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Abstract

The steady-state boundary-layer flows over a permeable stretching sheet are investigated by an analytic method for strongly non-linear
problems, namely the homotopy analysis method (HAM). Two branches of solutions are obtained. One of them agrees well with the known
numerical solutions. The other is new and has never been reported in general cases. The entrainment velocity of the new branch of solutions is
always smaller than that of the known ones. For permeable stretching sheet with sufficiently large suction of mass flux, the difference between
the shear stresses and velocity profiles of two branches of solutions is obvious: the shear stress of the new branch of solutions is considerably
larger than that of the known ones. However, for impermeable sheet and permeable sheet with injection or small suction of mass flux, the
shear stress and the velocity profile of two branches of solutions are rather close: in some cases the difference is so small that the new branch
of solutions might be neglected even by numerical techniques. This reveals the reason why the new branch of solutions has not been reported.
This work also illustrates that, for some non-linear problems having multiple solutions, analytic techniques are sometimes more effective than
numerical methods.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The investigation of boundary-layer flows of incompressible
viscous fluid over a stretching sheet has many important appli-
cations in engineering, such as aerodynamic extrusion of plas-
tic sheets, boundary layers along liquid film condensation pro-
cess, cooling process of metallic plate in a cooling bath, glass
and polymer industries, and process of hot rolling, wire draw-
ing and paper production. The investigations were made by a
lots of researchers, such as Sakiadis [1], Crane [2], Banks [3],
Banks and Zaturska [4], Grubka and Bobba [5], Ali [6] for the
impermeable plate and Erickson et al. [7], Gupta and Gupta
[8], Chen and Char [9], Chaudhary et al. [10], Elbashbeshy
[11], Pop and Na [12], Magyari and Keller [13], and Magyari
et al. [14] for the permeable plate. McLeod and Rajagopal in-
vestigated the uniqueness of flows of Navier–Stokes fluid due
to a stretching boundary [15]. The non-uniqueness of flows of
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non-Newtonian fluids over a stretching sheet was investigated
by Chang et al. [16] and Lawrence et al. [17].

Consider boundary-layer flows over a stretching permeable
sheet, governed by

u
�u

�x
+ v

�u

�y
= �

�2u

�y2 , (1)

�u

�x
+ �v

�y
= 0, (2)

subject to the boundary conditions

u = Uw = a (x + b)�, v = Vw = A(x + b)(�−1)/2

at y = 0, (3)

u → 0 as y → +∞, (4)

where Uw = a(x + b)� denotes the stretching velocity of the
sheet, Vw = A(x + b)(�−1)/2 the velocity of fluid through the
permeable sheet, respectively. Note that A > 0 corresponds to
the injection, and A < 0 the suction of mass flux, respectively.
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Following Crane [2] and Banks [3], we transfer the above
non-linear partial differential equations into a set of ordinary
differential equations. Let � denote the stream function. Under
the similarity transformation:

� = a

√
�

a(1 + �)
(x + b)(�+1)/2F(�),

� =
√

a(1 + �)

�
(x + b)(�−1)/2y, (5)

where a �= 0 and a(1 + �) > 0, the original equations become

F ′′′(�) + 1
2F(�)F ′′(�) − �F

′2(�) = 0, (6)

subject to the boundary conditions

F(0) = �, F ′(0) = 1, F ′(+∞) = 0, (7)

where

� = − 2A√
a(� + 1)�

, � = �

1 + �
. (8)

Here, �=0 denotes the impermeable sheet, � < 0 and � > 0 cor-
respond to the lateral injection (Vw > 0) and suction (Vw < 0)
of mass flux through the permeable sheet, respectively. Since
a(1 + �) > 0, it holds a > 0 when � > − 1, corresponding to
−1 < ��1; and a < 0 when � < − 1, corresponding to � > 1.
When a < 0, the stretching velocity of the sheet is negative,
corresponding to the so-called backward boundary-layer flows
that have physical meanings, as pointed out by Goldstein [18]
and Kuiken [19].

From (5), we have the velocity field of the fluid

u(x, y) = a(x + b)�F ′(�), (9)

v(x, y) = − 1
2

√
a(1 + �)�(x + b)(�−1)/2

× [F(�) + (2� − 1)�F ′(�)]. (10)

The entrainment velocity of the fluid is given by

v(x, +∞) = − 1
2

√
a(1 + �)�(x + b)(�−1)/2F(+∞), (11)

and the shear stress on the stretching sheet is

�w=−	�
�u

�y

∣∣∣∣
y=0

=−a	
√

a(1+�)�(x+b)(3�−1)/2F ′′(0).

(12)

Thus, F ′′(0) and F(+∞) have clear physical meanings. For
simplicity, we call F(+∞) the entrainment parameter.

