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An explicit solution of the large deformation of a cantilever beam
under point load at the free tip
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Abstract

The large deformation of a cantilever beam under point load at the free tip is investigated by an analytic method, namely the
homotopy analysis method (HAM). The explicit analytic formulas for the rotation angle at the free tip are given, which provide
a convenient and straightforward approach to calculate the vertical and horizontal displacements of a cantilever beam with large
deformation. These explicit formulas are valid for most practical problems, thus providing a useful reference for engineering
applications. The corresponding Mathematica code is given in the Appendix.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the large deformation of a cantilever beam under point load at the free tip as shown in Fig. 1. The
bending equation of a uniform cross-section beam with large deformation is [7]

d�

ds
= P

EI
(l1 − x), �(0) = 0, �′(l) = 0, (1)

where s is the arc-coordinate of the neutral axis of the beam, x is the horizontal coordinate from the fixed end, l is
the length of the beam, P the point load at the free tip, EI is the bending stiffness of the beam, � is the rotation of
cross-section of the beam, and l1 is the horizontal distance of two ends and is unknown. The axial elongation of the
beam is much smaller than the deflection at the free tip, and therefore is neglected.

Differentiating the equation with respect to s and then using the dimensionless variables �=s/ l, the original equation
becomes

�′′ + � cos � = 0, �(0) = 0, �′(1) = 0, (2)
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Fig. 1. Large deformation of a beam under point load at free tip.

where the prime denotes the differentiation with respect to �, and

� = P l2

EI
.

The rotation angle of cross-section plane at tip is denoted by �B = �(1). From [7,20], the exact vertical displacement
of the free tip is given by

fB = l − 2[E(�) − E(�, �)]
√

EI

P
,

where E(�) is the complete elliptic integral of the second kind, E(�, �) the elliptic integral of the second kind, and

� =
√

1 + sin �B

2
, � = arcsin

(
1√
2�

)
. (3)

Consequently, the dimensionless vertical displacement at free tip is given by

fB

l
= 1 − 2√

�
[E(�) − E(�, �)]. (4)

Besides, we have

l1

l
=
√(

2EI

P l2

)
sin �B =

√
2 sin �B

�
. (5)

Thus, the dimensionless horizontal displacement of the free tip is given by

�B

l
= l − l1

l
= 1 −

√
2 sin �B

�
. (6)

Clearly, the vertical and horizontal displacements fB and �B can be easily calculated as long as �B is known.
For infinitesimal deformation, it is enough to use the linear equation

�′′ + � = 0, �(0) = 0, �′(1) = 0. (7)

The corresponding solution is

�(�) = �

2
(2 − �)�, (8)

which gives the linear result

�B = �

2
. (9)
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If the large deformation is considered, one has to solve a nonlinear algebraic equation
√

� = K(�) − F(�, �), (10)

where � and � are defined by (3), and K(�) is the complete elliptic integral of the first kind, and F(�, �) is the elliptic
integral of the first kind, respectively. In general, one has to use numerical methods to solve this transcendental equation.
Therefore, the above expressions of �B, l1 and � are not explicit, and are difficult to evaluate. Clearly, it would be
interesting and convenient if an explicit and accurate expression for �B can be given. The traditional analytical methods
for solving nonlinear equations such as perturbation [16],Adomian decomposition method [3], and �-expansion method
[10], in addition to the elliptical integrals mentioned above, can not provide solutions which are accurate, convergent,
and simple for this widely known problem. On the other hand, problems similar to this one are widely encountered in
many engineering and scientific fields with important applications. A recent development on solving strongly nonlinear
problems arising from many disciplines, the homotopy analysis method (HAM) [11–15,4–6,8,17–19,1,2], which is a
powerful technique in obtaining accurate solutions that cannot be given otherwise by perturbation and other methods, is
applied to demonstrate its simplicity, effectiveness, and accuracy for this widely-known problem in structural analysis.

2. Solutions by the HAM

We now solve this nonlinear boundary value equation (2) by the HAM, and give an explicit formula for �B .
First of all, it is obvious that �(�) can be expressed by the power series of �, i.e.

