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Many boundary-layer flows are governed by one or coupled nonlinear ordinary differential equations
(ODEs). Currently, a Mathematica package BVPh 2.0 is issued for nonlinear boundary-value/eigenvalue
problems with boundary conditions at multiple points. The BVPh 2.0 is based on an analytic approxima-
tion method for highly nonlinear problems, namely the homotopy analysis method (HAM), and is free
available online. In this paper, the BVPh 2.0 is successfully applied to solve magnetohydrodynamic
(MHD) Falkner–Skan flow of nano-fluid past a fixed wedge in a semi-infinite domain, and the influence
of physical parameters on the considered flows is investigated in details. Physically, this work deepens
and enriches our understandings about the magnetohydrodynamic Falkner–Skan flows of nano-fluid past
a wedge. Mathematically, it illustrates the potential and validity of the BVPh 2.0 for complicated bound-
ary-layer flows.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In fluid mechanics, the Falkner–Skan flow is significant and fun-
damental in both theory and practice. In particular, such kind of
flows occur frequently in enhanced oil recovery, packed bed reac-
tor geothermal industries, etc. Moreover, there is growing interest
of the researchers in the magnetohydrodynamics (MHD) flows,
mainly due to their vast applications in power generators, design
of heat exchangers, electrostatic filters, the cooling of reactor,
MHD accelerators and so on. The magnetic field has also stabilizing
effects in this kind of boundary layer flows. Hence, many research-
ers have been doing their contributions to the Falkner–Skan flows
with or without a magnetic field. For example, Abbasbandy and
Hayat [1,2] analyzed the MHD Falkner–Skan flow of viscous fluid
using the homotopy analysis and Hankel–Pade methods. Parand
et al. [3] developed approximate solution of MHD Falkner–Skan
flow by the Hermite functions pseudo-spectral method. The solu-
tions of reversed flow of the Falkner–Skan equations were obtained
by Yang and Lan [4]. Yao [5,6] examined the uniform suction and
heat transfer influences in the Falkner–Skan wedge flow. The gen-
eralized Falkner–Skan equations in the FENE fluid was investigated
by Anabtawi and Khuri [7]. The numerical solutions of the Falkner–
Skan equations in viscous fluid were gained by Zhu et al. [8]. The
Falkner–Skan flow due to stretching surface was addressed by
Yao and Chen [9]. Alizadeh et al. [10] obtained the solutions of
Falkner–Skan equation with wedge using the Adomian decomposi-
tion method.

Nano-particles are objects with at least one dimension smaller
than 100 nm (preferably <10 nm), where a nanometer (nm) is
one-billionth of a meter. Although nano-particles are so small, they
often possess far more remarkable characteristics than the same
material and bulk without them. Fluids such as oil, water and eth-
ylene glycol mixtures are naturally poor in heat transfer. In the
past decades, lots of researches were done to develop fluids with
ultrahigh-performance such as the enhanced electrical conductiv-
ity, intensified heat transfer, improved oils, coolants and industrial
equipments. When a very small amount of nano-particles are dis-
persed uniformly and suspended stably in clear fluids, the thermal
properties of the fluid changes significantly. Choi [11] called these
fluids as nano-fluids, and proposed that nanometer-sized metallic
particles can be suspended in industrial heat transfer fluids. There-
fore, a nano-fluid is a suspension of nano-particles in a traditional
base fluid, which enhances the heat transfer characteristics of the
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clear fluid. Nano-technology has applications in automatize indus-
try, electronic devices, such as supercomputers, cooling systems,
power plants, and artificial organs. Choi et al. [12] observed that
the thermal conductivity of fluid can be increased up to approxi-
mately two times by means of adding a small amount (less then
1%) of nano-particles to clear liquids. For reviews on nano-fluids,
please refer to Das et al. [13] and Wang and Mujundar [14].
Recently, the Falkner–Skan problem for a static or moving wedge
in hydrodynamic viscous nano-fluids has been numerically investi-
gated by Yacob et al. [15] and Fallah et al. [16]. They gained the
Pareto optimal solutions by means of multi-objective genetics
algorithms. Khan et al. [17] numerically examined the Falkner–
Skan boundary layer flow of nano-fluid over wedge with convec-
tive boundary condition. Khan and Pop [18] considered steady
boundary-layer flows past a stretching wedge in a viscous nano-
fluid with a parallel free stream velocity ueðxÞ.