The non-linear two-point boundary-value problem men-
tioned above is not easy to solve even by means of numerical
techniques. Using the shooting method, Banks [3] gave a branch
of numerical solutions when −1 < � < + ∞ for impermeable
plate (� = 0). Banks’ solutions exist for −1 < � < + ∞ and
have the property f ′(�) > 0 in the whole region 0�� < + ∞.
Banks [3] showed that the boundary-layer flow problem does
not admit similarity solutions for � < − 1. As mentioned by
Liao and Pop [20], when � > − 1, corresponding to a re-
stricted region −1 < ��1, the boundary-layer flow over an

impermeable plate (� = 0) is mathematically equivalent to (but
physically different from) the steady free convection flow over a
vertical semi-infinite plate embedded in a fluid-saturated porous
medium of ambient temperature T∞, governed by the so-called
Cheng–Minkowycz’s equation [21]. But, different from Banks
[3], Ingham and Brown [21] found two branches of solutions
in case of 1

2 ���1. Therefore, at least in case of 1
2 < ��1,

the boundary-layer flows over a stretching impermeable plate
(�= 0) should have two branches of solutions. Currently, exact
solutions for boundary-layer flows over a permeable stretching
sheet at some special values of �, such as � = − 1

2 and � = 1
2 ,

are given by Magyari and Keller [13]. When �= 1
2 and �=− 1

2 ,
one has the close-form solution

F(�) = � + √
�2 + 8

2

{
1 − (� − √

�2 + 8)2

8

× exp

[(
−� + √

�2 + 8

4

)
�

]}
(13)

and

F(�) =
√

�2 + 4 tanh

[(√
�2 + 4

4

)
�

+sign(Fw)ArcSech

(
2√

�2 + 4

)]
, (14)

respectively, where tanh(z) is the hyperbolic tangent of z,
ArcSech(z) is the inverse hyperbolic secant of z, and sign(x)

is defined by

sign(x) =
{1, x�0,

−1, x < 0.

For details, refer to Magyari and Keller [13]. In a physically
different but mathematically identical context, Chaudhary et al.
[10] showed that the similarity solutions also exist for � < − 1
if suction (� > 0) is applied at the surface. Currently, Magyari
et al. [14] showed that, in the special case � = −1, there ex-
ist multiple solutions for the permeable plate with sufficiently
large suction. Liao and Magyari [22] found that there exist
an infinite number of algebraically decaying solutions of the
boundary-layer flows over a stretching impermeable sheet in
case of − 1

2 < � < 0. All of these support the conclusion that
there exist multiple solutions for the considered problem at
hand. However, to the best of our knowledge, multiple solutions
of the boundary-layer flows over a stretching permeable sheet
(� �= 0) have never been reported in general cases of � �= −1.

Generally speaking, it is not easy to solve a non-linear dif-
ferential equation. Based on the homotopy [23], a basic con-
cept in topology [24], some powerful numerical techniques for
non-linear problems, such as the continuation method [25] and
the homotopy continuation method [26–30], were developed.
There is a suite of FORTRAN subroutines in Netlib for nu-
merically solving non-linear systems of equations by homo-
topy methods, called HOMPACK. Recently, a kind of ana-
lytic method, namely the homotopy analysis method (HAM)
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[31–33], is developed to solve highly non-linear problems. Dif-
ferent from perturbation techniques [34], the HAM does not
depend upon any small/large physical parameters. Besides, as
proved by Liao in his book [32], it logically contains other
non-perturbation techniques such as Lyapunov’s small param-
eter method [35], the 
-expansion method [36], and Adomian’s
decomposition method [37]. Currently, Sajid et al. [38] and
Abbasbandy [39,40] pointed out that the so-called “homotopy
perturbation method” [41] proposed in 1999 is only a special
case of the HAM [31,32] propounded in 1992. Thus, the HAM
is rather general and valid for most of non-linear problems in
science and engineering. Especially, different from all other
analytic techniques, the HAM provides us with a simple way
to ensure the convergence of solution series. The HAM has
been successfully applied to many non-linear problems, such as
similarity boundary-layer flows [42–45], non-linear heat trans-
fer [39], non-linear oscillations [32,33], non-linear waves [40],
Thomas–Fermi atom model [32], Volterra’s population model
[32], high-dimensional Gelfand equation [33] and so on. It has
been applied in many fields of science and engineering. For
example, Zhu [46,47] applied the HAM to obtain, for the first
time, an explicit series solution of the famous Black–Scholes
type equation in finance for American put option, which is a
system of non-linear PDEs with an unknown moving bound-
ary. Besides, the HAM has been successfully applied to solve
some PDEs, such as the unsteady boundary-layer viscous flows
[48], the unsteady non-linear heat transfer problem [49], and so
on. Currently, by means of the HAM, Liao and Magyari [22]
found an infinite number of algebraically decaying solutions
for boundary-layer flows over a stretching impermeable sheet
in case of − 1

2 < � < 0, and this kind of solutions have been not
reported. All of these verify the validity of the HAM. It seems
that the HAM is suitable for most types of non-linear prob-
lems in different fields of science and engineering, except non-
linear problems whose solutions are chaotic, as pointed out by
Liao [32].