�(�) =
+∞∑
k=1

ak�
k , (11)

where ak is a constant coefficient. Obviously, (8) given by the linear equation is a good initial guess. For this reason,
we choose

�0(�) = �

2
(2 − �)�, (12)

as the initial guess of �(�). Based on (2), we define the nonlinear operator

N[	(�; q), q] = �2	(�; q)

��2 + � cos[q	(�; q)]. (13)

Let

L� = d2�

d�2 (14)

be an auxiliary linear operator, q ∈ [0, 1] an embedding parameter, and h̄ a non-zero auxiliary parameter. Next, we
construct such a homotopy

H[	(�; q), q] := (1 − q)L[	(�; q) − �0(�)] − qh̄N[	(�; q), q]. (15)

Clearly, when q = 0, one has

H[	(�; 0), 0] := L[	(�; 0) − �0(�)].
If q = 1, it becomes

H[	(�; 1), 1] := −h̄N[	(�; 1), 1] = −h̄

(
�2	(�; 1)

��2 + � cos[	(�; 1)]
)

.

Thus, by enforcing

H[	(�; q), q] = 0,
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we have a family of equations

(1 − q)L[	(�; q) − �0(�)] = qh̄N[	(�; q), q], (16)

subject to the related boundary conditions

	(0; q) = 0, 	′(1; q) = 0, (17)

where the prime denotes the differentiation with respect to �.
Obviously, when q = 0, it holds

	(�; 0) = �0(�). (18)

When q = 1, Eqs. (16) and (17) are equivalent to the original (2), provided

	(�; 1) = �(�). (19)

Thus, as q increases from 0 to 1, 	(�; q) varies smoothly from the known initial guess �0(�) to the solution �(�) of (2).
By expanding 	(�; q) into Taylor series of the embedding parameter q and using (18), we have

	(�; q) = �0(�) +
+∞∑
n=1

�n(�)qn, (20)

where

�n = 1

n!
�n	(�; q)

�qn

∣∣∣∣
q=0

.

Assume that h̄ is so properly chosen that the series (20) is convergent at q = 1. Thus, using (19), we have the series

�(�) = �0(�) +
+∞∑
n=1

�n(�). (21)

The governing equations of �n can be deduced from the zeroth-order deformation equations (16) and (17). Now
substituting (20) into (16), and differentiating (16) n times with respect to the embedding parameter q, then dividing
by n!, and finally setting q = 0, we have the nth-order deformation equation

L[�n(�) − 
n�n−1(�)] = h̄Rn(�0, �1, . . . , �n−1), (22)

subject to boundary conditions

�n(0) = 0, �′
n(1) = 0, (23)

where

Rn = 1

(n − 1)!
�n−1N[	(�; q), q]

�qn−1

∣∣∣∣
q=0

, (24)

and


k =
{

0, k�1,

1, k > 1.
(25)

It should be emphasized that, as pointed by Sajid et al. [18], one can obtain exactly the same equations as (22)–(24)
by directly substituting the series (20) into the zero-order deformation equations (16)–(17) and then expanding them
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in Taylor series about q and finally equating the coefficients of the like-power of q, no matter one regards q as a small
parameter or not. Using (13) and (24), we have

R1 = �′′
0(�) + �, (26)

R2 = �′′
1(�), (27)

R3 = �′′
2(�) − �

2
�2

0(�), (28)

R4 = �′′
3(�) − ��0(�)�1(�), (29)

R5 = �′′
4(�) − �

[
�0(�)�2(�) + �2

1(�)

2
− �4

0(�)

24

]
, (30)

...