In this paper, a steady-state laminar two dimensional MHD
boundary layer flow of viscous nano-fluid past a fixed wedge is
considered. The magneto nano-fluids are important in applications
related to modulators, optical switches, optical gratings, tunable
optical fiber filters and so on. The magnetic nano-particles are
important in medicine, sink float separation, cancer therapy, mag-
netic cell separation, construction of loud speakers, magnetic reso-
nance imaging and so on. In the form of the boundary-layer theory,
the considered problem is governed by three coupled nonlinear
ordinary differential equations (ODEs) in a semi-infinite domain
with boundary conditions at infinity. Traditionally, such kind of
coupled nonlinear ODEs can be solved by means of numerical
methods such as the finite difference method (FDM) by means of
moving the boundary condition at infinity to a finite but far enough
position which causes some uncertainty and inaccuracy to its
numerical solutions. Unlike the traditional approaches, we use
here a Mathematica package BVPh 2.0 [19] for nonlinear bound-
ary-value/eigenvalue problems governed by coupled nonlinear
ODEs with multiple boundary conditions, which can exactly satisfy
the boundary condition at infinity, since the BVPh 2.0 is based on
the computer algebra system Mathematica and makes computa-
tions with functions instead of numbers. Mathematically, the BVPh
2.0 is based on the homotopy analysis method (HAM) [20–23], an
analytic approximation technique for highly nonlinear problems
and has many advantages compared to the traditional ones. First,
based on the homotopy in topology, the HAM can always transfer
a nonlinear problem into an infinite number of linear sub-prob-
lems without any small/large physical parameters, and besides
provides us great freedom to choose the equation-type and base
function of solution of these linear sub-problems for high-order
approximations. Especially, unlike all other analytic approximation
methods, the HAM provides us a simple way to guarantee the con-
vergence of solution series, so that it is valid for problems with
high nonlinearity. The general validity and power of the HAM have
been illustrated by hundreds of successful applications of the HAM
in various fields of science, finance and engineering. To simplify the
applications of the HAM, some HAM-based packages in Mathemat-
ica or Maple have been developed. The BVPh 2.0 is one of them,
which is an easy-to-use tool for boundary-layer flows, and is free
available online (http://numericaltank.sjtu.edu.cn/BVPh.htm).

In this paper, the BVPh 2.0 is used to solve the considered mag-
netohydrodynamics (MHD) Falkner–Skan flow of nano-fluid. The
influence of physical parameters on the profiles of velocity, tem-
perature and concentration, the local skin friction coefficient, the
local Nusselt number and the local Sherwood number is investi-
gated in details. Physically, this work deepens and enriches our
understandings about the magnetohydrodynamics (MHD) Falk-
ner–Skan flow of nano-fluid. Mathematically, it illustrates that
the HAM-based Mathematica package is indeed an easy-to-use tool
for complicated boundary-layer flows.
2. Mathematical formulas

We consider here a steady-state laminar incompressible two
dimensional boundary-layer flow of nano-fluid past a fixed wedge.
A constant magnetic field of strength B acts in a transverse direc-
tion to flow. The fluid is electrically conducting in the presence
of applied magnetic field B. The induced magnetic field effect is
not taken into account. Such consideration holds when magnetic
Reynolds number is chosen small. In addition the influence of elec-
tric field is negligible. In this situation the current density becomes
J ¼ rðV � BÞ and lorentz force J � B ¼ �rB2V . In-fact zero electric
field corresponds to the case when polarization effects are not con-
sidered. The Hall effect is also not taken into account. Let Tw;Cw

and T1;C1 denote the temperature and concentration at the sur-
face and at infinity, respectively. Effects of Brownian motion and
thermophoresis are considered. Under these assumptions, the
governing equations of continuity, momentum, energy and nano-
particle volume fraction are as follows (see Fig. 1):