Liao [50] successfully applied the HAM to the boundary-
layer flows over an impermeable sheet, and found not only all
of Ingham and Brown’s solutions for 1/2���1 [21] but also
a new branch of solutions for � > 1. It is interesting that the
new branch of solutions for � > 1 found by Liao [50] has never
been reported even by numerical techniques. In this paper, the
HAM is further employed to the boundary-layer flows over a
permeable plate, and a new branch of solutions is found in a
similar way.

2. Series solutions given by the HAM

By means of the HAM, Liao [50] proposed two analytic
approaches for the boundary-layer flows over a stretching im-
permeable plate. One is for given value of �, the other is for
given value of the entrainment parameter F(+∞). Here, for
the boundary-layer flows over a stretching permeable plate, we
also propose two analytic approaches by means of the HAM in
a similar way: one is for given values of � and �, the other is for
given values of � and the entrainment parameter F(+∞), re-
spectively. The difference is that the mass flux through the per-
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Fig. 1. F ′(+∞) of the 1st branch of solutions when � = 10.

meable sheet must be considered. Because the two approaches
used here are rather similar to those described in [50], we ne-
glect all mathematical formulas in this paper. For details, refer
to Liao [50].

Obviously, the shear stress on the sheet, the velocity profile
and the entrainment velocity of the fluid depend on both the
stretching velocity of the sheet and the suction/injection of mass
flux through the sheet, denoted by � and �, respectively, where
� < 0 corresponds to lateral injection and � > 0 the suction of
mass flux.

2.1. Series solutions for given �

The 1st HAM approach is for given values of � and �, which
is rather similar to the 1st approach for impermeable stretching
sheet (�=0) described in [50]. Without loss of generality, let us
consider the two cases, �= 1 and 10, with several given values
of �. In these cases, our HAM approach gives two branches of
series solutions for given � and �, as shown in Figs. 1–6. The
convergent series solution of 
 = F(+∞) and F ′′(0) are listed
in Tables 1–4.

The velocity profiles of the 1st branch of solutions are shown
in Fig. 1. This kind of branch of solutions was reported by
Magyari and Keller [13] for some special values of �. It has no
reversed velocity in all cases. Like the 1st branch of solutions,
the 2nd branch of solutions has no reversed velocity in case
of injection or small suction of mass flux. However, different
from the 1st branch of solutions, the 2nd branch of solutions
has the reversed velocity in case of large suction of mass flux,
as shown in Fig. 2. Besides, the maximum reversed velocity
enlarges as the suction (� > 0) of mass flux increases. It should
be emphasized that, to the best of our knowledge, the 2nd
branch of solutions for given values of � has not been reported
in general, except some special values such as �=0 considered
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Fig. 2. F ′(+∞) of the 2nd branch of solutions when � = 10.
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Fig. 3. F(+∞) of the two branches of solutions when � = 1. Solid line: the
1st branch of solution; dashed line: the 2nd branch of solution.

by Ingham and Brown [21] for impermeable sheet, or � = − 1
3 ,

1
2 and 1 investigated by Magyari and Keller [13] for permeable
sheet.

For the given values of �, the entrainment parameter 
 =
F(+∞) of two branches of solutions increases as � enlarges
from negative to positive values. Thus, the suction of mass
flux enlarges the entrainment velocity v(x, +∞) for the two
branches of solutions. Physically, this is easy to understand.
For given stretching velocity of sheet, i.e. a given value of �,
the entrainment velocity v(x, +∞) of the new branch of solu-
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Fig. 4. F ′′(0) of the two branches of solutions when � = 1. Solid line: the
1st branch of solution; dashed line with symbols: the 2nd branch of solution.
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Fig. 5. F(+∞) of the two branches of solutions when � = 10. Solid line:
the 1st branch of solution; dashed line: the 2nd branch of solution.

tions is always smaller than that of the known branch of so-
lutions, as shown in Tables 1–4, and Figs. 3 and 5. Besides,
the larger the suction of mass flux, the smaller the entrain-
ment velocity of the new branch of solutions than that of the
known ones. Therefore, the suction of mass flux enlarges the
difference of the entrainment velocity of the two branches of
solutions.

According to (12), F ′′(0) is related with the shear stress (skin
friction). For given �, the shear stress of two branches of so-
lutions increases as � enlarges from negative (corresponding



S.-J. Liao / International Journal of Non-Linear Mechanics 42 (2007) 819–830 823

α

F
’’ 

(0
)

-2 0 2 4 6 8 10
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

β=10

Fig. 6. F ′′(0) of the two branches of solutions when � = 10. Solid line: the
1st branch of solution; dashed line with symbols: the 2nd branch of solution.