In this way, we can easily obtain the right-hand side term Rn by means of the symbolic calculation software such as
Mathematica, Matlab and so on. Thereafter, it is straightforward to solve the linear high-order deformation equations (22)
and (23). The corresponding Mathematica code is given Appendix,1 which gives the 10th-order HAM approximation
in a few seconds! Noting that, different from all other analytical techniques such as the perturbation method, Adomian
decomposition method, �-expansion method, and so on, the solutions given by the HAM contains an auxiliary parameter
h̄, which can be used to control and adjust the convergence region and rate of the HAM solution series. For example,
the 10th-order approximation of �B with h̄ = −1,

�B = 0.5� − 0.0458333�3 + 0.00893105�5 − 0.00223058�7 + 9.092700−6�9, (31)

is convergent in the region 0���1.5, and the 10th-order approximation of �B with h̄ = − 1
2 ,

�B = 0.5� − 0.0456543�3 + 8.02901 × 10−3�5

− 8.59983 × 10−4�7 + 2.28499 × 10−6�9, (32)

is convergent in the range 0���2, as shown in Figs. 2 and 3. The 30th-order approximation of �B with h̄ = −1/10,
i.e.

�B = 0.5� − 4.34347 × 10−2�3 + 6.83591 × 10−3�5 − 1.09091 × 10−3�7

+ 1.49396 × 10−4�9 − 1.62863 × 10−5�11 + 1.34028 × 10−6�13

− 7.90696 × 10−8�15 + 3.12877 × 10−9�17 − 7.51666 × 10−11�19

+ 9.27641 × 10−13�21 − 4.2676 × 10−15�23 + 3.43512 × 10−18�25

− 4.92252 × 10−23�27 + 1.75157 × 10−32�29, (33)

is convergent in the range 0���4, as shown in Figs. 2 and 3. Obviously, h̄ = −1 gives the smallest convergence
region, and the convergence region increases as h̄ changes from −1 to 0. Note that, as pointed by Sajid et al. [18]
and Abbasbandy [1], results given by the so-called “homotopy perturbation method” [9] are exactly the same as those
given by the HAM when one sets h̄ = −1, because the “homotopy perturbation method” (proposed in 1999) is only a
special case of the HAM (propounded in 1992) when h̄ = −1. Note that, the results given by the so-called “homotopy
perturbation method” corresponds to the worst one among all of our solutions given by the HAM.

1 To get free electronic version of this code, please email a message to the corresponding author.
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Fig. 2. The rotation angle at the free end �B vs. �. Dashed line: linear result �B =�/2; dashed line with open circles: HAM solution (31); dash-dotted
line: HAM result (32); dash-dot-dotted line: HAM result (33); solid line: HAM result (34); and filled circle: exact solution.
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Fig. 3. The dimensionless vertical displacement fB/l at the free tip. Dashed line: linear result fB/l = �/3; dashed line with open circles: HAM
solution based on (31); dash-dotted line: HAM solution based on (32); dash-dot-dotted line: HAM result based on (33); solid line: HAM result based
on (34); and filled circle: exact solution.

Using the so-called homotopy-Pàde acceleration technique [13], the convergence region can be greatly enlarged. For
example, when h̄ = − 1

10 , the [8,8] homotopy-Páde approximation of �B , i.e.

�B = �

2

f (�)

g(�)
, (34)
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Fig. 4. The dimensionless horizontal displacement �B/l at the free tip. Dashed line: HAM solution based on (31); dash-dotted line: HAM solution
based on (32); dash-dot-dotted line: HAM result based on (33); solid line: HAM result based on (34); and filled circle: exact solution.

is convergent in the range 0���5, as shown in Fig. 2, where

f (�) = 1 + 3.98575 × 10−2�2 − 5.41174 × 10−2�4 + 5.72575 × 10−3�6

+ 3.79533 × 10−4�8 − 8.87896 × 10−6�10 + 2.63041 × 10−8�12

− 1.51429 × 10−11�14 − 2.29142 × 10−15�16

− 3.45006 × 10−21�18 − 7.00678 × 10−28�20, (35)

g(�) = 1 + 0.131524�2 − 5.99231 × 10−2�4 + 2.34466 × 10−3�6

+ 9.90299 × 10−4�8 − 1.37001 × 10−5�10 + 3.44172 × 10−8�12

− 1.45098 × 10−11�14 − 2.26721 × 10−15�16

− 3.50731 × 10−21�18 − 7.00678 × 10−28�20. (36)

We can clearly see from Figs. 2 to 4 that the explicit expression of �B given in (32)–(33) are accurate for a large range
of dimensionless parameter �. Especially, (32) is very simple but accurate for ��2. From Fig. 3, � = 2 corresponds to
the vertical displacement at the free end almost as half of the original length of the beam. Clearly, the explicit, simple
expression (32) of �B is enough for nearly all kinds of practical engineering problems. For even larger parameter �,
the explicit expressions (33) and (34) are straightforward to calculate.