(i) Continuity equation
@u
@x
þ @v
@y
¼ 0: ð1Þ

Equation of motion
(ii)
u
@u
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þ v @u

@y
¼ U
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dx
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Energy equation
(iii)
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Nanoparticle volume fraction equation
(iv)
u
@C
@x
þ v @C

@y
¼ DB

@2C
@y2

 !
þ DT

T1

@2T
@y2

 !
; ð4Þ

where u;v are the x- and y-components of the fluid velocity,
U denotes the inherent characteristic velocity, T the temper-
ature, a the thermal diffusivity, s the ratio of heat capacity of
nano-particle to that of the base fluid, m the kinematic vis-
cosity, r the electrical conductivity, K the thermal conduc-
tivity, T1 and C1 the free stream temperature and
concentration, C the nano-particle volume fraction, DB the
Brownian diffusion coefficient, DT the thermophoretic diffu-
sion coefficient and qf the fluid density, respectively. The
corresponding initial and boundary conditions are
u ¼ 0; v ¼ 0; T ¼ Tw; C ¼ CwðxÞ at y ¼ 0; ð5Þ
u ¼ UðxÞ ¼ axn; T ! T1; C ! C1 as y!1: ð6Þ
with

B ¼ B0xðn�1Þ=2; ð7Þ
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where x is the distance from the leading edge, n the Falkner–Skan
power-law parameter, Tw the surface temperature distribution, T1
the ambient fluid temperature distribution, and C1 the ambient
fluid nano-particle volume fraction, respectively. Using the similar-
ity transformations [1]

u ¼ UðxÞf 0; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r ffiffiffiffiffi
U
mx

r
y; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r ffiffiffiffiffiffiffiffiffi
mxU
p

f ðgÞ;

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r ffiffiffiffiffiffiffi
mU
x

r
f ðgÞ þ n� 1

nþ 1
gf 0ðgÞ

� �
; hðgÞ ¼ T � T1

Tw � T1
;

/ðgÞ ¼ C � C1
Cw � C1

;

ð8Þ

where m ¼ l
qf

� �
is the kinematic viscosity and l is the dynamic

viscosity, we have the non-dimensional governing equations (after
dropping asterisks):

N f ðf Þ ¼ f 000 þ ff 00 þ bð1� f 02Þ �M2ðf 0 � 1Þ ¼ 0; ð9Þ
N hðf ; h;/Þ ¼ h00 þ Prðf h0 þ Nth

02 þ Nbh
0/0Þ ¼ 0; ð10Þ

N /ðf ; h;/Þ ¼ /00 þ PrLef/0 þ Nt

Nb
h00 ¼ 0; ð11Þ

where N f ðf Þ;N hðf ; h;/Þ;N /ðf ; h;/Þ are nonlinear differential opera-
tors defined above. Here, M; Pr, Nb;Nt and Le are the so-called mag-
netic field parameter, the Prandtl number, the Brownian motion
parameter, the thermophoresis parameter, and the Lewis number,
respectively, defined by

M2 ¼ 2rB2
0

qf að1þ nÞ ; Nb ¼
sðCw � C1ÞDB

m
; ð12Þ

Nt ¼
sDTðTw � T1Þ

mT1
; Le ¼ a

DB
; Pr ¼ m

a
; b ¼ 2n

nþ 1
: ð13Þ

The corresponding non-dimensional boundary conditions are
given by

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 0ðþ1Þ ¼ 1;
hð0Þ ¼ 1; hðþ1Þ ¼ 0; /ð0Þ ¼ 1; /ð1Þ ¼ 0:

)
ð14Þ

It should be pointed out that the case of n > 0 and b > 0 corre-
sponds to a wedge in an accelerated flow, whereas decelerated
flow with separation occurs in the case of n < 0 and b < 0.