Table 1
F(+∞) and F ′′(0) of the 1st branch of solutions when � = 1

� h̄ F (+∞) F ′′(0)

−4 − 1
3 0.089829775350 −0.391815781402

−3 − 1
3 0.208116758086 −0.466406144776

−2 − 1
2 0.42570039 −0.56773509

−1 − 1
2 0.77693585 −0.70852950

0 − 3
4 1.28077378 −0.90637551

1 − 3
4 1.93111056 −1.17561409

2 − 3
4 2.69794357 −1.51344932

5 − 3
4 5.36649491 −2.77335832

10 − 3
4 10.19523827 −5.14619724

to injection) to positive values (corresponding to suction), as
shown in Figs. 4 and 6. Physically, this is easy to understand,
because the suction of mass flux enlarges the gradient of the
velocity of the fluid on the sheet. Note that, for given �, the
shear stresses of the two branches of solutions are nearly the
same for impermeable plate (� = 0) and permeable plate with
injection (� < 0). However, for permeable sheet with large suc-
tion of mass flux, the shear stress of the new branch of solu-
tions is much larger than those of the known ones, as shown in
Table 1–4 and Figs. 4 and 6. For example, in case of � = 1
and � = 20, the shear stress of the new branch of solution is
about 6 times larger than that of the known ones, as shown in
Tables 1 and 2.

In summary, by means of the 1st HAM approach (refer to
[50] for details), we find two branches of solutions of boundary-
layer flows over permeable plate for given �. To the best of
our knowledge, one of them has never been reported in general

Table 2
F(+∞) and F ′′(0) of the 2nd branch of solutions when � = 1

� h̄ F (+∞) F ′′(0)

−4 − 1
4 0.030369809556 −0.391815781392

−3 − 1
2 0.070360482202 −0.466406145105

−2 − 1
2 0.143922 −0.567736

−1 − 1
2 0.262687 −0.708761

0 − 1
2 0.433654 −0.913339

1
2 − 1

2 0.539488 −1.055678

1 − 1
2 0.658921 −1.241337

2 − 1
2 0.936984 −1.819762

3 − 1
2 1.259310 −2.829113

5 − 1
2 1.980378 −6.912612

6 − 1
2 2.358324 −10.36825

8 − 1
2 3.126363 −21.06924

10 − 1
2 3.900930 −38.12400

Table 3
F(+∞) and F ′′(0) of the 1st branch of solutions when � = 10

� h̄ F (+∞) F ′′(0)

− 3
5 − 1

8 0.160088 −2.4901117

− 1
2 − 1

6 0.239927 −2.509225

− 1
4 − 1

5 0.446081 −2.557970

0 − 1
5 0.658388 −2.608148

1 − 1
5 1.541900 −2.824345

2 − 1
5 2.457505 −3.067872

3 − 1
5 3.392704 −3.340911

5 − 1
5 5.300584 −3.973654

10 − 1
4 10.181382 −5.928155

Table 4
F(+∞) and F ′′(0) of the 2nd branch of solutions when � = 10

� h̄ F (+∞) F ′′(0)

− 3
5 − 1

5 0.137297 −2.49012

− 1
2 − 1

4 0.205770 −2.509226

− 1
4 − 1

3 0.382575 −2.557972

0 − 1
3 0.564658 −2.608169

1
2 − 1

2 1.065042 −2.713439

1 − 3
4 1.322510 −2.827165

2 − 3
4 2.109078 −3.102492

3 − 3
4 2.916481 −3.513958

4 − 3
4 3.743084 −4.183302

6 − 3
4 5.446575 −6.771344

8 − 3
4 7.193990 −11.596886

10 − 3
4 8.962150 −19.231412
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Table 5
F(+∞) and F ′′(0) of the 1st branch of solutions when � = 1

� h̄ F (+∞) F ′′(0)

−1.058585 − 3
4 20 451.784

−1.122963 − 3
4 10 56.690207

−1.156731 − 3
4 8 28.880524

−1.213242 − 3
4 6 11.914562

−1.255601 − 3
4 5 6.659478

−1.280142 − 3
4 9/2 4.689289

−1.303342 − 3
4 4 3.096833

−1.313026 − 3
4 7/2 1.830559

−1.264897 − 3
4 3 0.823920

−0.977969 − 3
4 5/2 −0.0334866

−0.842905 − 3
4 12/5 −0.204443

−0.656192 − 3
4 23/10 −0.381592

−0.395769 − 3
4 11/5 −0.569180

0 − 1
3 2.093662 −0.786400

1 − 3
4 1.931111 −1.175614

3 − 1
2 1.764465 −1.699431

5 − 1
3 1.670900 −2.088843

10 − 1
5 1.541900 −2.824345

20 − 1
10 1.422621 −3.880318

cases. For impermeable sheet (�=0) and permeable sheet with
injection (� < 0) or small suction of mass flux, the shear stress,
the entrainment velocity v(x, +∞) and the velocity profiles of
two branches of solutions are nearly the same. However, for
permeable sheet with large suction of mass flux (� > 0), the new
branch of solutions has the reversed velocity profile, consid-
erably larger shear stress on the sheet but smaller entrainment
velocity at infinity.

2.2. Series solutions for given entrainment parameter F(+∞)

As mentioned in Section 2.1, the difference of the shear stress
of the two branches of solutions is small for impermeable plate
(�=0) and permeable plate with injection (� < 0). So, it is inter-
esting to investigate the boundary-layer flows over a stretching
permeable plate with suction velocity (� > 0). Thus, we pro-
pose here the 2nd analytic approach by means of the HAM for
given � and the entrainment parameter F(+∞), which is rather
similar to the 2nd approach described in [50].