3. Discussions

The linear solution is valid only for smaller �. For larger �, the nonlinear effect of the equation is noticeable, and
it cannot be neglected as a result. Using the HAM, we obtain a family of explicit solutions for the large deformation
of a cantilever beam with a point load at the free end. It is shown that our explicit solutions for different parameters
and solution schemes agree well with the exact solutions from elliptical integrals. However, our solutions given by the
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HAM, especially (32), is simple and straightforward in comparison to the exact solution from the elliptical integrals
which requires to solve a transcendental equation. Clearly, our solution is easy to calculate with the explicit polyno-
mial expressions. This is especially convenient for practical engineering applications with minimum requirements on
calculation and computation.

The HAM is a new technique to solve nonlinear differential equations which are common in many engineering
and scientific fields. Although many practical problems involving nonlinear equations have been successfully solved
by traditional methods such as the perturbation method, there are stringent requirements for applications of these
methods which may fail especially when the nonlinear effect is strong. In this case, the HAM is an excellent al-
ternative for problems which cannot be effectively solved before. In fact, the HAM [11–15,4–6,8,17–19,1,2] is ca-
pable of solving a wide range of nonlinear problems, particularly when the nonlinearity is strong. By solving the
exact bending equation of a cantilever beam, we demonstrated the usefulness and effectiveness of the HAM to a
class of equations in solid mechanics. For example, it is easy to apply this analytic approach to solve large defor-
mation of a cantilever beam under distributed load or periodic point loads. Our experiences from this study and
related researches show that the HAM can also be utilized to solve many strongly nonlinear problems in structural
analysis.
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Appendix A.

A.1. Mathematica code

(**********************************************************************************
Mathematica code for large deformation of a beam under point load at the free tip.
To get free electronic version of this code, please email a message to the authors
**********************************************************************************)
< <Calculus‘Pade’;
< <Graphics‘Graphics’;
(**********************************************************************************
Define chi[m] given by (25)
**********************************************************************************)
chi[ m_ ] := If[ m < = 1, 0, 1 ];
(**********************************************************************************
Define Rm given by (24)
**********************************************************************************)
GetR[ Norder_ ] := Module[{ temp, EQ, q, S, Szz},
Print[“ — Get the term R[n] — ”];
S = Sum[ s[ k ] * q ∧ k, { k, 0, Norder }];
Szz = Sum[ szz[ k ] * q ∧ k, {k, 0, Norder }];
EQ[1] = Szz + alpha * Cos[ q * S ];

R[1] = EQ[ 1 ] /. q → 0;
For[ n = 1, n < = Norder −1, n = n + 1,
Print[ “ n = ”, n + 1 ];
EQ[ n + 1 ] = D[ EQ[ n ], q ];

R[ n + 1 ] = EQ[ n + 1 ]/n! /. q → 0 //Expand;
];
];
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(**********************************************************************************
This module defines the right-hand side term of Eq. (22)
**********************************************************************************)
GetRHS[ m_ ] := Module[{ }, RHS[ m ] = Expand[ hbar * R[ m ] ]; ];
(**********************************************************************************
Define initial guess (12)
**********************************************************************************)
GetInitial = Module[{ },

s[ 0 ] = alpha * z * ( 1 −z/2 );
S[ 0 ] = s[ 0 ];

Smax[ 0 ] = S[ 0 ] /. z → 1;
];
(**********************************************************************************
This module defines the auxiliary linear operator (14)
**********************************************************************************)

L[ f_ ] :=D[f, { z, 2 } ];
(**********************************************************************************
Define inverse operator L−1 of the equation L[u] = f