The parameters with physical interests, such as the skin friction
coefficient Cfx, the local Nusselt number Nux and the local Sher-
wood number Shx, are defined as follows:

Cfx ¼
swx

qU2
w

; Nux ¼
xqw

KðTw � T1Þ
Shx ¼

xjw

DBðCw � C1Þ
; ð15Þ

where sw; qw and jw are the wall skin friction, the heat flux and the
mass flux from the surface, respectively, defined by

swx ¼ l @u
@y

� �
y¼0
; qw ¼ �K

@T
@y

� �
y¼0

jw ¼ �DB
@C
@y

� �
y¼0
: ð16Þ

According to (8), we have the non-dimensional local skin friction
coefficient, the local Nusselt number and the local Sherwood
number

ðReÞ
1
2Cfx

ffiffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
¼ f 00ð0Þ; ðReÞ�

1
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ffiffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
¼ �h0ð0Þ;

ðReÞ�
1
2Shx

ffiffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
¼ �/0ð0Þ; ð17Þ

where Re ¼ ðUxÞ=m is the local Reynolds number.
3. Analytic approximations given by the BVPh 2.0

The system of the coupled nonlinear ODEs (9)–(11) with the
boundary conditions (14) can be solved by means of the BVPh
2.0, a HAM-based Mathematica package [19] for coupled nonlinear
ODEs with multiple boundary conditions in finite or infinite
domains. The BVPh 2.0 is free available online (http://numerical-
tank.sjtu.edu.cn/BVPh.htm) with a simple user’s guide.

The BVPh 2.0 is easy-to-use: one only need define the governing
equations and boundary conditions under consideration, then
choose an auxiliary linear operator for each governing equation,
which defines the equation-type of the corresponding high-order
equations, and a proper initial guess for each unknown function.
With these inputs, the BVPh 2.0 automatically gives you the ana-
lytic approximations at whatever order you would like. Note that
there exist a convergence-control parameter for each governing
equation, which is used to guarantee the convergence of series
solution. The optimal values of the convergence-control parame-
ters are determined by the minimum of residual squares of govern-
ing equations (and also boundary conditions in some cases).

Thus HAM which is based on the homotopy in topology,
transfers a nonlinear problem into an infinite number of linear
sub-problems, but without any small/large physical parameters.
For the considered problem, we have

f ðgÞ ¼
Xþ1
k¼0

f kðgÞ; hðgÞ ¼
Xþ1
k¼0

hkðgÞ; /ðgÞ ¼
Xþ1
k¼0

/kðgÞ; ð18Þ

where f kðgÞ; hkðgÞ;/kðgÞ are determined by the so-called high-order
deformation equations governed by the chosen auxiliary linear
operators. According to Eqs. (9)–(11) and the boundary conditions
(14) at infinity, it is obvious that f ðgÞ; hðgÞ;/ðgÞ should be in the
forms:

f ðgÞ ¼ Ak
0;0 þ

Xþ1
k¼0

Xþ1
j¼1

Xþ1
i¼0

Ak
i;j g

i expð�jgÞ;

hðgÞ ¼
Xþ1
k¼0

Xþ1
j¼1

Xþ1
i¼0

Bk
i;j g

i expð�jgÞ;

/ðgÞ ¼
Xþ1
k¼0

Xþ1
j¼1

Xþ1
i¼0

Ck
i;j g

i expð�jgÞ;

ð19Þ

where Ak
i;j;B

k
i;j and Ck

i;j are constant coefficients to be determined by
the BVPh 2.0. Eq. (19) represents the so called ‘‘solution expres-
sions’’, which provide us a guide to choose the auxiliary linear oper-
ator and initial guess, and thus play an important role in the HAM.