Without loss of generality, let us consider here two cases,
� = 1 and 10, with several given values of �. For each given �,
the series solutions for ��0 are obtained by means of the 1st
HAM approach, and the series solutions for � < 0 are given by
the 2nd HAM approach, respectively. It is found that there exist
two branches of solutions for the given values of �, as shown in
Tables 5–8, and Figs. 7–13. The 1st branch of solutions are the
same as published numerical ones. However, to the best of our
knowledge, the 2nd branch of solutions, which exist for � > 1

2 ,
has never been reported in general.

Table 6
F(+∞) and F ′′(0) of the 2nd branch of solutions when � = 1

� h̄ F (+∞) F ′′(0)

51
100 − 2

25 0.19274 −1.05429
11
20 − 1

3 0.281051 −1.078487
3
5 − 1

2 0.350757 −1.101572
4
5 − 1

2 0.534353 −1.176962
9

10 − 1
2 0.601365 −1.210051

1 − 1
2 0.658921 −1.241337

2 − 3
4 0.986856 −1.505238

3 − 3
4 1.130957 −1.725947

5 − 3
4 1.253584 −2.100642

10 − 3
4 1.322510 −2.827164

20 − 1
3 1.313713 −3.880830

Table 7
F(+∞) and F ′′(0) of the 1st branch of solutions when � = 10

� h̄ F (+∞) F ′′(0)

−2.428948 − 1
2 18 265.53889

−3.873406 − 1
2 14 89.283353

−4.833631 − 1
2 13 58.896300

−6.736765 − 1
2 12 33.334878

−8.603705 − 1
2 11.5 22.268703

−12.166495 − 1
2 11 12.286156

−14.625826 − 1
2 10.8 8.566258

−18.160463 − 1
2 10.6 4.934705

−19.232754 − 1
2 10.55 4.020142

−20.346912 − 1
2 10.5 3.089445

−21.430725 − 1
2 10.45 2.128818

−22.317707 − 1
2 10.4 1.115722

−22.627422 − 1
2 10.35 0.011961

−21.462442 − 1
2 10.3 −1.250274

−16.556065 − 3
4 10.25 −2.799140

−14.702033 − 3
4 10.24 −3.162613

−12.393548 − 3
4 10.23 −3.550309

−9.52221 − 3
4 10.22 −3.965951

−5.949297 − 3
4 10.21 −4.413988

−1.495596 − 3
4 10.2 −4.899776

0 − 3
4 10.197086 −5.049351

1 − 3
4 10.195238 −5.146197

3 − 3
4 10.191759 −5.333035

5 − 1
2 10.188534 −5.511670

10 − 1
4 10.181382 −5.928155

20 − 1
4 10.169894 −6.663634

30 − 1
5 10.160896 −7.307361

40 − 1
5 10.153542 −7.886163
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Table 8
F(+∞) and F ′′(0) of the 2nd branch of solutions when � = 10

� h̄ F (+∞) F ′′(0)

0.5000048 − 1
3

1
2 −15.72888

0.50080929 − 1
5

3
4 −19.571466

0.50670877 − 1
2 1 −22.487530

0.59926472 − 1
2 2 −30.176567

0.77336669 − 1
2 3 −35.222229

1 − 1
2 3.900930 −38.124001

3 − 1
2 7.055465 −34.392807

5 − 3
4 8.056920 −27.769041

10 − 3
4 8.962150 −19.231412

20 − 3
4 9.485879 −13.466843

30 − 3
4 9.677017 −11.541606

40 − 3
4 9.777200 −10.781134
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The first branch of solutions when α=10
Solid line : β=20
Dashed line : β=0
Dash-dotted line : δ=10.6, β=-18.1604
Dash-dot-dotted line : δ=11, β=-12.1665
Solid line with symbols : δ=12, β=-6.7368

Fig. 7. F ′(�) of the 1st branch of solution when � = 10. Solid line: when
� = 20; dashed line: when � = 0; dash-dotted line: when F(+∞) = 10.6
and � = −18.16046344; dash-dot-dotted line: when F(+∞) = 11 and
� = −12.16649517; solid line with symbols: when F(+∞) = 12 and
� = −6.73676515.

