains why our HAM-based approaches for the Von kármán’s plate of a
circular plate are valid for arbitrary uniform external pressure.
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