In the frame of HAM, one has great freedom to choose the aux-
iliary linear operators. According to the above-mentioned solution
expression, we could choose the following auxiliary linear
operators:

L1½f ðg : qÞ� ¼ d3f
dg3 þ c

d2f
dg

; ð20Þ

L2½hðg : qÞ� ¼ d2h
dg2 þ

dh
dg

; ð21Þ

L3½/ðg : qÞ� ¼ d2/
dg2 þ

d/
dg

; ð22Þ

which have the following properties

L1½C1 expð�gÞ þ C2 expðgÞ þ C3� ¼ 0; ð23Þ
L2½C4 expð�gÞ þ C5 expðgÞ� ¼ 0; ð24Þ
L3½C6 expð�gÞ þ C7 expðgÞ� ¼ 0; ð25Þ

where C1;C2; . . . ; C7 are constants to be determined by the boundary
conditions.
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In the frame of the HAM, we also have great freedom to choose
the initial approximations. According to the above-mentioned
solution expression and the boundary conditions (14), we choose
the following initial approximations:

f 0ðyÞ ¼ g� 1� expð�cgÞ
c

; ð26Þ

h0ðyÞ ¼ expð�gÞ; ð27Þ
/0ðyÞ ¼ expð�gÞ; ð28Þ

where c ¼ 2. It should be noticed that initial approximations must
satisfy the boundary conditions (14). These are enough for the BVPh
2.0: using the auxiliary linear operator (20)–(22) and the initial
approximations (26)–(28), analytic approximations of the coupled
nonlinear ODEs (9)–(11) with the boundary conditions (14) can
be gained automatically by the BVPh 2.0.

It should be emphasized that f ðgÞ; hðgÞ and /ðgÞ given by the
BVPh 2.0 contain three unknown convergence-control parameters

c f
0 ; c

h
0 and c/

0 , which are used to guarantee the convergence of the
series solutions. It should be noticed that the convergence-control
parameters play very important role in the frame of the HAM: it is
the so-called convergence-control parameter that differs the HAM
from all other analytic approximation methods.

To greatly decrease the CPU time, we use here the so-called
average residual error at the kth-order of approximation, defined
by

E f
k ðc

f
0 ; c

h
0; c

/
0 Þ ¼

1
N þ 1

XN

j¼0

N f

Xk

i¼0

f i
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g¼jdg

2
4

3
5

2

; ð29Þ
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h
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/
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XN
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N h
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Xk

i¼0

hi;
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i¼0
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 !					
g¼jdg

2
4

3
5

2

; ð30Þ

E/
k ðc

f
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h
0; c

/
0 Þ ¼
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XN
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N /
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i¼0

f i;
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i¼0

hi;
Xk

i¼0

/i

 !					
g¼jdg

2
4

3
5

2

; ð31Þ

for the original governing equations, respectively. Where N is an
integer. The total error at the kth-order of approximation is defined
by

Et
kðc

f
0 ; c

h
0; c

/
0 Þ ¼ E

f
k ðc

f
0 ; c

h
0; c

/
0 Þ þ E

h
kðc

f
0 ; c

h
0; c

/
0 Þ þ E

/
k ðc

f
0 ; c

h
0; c

/
0 Þ: ð32Þ

Note that all boundary conditions are linear and are exactly satis-
fied. At the kth-order of approximation, the optimal values of

c f
0 ; c

h
0; c

/
0 are determined by the minimum of the total error Et

k, which
can be done simply using ‘‘GetOptiVar’’, a command of the BVPh
2.0. For details, please refer to the user’s guide of the BVPh 2.0
online (http://numericaltank.sjtu.edu.cn/BVPh.htm).