In case of permeable stretching sheet with suction velocity,
the 1st branch of solutions has the property F ′(�) > 0 in the
whole region 0�� < + ∞. The velocity of the 1st branch of
solution decreases monotonously for ��0, but there exists the
velocity overshooting when � < 0, as shown in Fig. 7. This
character was reported by some previous researchers [13]. The
2nd branch of solutions shows the reversed velocity and is
therefore completely different from the 1st ones, as shown in
Fig. 8. It should be emphasized that such a kind of solutions
has never been reported. Note that the new branch of solution

ξ
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The second branch of solutions when α=10
Solid line : β=20
Dashed line : β=3
Dash-dotted line : δ=1, β=0.50670877
Dash-dot-dotted line : δ=3/4, β=0.50080929

Fig. 8. F ′(�) of the 2nd branch of solution when � = 10. Solid line: when
� = 20; dashed line: when � = 5; dash-dotted line: when F(+∞) = 2 and
�=0.59926472; dash-dot-dotted line: when F(+∞)= 3

4 and �=0.50080929.
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Fig. 9. F(+∞) of the two branches of solutions when � = 1. Solid line: the
1st branch of solution; dashed line: the 2nd branch of solution.

exist only for �� 1
2 . However, the 1st branch of solutions exist

in a larger region of �, as shown in Figs. 9 and 12. So, there
exist multiple solutions for permeable stretching sheet in case
of �� 1

2 , corresponding to 1�� < + ∞ or −∞ < � < − 1.
For impermeable plate (� = 0), Banks’ numerical results [3]

indicate that the entrainment velocity decreases monotonously
in the region � ∈ (−1, +∞) and tends to infinity as
� → −1. However, for permeable plate with suction (� > 0),
the 1st branch of solutions exist in a region of � larger than
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Fig. 10. F(+∞) of the 1st branch of solution near � = −1 when � = 1.
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Fig. 11. F ′′(0) of the two branches of solutions when � = 1. Solid line: the
1st branch of solution; symbols: the 2nd branch of solution.

(−1, +∞), and besides there exists a turning point in the re-
gion � < − 1, as shown in Figs. 9, 10 and 12. It is interesting
that the entrainment velocity of the new branch of solutions
monotonously increases in the region � ∈ ( 1

2 , +∞), and is
always smaller than that of the known ones, as shown in
Figs. 9 and 12.

As mentioned in Section 2.1, the difference between the
shear stress of the two branches of solutions is rather small for
the impermeable sheet (� = 0) and the permeable sheet with
injection (� < 0). For the permeable sheet with small suction
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Solid line : the first branch of solutions
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Fig. 12. F(+∞) of the two branches of solutions when � = 10. Solid line:
the 1st branch of solution; dashed line: the 2nd branch of solution.
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Fig. 13. F ′′(0) of the two branches of solutions when �= 10. Solid line: the
1st branch of solution; dashed line with symbols: the 2nd branch of solution.

of mass flux, such as � = 1, the difference of shear stress of
the two branches of solutions is still not obvious, as shown in
Fig. 11. However, as the suction of mass flux increases, the
new branch of solution has much larger shear stress than the
known ones, as shown in Fig. 13 for � = 10.

2.3. Sensitivity of the solutions to F ′′(0)

It was a little surprise that, to the best of our knowledge, the
new branch of solutions, which exists for � > 1

2 , has not been
reported in general cases even by numerical techniques. Why?
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Generally speaking, it is much more difficult to solve non-
linear boundary-value problems (BVPs) than initial-value prob-
lems (IVPs). The so-called shooting method is often used to
get numerical results of BVPs. However, as pointed out by
Shampine and his co-workers [51,52], “unstable IVPs can cause
a shooting code to fail because the integral blows up before
reaching the end of the interval”, thus, “when the IVPs are
very unstable, shooting is just not a natural approach to solving
BVPs”. To overcome the disadvantages of shooting methods,
Shampine and his co-workers [51,52] provided a numerical ap-
proach for non-linear BVPs. Different from shooting method,
Shampine’s method is based on solving a set of non-linear al-
gebraic equations by iterations over the whole interval, while
the boundary conditions are taken into account at all time. They
developed a MATHLAB program bvp4c, which can be used
to give accurate numerical solutions of some non-linear BVPs.
Shampine and his co-workers [51,52] successfully applied the
MATHLAB program bvp4c to solve many non-linear BVPs,
some of them even have multiple solutions.

In this paper, by means of the analytic approaches based on
the HAM method (for details, refer to [50]), we obtain two
branches of convergent series solutions. Thus, we can get very
accurate analytic value of F ′′(0). So, using the analytic result
of F ′′(0), it is easy for us to directly apply the Runge–Kutta’s
method to get the numerical solutions. However, our series so-
lutions indicate that, for impermeable sheet (� = 0) and per-
meable sheet with injection (� < 0), the difference between the
values of F ′′(0) of the two branches of solutions (when � > 1

2 )
is rather small. For example, when � = 1 and � = −3, our an-
alytic result (by means of homotopy-Padé acceleration) gives