**********************************************************************************)
Linv[ f_ ] :=Module[{ temp, solution },
temp[ 1 ] = Integrate[ f, z ]; temp[ 2 ] = − temp[ 1 ] /. z → 1;
temp[ 3 ] = temp[ 1 ] + temp[ 2 ] //Expand;
solution = Integrate[ temp[ 3 ], z ];
Expand[ solution ]
];
(**********************************************************************************
The property of the inverse operator of L−1 : L−1[a f + b g] = a L−1[f ] + b L−1[g]
**********************************************************************************)
Linv[ p_Plus ] :=Map[ Linv, p ];
Linv[ c_ * f_ ] :=c * Linv[ f ] /; FreeQ[ c, z ];
(**********************************************************************************
This module gives special solutions of the high-order deformation Eq. (22)
**********************************************************************************)
GetSPECIAL[ m_ ] :=Module[ { temp },
temp = Expand[ RHS[ m ] ];
SPECIAL = Linv[ temp ];
];
(**********************************************************************************
Define the exact solution by means of solving Eq. (10)
**********************************************************************************)
Exact[ z_ ] :=Module[{ temp, k, eq, phi },
k = (1 + Sin[ x ] )/2;
phi =ArcSin[1 / Sqrt[ 2 * k ]];
eq = EllipticK[ k ] − EllipticF[ phi, k ] − Sqrt[ z ];
temp[ 1 ] = FindRoot[ eq == 0, { x, 0.01 } ];
temp[ 2 ] = x /. temp[ 1 ];
Expand[ temp[ 2 ] ]
];
(**********************************************************************************
Define �b by (6)
**********************************************************************************)
deltaB[ alpha_ , thetaB_ ] :=1− Sqrt[ 2 * Sin[ thetaB ]/alpha ];
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(**********************************************************************************
Define fb by (4)
**********************************************************************************)
fB[ alpha_ , thetaB_ ] :=Module[{ temp, mu, phi },
mu = ( 1 + Sin[ thetaB ] )/2;
phi =ArcSin[ 1 / Sqrt[ 2 * mu ] ];
temp = 1 − 2/Sqrt[ alpha ]*( EllipticE[ mu ] − EllipticE[ phi, mu ]);
Expand[ temp ]
];
(**********************************************************************************
This module gives the [m,n] homotopy-Pàde approximation of a series
For details, please refer to �2.3.7 of Liao’s book [6]: Beyond Perturbation, CRC Press.
**********************************************************************************)
hp[ F_ , m_ , n_ ] :=Block[ {i, k, dF, temp, q },
dF[ 0 ] = F[ 0 ];
For[ k = 1, k < = m + n, k = k + 1, dF[ k ] = Expand[ F[ k ] − F[ k − 1 ] ] ];
temp = dF[ 0 ] + Sum[ dF[ i ] * q ∧ i, {i, 1, m+n }];
Pade[temp, {q, 0, m, n }] /. q → 1
];
(**********************************************************************************
Main code
**********************************************************************************)
ham[ m0_ , m1_ ] :=Module[ {temp , k , variable },
Print[“ — Get the kth-order HAM approximation — ”];
For[ k = Max[ 1 , m0 ] , k < = m1, k = k + 1,
Print[“ k = ”, k ];
szz[ k − 1 ] = D[ s[ k − 1 ], { z , 2 }];
GetRHS[ k ];
GetSPECIAL[ k ];

s[ k ] = SPECIAL + chi[ k ] * s[ k − 1 ] // Expand;
S[ k ] = S[ k − 1 ] + s[ k ] //Expand;

Smax[ k ] = S[ k ] /. z → 1 //Expand;
If[ PRN == 1,
Print[“ ThetaB = ”, N[ Smax[ k ] , 20 ] ,
“ delta = ”, N[ Smax[ k ] − chi[ k ] * Smax[ k − 1 ], 20]];
];
];
Print[“Successful !”];
];
(**********************************************************************************
Would you like to print more information to check the convergence ?
1 corresponding to YES
0 corresponding to NO
**********************************************************************************)
PRN = 0;
(**********************************************************************************
Parameters definitions
**********************************************************************************)
hbar = −1/2;
alpha = a;
(* Get 10th-order HAM approximation *)
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GetR[ 10 ];
ham[ 1 , 10 ];
hp[ Smax , 4 , 4 ];
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