4. Results and discussion

Without loss of generality, let us consider the case
b ¼ M ¼ Nb ¼ Nt ¼ 0:1; Le ¼ 1:0 and Pr ¼ 7:0. The corresponding
optimal convergence-control parameters are gained by directly
employing the command ‘‘GetOptiVar’’ of the BVPh 2.0, which
are listed in Table 1 for up to the 6th-order of approximations. Note
Table 1
Optimal convergence-control parameters at different orders of approximation in the
case of b ¼ M ¼ Nb ¼ Nt ¼ 0:1; Le ¼ 1 and Pr ¼ 7:0.

k (order of approximation) c f
0

ch
0 c/

0 Et
k

1 �0.75 �0.64 �0.59 2:4� 10�1

3 �1.18 �0.77 �0.83 6:7� 10�2

6 �1.37 �1.03 �0.99 9:6� 10�3
that the total error Et
k decreases to 9:6� 10�3 by means of the cor-

responding optimal convergence-control parameters c f
0 ¼ �1:37;

ch
0 ¼ �1:03; c/

0 ¼ �0:99. It is found that, using these optimal con-
vergence-control parameters gained at the 6th-order of approxi-
mation, the residual error of each governing equation indeed
decreases, as shown in Table 2. In this way, we gain the convergent
analytic solution for the considered problem in the case mentioned
above.

Similarly, one can gain the convergent analytic approximations
for different physical parameters by means of the BVPh 2.0. For
example, the local skin friction coefficients f 00ð0Þ for different
wedge angle b in the case of M ¼ 0 agree well with those reported
by Yacob et al. [15], Khan and Pop [18], Yih [24] and White [25], as
shown in Table 3. This illustrates the validity of the BVPh 2.0 for
the considered boundary-layer flows of nano-fluid.

Figs. 2–11 depict the features of velocity, temperature and con-
centration profiles as a function of g for various wedge angles (b),
magnetic fields (M), Brownian motion parameters (Nb), thermo-
phoresis parameters (Nt), Lewis numbers (Le) and the Prandtl num-
bers (Pr), respectively. The quantities describing the momentum,
heat and mass transfer i.e. the local skin friction coefficient, the
local Nusselt number and the local Sherwood number at the lead-
ing edge have been plotted for various values of the physical
parameters.

Figs. 2 and 3 depicts the influence of b and M on the velocity,
temperature and concentration profiles. It is found that the
increase in b and M results in an increase in the velocity profile,
whereas the rate of convergence to the mainstream flow decreases.
Besides, the increase in either b and M decreases the velocity
boundary layer thickness. The increase of b leads to the decrease
of the thermal and concentration profiles in the boundary layer
regions.

The continuous collision between the nano-particles and the
base fluid molecules generates a random motion of nano-particles
within base fluid, called the Brownian motion. The influence of the
Brownian motion parameter Nb on the temperature and concentra-
tion profiles for a fixed wedge is shown in Figs. 4 and 5. As shown
in Fig. 4, the increase in Nb with b ¼ 0:1 or b ¼ 1:0 (keeping all
other parameters fixed) leads to the increase of the temperature
profiles in the boundary layer region. However, the increase in b
decreases the temperature in the thermal boundary layer region.
As shown in Fig. 5, the concentration profile decreases in the
boundary layer with an increase in the Brownian motion parame-
ter. Besides, the concentration profile decays more quickly for lar-
ger values of Nb. The increase in b results in the decrease of the
concentration profile.

Figs. 6 and 7 show the variations of the temperature and nano-
particle volume fraction with Nt for various values of b. It is found
that the temperature profiles increase by increasing the thermoph-
oretic parameter. A significant change is noticed in the nano-parti-
cle volume fraction for various values of Nt . For Nt ¼ 0:1, the
concentration profile is a decreasing function of g. However,
increasing Nt , the concentration profile first increases and attains
the maximum value in the ambient fluid near the surface and then
asymptotically approaches to zero.
Table 2
Average squared residual errors at different orders of approximation in the case of
b ¼ M ¼ Nb ¼ Nt ¼ 0:1; Le ¼ 1 and Pr ¼ 7:0 by means of the optimal convergence-
control parameters c f