F ′′(0) = −0.46640, 61447, 76

for the 1st branch of solution, and

F ′′(0) = −0.46640, 61451, 05

for the 2nd one, respectively: the difference between them is
less than 4 × 10−10. Besides, the corresponding IVP with the
given F ′′(0) seems rather unstable for each solution: if the
value of F ′′(0) is not accurate enough, for example, F ′′(0) ≈
−0.46640614, whose first 8 decimals are exactly the same as
those given by our analytic approaches, one cannot obtain a sat-
isfied numerical solution by means of Runge–Kutta’s method,
as shown in Figs. 14 and 15. Therefore, by means of shooting
methods, one cannot solve this kind of BVPs. Even by means
of the MATHLAB code bvp4c [51,52], one must use a very
good guess and the domain must be large enough (i.e. at least
more than 100), but it is very difficult to known all of these if
one has no ideas about the exact solutions. Note that the pro-
files of F(�) of the two branches of solutions are nearly the
same in a considerably large region near the sheet, but are ob-
viously different out of that region, as shown in Fig. 16. This
clearly indicates that there indeed exist two different solutions
for impermeable sheet (� = 0) and permeable sheet with in-
jection (� < 0) or small suction of mass flux. For impermeable
sheet and permeable sheet with injection (for example �=−3)
of mass flux, the velocity profiles of u(x, y) of the two branches
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0 25 50 75 100
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-0.25
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0.5
A B C

The first branch of solution when β=1 and α= -3
Numerical results given by Runge-Kutta’s method

Curve A: F’’ (0)=-0.46641
Curve B: F’’ (0)=-0.466406
Curve C: F’’ (0)=-0.46640614
Curve D: F’’ (0)=-0.466406145
Symbols: F’’ (0)=-0.466406144776

D

Fig. 14. Numerical results of the 1st-branch of solution given by Runge–Kutta
method when � = 1 and � = −3.
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The second  branch of solution when β=1 and α= -3
Numerical results given by Runge-Kutta’s method

Curve A: F’’ (0)=-0.46641
Curve B: F’’ (0)=-0.466406
Curve C: F’’ (0)=-0.46640614
Curve D: F’’ (0)=-0.46640615
Curve E: F’’ (0)=-0.466406145
Symbols: F’’ (0)=-0.466406145105

Fig. 15. Numerical results of the 2nd-branch of solution given by Runge–Kutta
method when � = 1 and � = −3.

of solutions are too close to distinguish, as shown in Fig. 17.
So, for impermeable sheet and permeable sheet with injection
of mass flux, the difference of F ′′(0) of the two branches of so-
lutions is so small and the corresponding IVPs are so unstable
that the 2nd branch of solutions are neglected even by numer-
ical methods. This might be the reason why the new branch of
solutions were not reported before. This example also reveals
the restrictions of numerical techniques for non-linear prob-
lems with multiple solutions. It should be emphasized that, dif-
ferent from numerical techniques, even our 10th-order analytic
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Fig. 16. Comparison of F(�) of the 1st and 2nd branch of solutions when
�=1 and �=−3. Dashed line: 1st branch of solutions given by Runge–Kutta
method; solid line: 2nd branch of solutions given by Runge–Kutta method;
filled circle: 1st branch of analytic solution at the 10th-order of approximation;
open circle: 2nd branch of analytic solution at 10th-order of approximation.
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Fig. 17. Comparison of F ′(�) of the 1st and 2nd branch of solutions when
� = 1 and � = −3. Solid line: 1st branch of solution given by Runge–Kutta
method; filled circle: 2nd branch of solution given by Runge–Kutta method;
open circles: 1st branch of analytic solutions at 20th-order of approximation;
open square: 2nd branch of analytic solutions at 20th-order of approximation.

approximation is accurate enough in the whole region, as shown
in Fig. 16, although the corresponding F ′′(0) is far less accu-
rate than F ′′(0) ≈ −0.46640614. Thus, it is unnecessary for
our HAM approaches to have a very accurate approximation of
F ′′(0), i.e. our HAM approaches is insensitive to the accuracy

of F ′′(0). This is mainly because we solve the non-linear BVP
directly, and besides the accuracy of the HAM series solution
does not depend up the accuracy of F ′′(0). This reveals the
advantage of our HAM approaches over numerical techniques.

The example given above is not a special case: when � = 1
and � = −4, our analytic approach (by means of homotopy-
Padé acceleration) gives

F ′′(0) = −0.39181, 57814, 02

for the 1st branch of solution, and

F ′′(0) = −0.39181, 57813, 92

for the 2nd one, respectively. The corresponding difference of
F ′′(0) is even smaller, i.e. less than 10−11. So, when �= 1 and
�=−10, −100, −1000 and so on, it becomes harder and harder
to find multiple solutions by means of numerical techniques.

It seems that many non-linear BVPs have the similar property
mentioned above. For example, Liao [53] investigated a simple
non-linear BVP, which has an infinite number of closed-form
analytic solutions. The corresponding IVPs of this non-linear
BVP are very unstable: these solutions are rather “sensitive”
to the second-order derivative at the boundary, and besides the
difference of the second derivatives of two obviously different
solutions might be less than 10−10, 10−100, 10−1000 or even
smaller. Therefore, it seems impossible to find out all of these
solutions by means of current numerical methods, as pointed
out by Liao [53], mainly because most of our today’s computers
have no such a high accuracy as 10−1000.

So, by means of the analytic approaches based on the HAM
[31,32], we can find multiple solutions of non-linear problems,
even if they are very close. This indicates that the HAM [31,32]
is a useful tool to solve non-linear BVPs with multiple solu-
tions. It also illustrates that, for some non-linear problems with
multiple solutions, analytic techniques might be more powerful
than numerical ones.

3. Conclusions and discussions

In this paper, the steady-state boundary-layer flows over a
permeable stretching sheet are investigated by means of an
analytic method for non-linear problems, namely the homotopy
analysis method (HAM) [31,32]. Two analytic approaches are
proposed, which are rather similar to those described in [50].
To shorten the length of this paper, we neglect all formulas
here. For details, refer to Liao [50].

Two branches of convergent series solutions are obtained.
One of them agrees well with the known numerical solutions.
The other is new and has never been reported in general cases.
The new branch of solutions exists in case of � > 1

2 for both
impermeable and permeable stretching sheet. The entrainment
velocity v(x, +∞) of the new branch of solutions is always
less than that of the known ones. For permeable sheet with
sufficiently large suction (� > 0) of mass flux, the shear stress
of the new branch of solutions is considerably larger than that
of the known one. However, for impermeable sheet (� = 0)
and permeable sheet with injection (� < 0) or small suction,
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the shear stress on the sheet and the velocity profiles of two
branches of solutions are rather close. It is found that, for im-
permeable sheet and permeable sheet with injection or small
suction, the difference of F ′′(0) of two branches of solutions
is so small and the corresponding BVPs are so unstable that
the new branch of solutions were neglected even by means of
the numerical techniques. This paper illustrates that the HAM
is more powerful than numerical methods for some non-linear
problems with multiple solutions.

For impermeable sheet (� = 0) and permeable plate with in-
jection (� < 0) of mass flux, it is rather hard to distinguish the
profiles of F ′(�) of the two branches of solutions, as shown in
Fig. 17 in case of � = −3 and � = 1. Besides, the difference of
F(�) of two branches of solutions is also hard to distinguish
in a considerably large region near the sheet but becomes ob-
vious out of that region, as shown in Fig. 16. Traditionally, the
boundary-layer thickness is defined by 1% of the mainstream
velocity. According to this definition, the boundary-layer thick-
ness in case of � = −3 and � = 1 is about 22.5. In this region,
it is hard to distinguish F(�) of two branches of solutions, as
shown in Fig. 16. Thus, according to (9) and (10), the hori-
zontal velocity u(x, y) of two branches of solutions are almost
the same in the whole spatial region, and the vertical veloc-
ity v(x, y) of two branches of solutions are nearly the same
in the whole boundary-layer thickness. However, the vertical
velocities v(x, +∞) of two branches of solutions at infinity
are obviously different indeed, as shown in Fig. 16. Note that,
physically, the vertical velocity v(x, y) is much smaller than the
horizontal velocity u(x, y), because of v(x, y)/u(x, y) ∼ √

�.
Thus, for impermeable sheet (� = 0) and permeable sheet with
injection of mass flux (� < 0), the difference of the velocity
fields of the two branches of solutions is small from the phys-
ical point of view, although there exist indeed two branches of
solution from the mathematical points of view. As mentioned
before, for impermeable sheet (�=0) and permeable sheet with
injection (� < 0) of mass flux, the corresponding IVPs are rather
unstable. But, it is not clear whether the injection of mass flux
increases the instability of the flows or not.

On the other side, for the stretching permeable plate with
the large suction of mass flux, both of the horizontal velocity
u(x, y) and vertical velocity v(x, y) of two branches of solu-
tions are obviously different even near the plate. For example,
when �=10, the velocity u(x, y) of the 1st branch of solutions
either decreases monotonously or has overshooting, as shown
in Figs. 1 and 7. However, the new branch of solutions has re-
versed velocity u(x, y), as shown in Figs. 2 and 8. Therefore,
for the stretching permeable plate with large suction of mass
flux, the two branches of solutions are obviously different, not
only mathematically but also physically.

It should be emphasized that, using the very accurate ana-
lytic results of F ′′(0) obtained by our HAM approaches and
by means of the Runge–Kutta’s method, we obtain the cor-
responding numerical results, which agree very well with our
convergent series solutions. Thus, mathematically, there is no
doubt that the new branch of solutions indeed exist. How-
ever, some experiments are necessary to prove its physical
existence.

Many non-linear problems have multiple solutions [16,17].
For example, all related heat transfer problems over a stretching
permeable sheet have multiple solutions. Besides, there exist
many physically different but mathematically identical non-
linear problems. All of these multiple solutions could be found
in a similar way. Thus, the HAM [31,32] provides us a new
approach to get convergent series of multiple solutions of non-
linear problems.

It is a pity that many things are not very clear now and
thus need be further investigated in details. For example, it is
unknown whether the new branch of solutions is stable or not.
Can we separate multiple solutions of the unsteady boundary-
layer flows over a permeable sheet, which are very close to each
other? Does the injection of mass flux through the stretching
permeable sheet increases the instability of the flows? Does
the new branch of solutions still exist if the boundary-layer
equations (1) and (2) are replaced by the exact Navier–Stokes
equations, especially for the impermeable sheet (� = 0) and
permeable sheet with injection (� < 0) or small suction of mass
flux?
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