0 ¼ �1:37; ch
0 ¼ �1:03; c/

0 ¼ �0:99.

k (order of approximation) 10 20 30

E f
k 3:7� 10�4 3:1� 10�5 4:5� 10�6

Eh
k 4:0� 10�4 1:5� 10�5 1:1� 10�6

E/
k 1:0� 10�3 4:6� 10�5 4:0� 10�6

Et
k 1:8� 10�3 9:3� 10�5 9:7� 10�6
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Table 3
Comparison of f 00 ð0Þ given by the BVPh 2.0 with the previous publications when
M ¼ 0.

b Yih [24] Yacob et al. [15] White [25] Khan and Pop [18] HAM

0 0.4696 0.4696 0.4696 0.4696 0.4696
1=6 0.6550 0.6550 0.6550 0.6550 0.6550
1=3 0.8021 0.8021 0.8021 0.8021 0.8021
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Fig. 2. Velocity and temperature profile for different values of b and M.
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Fig. 3. Concentration profile for different values of b and M.
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Fig. 5. Graphs of /ðgÞ for different Nb with various b.
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Figs. 8 and 9 show the variations of temperature and concentra-
tion profiles with Prandtl number for various values of b. It is found
that temperature and concentration profile is a decreasing function
of Prandtl number. Physically, the increase of Prandtl number leads
to the decrease of the thermal diffusivity which results in low ther-
mal conduction and hence the decrease of the temperature.

Fig. 10 presents the influence of the Lewis number for various of
b on the concentration profile. The concentration profile is a
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Fig. 9. Graphs of /ðgÞ for different Pr with various b.
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decreasing function of the Lewis number. It is due to the fact that
the increase in Lewis number leads to the decrease of the molecu-
lar diffusivity.

The local skin friction coefficient at the leading edge against b is
shown in Fig. 11 for various values of M. It is found the local skin
friction increases with the increase in b and M.

Fig. 12 examines the local Nusselt number at the leading edge.
The Nusselt number is plotted as function of Nt . It is found that the
Nusselt number is a decreasing function of Nt also the increase in
Nb leads to the decrease of the Nusselt number.

According to Fig. 13, the local Sherwood number decreases with
the increase in Le. We already noticed in Fig. 10 that the concentra-
tion boundary layer thickness decreases with the increase in Nb

and Le, such decrease in fact is responsible for the decrease in
the mass transfer.

5. Conclusions

In this paper, a steady-state laminar two dimensional MHD
boundary layer flow of nano-fluid past a fixed wedge is investi-
gated in details. Mathematically, the HAM-based Mathematica
package BVPh 2.0 is used to solve the corresponding system of
three coupled nonlinear ODEs defined in a semi-infinite domain.
Unlike numerical approaches, the BVPh 2.0 exactly satisfies the
boundary conditions at infinity. Besides, based on the HAM, the
BVPh 2.0 provides us a simple way to guarantee the convergence
of solution series by means of the so-called optimal convergence-
control parameters. Thus, the HAM-based Mathematica package
BVPh 2.0, which is free available online (http://numericaltank.
sjtu.edu.cn/BVPh.htm) with a user’s guide, is indeed an easy-to-
use tool for some complicated boundary-layer flows.

Physically, the influence of physical parameters on the MHD
Falkner–Skan boundary-layer flows of nano-fluid is studied in
details. It is found that:

(1) Fluid flow enhances with the increase of b and M.
(2) Temperature increases with the increase of Nb;Nt but

decreases for Pr.
(3) Concentration profile decreases with the increase of Nb; Le

but increases with the increase of Nt .
(4) The local skin friction coefficient increases with the increase

of b but decreases with the increase in M.
(5) The increase in Nb decreases the heat transfer.
(6) The mass transfer decreases with the increase of Le.

These results deepen and enrich our understandings about the
MHD boundary layer flows of nano-fluid past a fixed wedge.
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