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The steady-state resonance of multiple surface gravity waves in deep water was
investigated in detail to extend the existing results due to Liao (Commun. Nonlinear
Sci. Numer. Simul., vol. 16, 2011, pp. 1274–1303) and Xu et al. (J. Fluid Mech.,
vol. 710, 2012, pp. 379–418) on steady-state resonance from a quartet to more general
and coupled resonant quartets, together with higher-order resonant interactions. The
exact nonlinear wave equations are solved without assumptions on the existence of
small physical parameters. Multiple steady-state resonant waves are obtained for all
the considered cases, and it is found that the number of multiple solutions tends
to increase when more wave components are involved in the resonance sets. The
topology of wave energy distribution in the parameter space is analysed, and it is
found that the steady-state resonant waves indeed form a continuum in the parameter
space. The significant roles of the near-resonance and nonlinearity were also revealed.
It is found that all of the near-resonant components as a whole contain more and
more wave energy, as the wave patterns tend from two dimensions to one dimension,
or as the nonlinearity of the steady-state resonant wave system increases. In addition,
the linear stability of the steady-state resonant waves is analysed. It is found that the
steady-state resonant waves are stable, as long as the disturbance does not resonate
with any components of the basic wave. All of these findings are helpful to enrich
and deepen our understanding about resonant gravity waves.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction

Work on water wave resonance was pioneered by Phillips (1960), who found that
the amplitude of a tertiary component grows linearly with time when the resonance
condition is satisfied. This flux of potential energy from one wavenumber to another
was verified by Longuet-Higgins (1962), who also suggested an experiment to detect
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the tertiary wave, which was done later by Longuet-Higgins & Smith (1966) and
McGoldrick et al. (1966). Besides these, the dynamical analysis for a single resonant
quartet was considered by Benney (1962) and Bretherton (1964), who concluded
that exact solutions in terms of Jacobi elliptic functions may exist. At the same
time, the nonlinear resonant interaction of waves in a random sea was considered by
(Hasselmann 1962, 1963a,b). For more details about the early works, please refer to
the monographs (Phillips 1977; Craik 1985; Komen et al. 1996; Young 1999) and
retrospective articles (Phillips 1981; Yuen & Lake 1982; Hammack & Henderson
1993; Dias & Kharif 1999).

Nowadays, it is well known that resonant or near-resonant interactions are the only
interactions that affect wave amplitudes to a significant extent (Grimshaw 2005). Let
ki denote the wavenumber, ωi = √g|ki| the linear frequency and g the gravitational
acceleration, respectively. Once the resonance criterion found by Phillips (1960), i.e.

k1 ± k2 ± k3 ± k4 = 0, ω1 ±ω2 ±ω3 ±ω4 = 0, (1.1)

is satisfied by wave components with very small amplitudes ai, the resonance
mechanism is triggered and the energy exchange among these components begins.
Usually, the amplitudes ai of each component in the resonant set are mostly not
constants but keep changing with time and so do the corresponding actual amplitude-
dependent frequencies σi. In some cases, the recurrence of the energy exchange may
happen for large times. For a Stokes wave, the side bands associated with it grow
exponentially in the initial time, as shown in Benjamin & Brooke (1967); the process
responsible for this is believed to be controlled by near-resonant four-wave interaction
(Janssen 2003). After long-time evolution, the phenomenon of Fermi–Pasta–Ulam
recurrence may occur in a two-dimensional wave field (Yuen & Lake 1982).

As it was believed that the wave amplitude ai involved in resonance usually changes
over time, most researchers focused on the time evolution of resonant wave systems
after the work of Phillips (1960) and Hasselmann (1962). They solved different wave
model equations from the point of view of initial/boundary-value problems. The
so-called steady-state resonant waves correspond to such a state in which all of the
amplitudes ai, the wavenumbers ki and the actual frequencies σi of the resonant wave
system are constant, i.e. independent of time, so that the spectrum of wave energy is
also independent of time, too. In this paper, we focus on seeking steady-state resonant
waves with constant wave amplitudes ai, wavenumbers ki and actual frequencies σi

such that no wave energy is exchanged between different wave components.
Owing to nonlinear effects, the actual wave frequencies σi are often slightly different

from the linear ones ωi. As emphasized by Madsen & Fuhrman (2006), it is generally
necessary to include the amplitude dispersion, to fully satisfy the nonlinear resonance
condition

k1 ± k2 ± k3 ± k4 = 0, σ1 ± σ2 ± σ3 ± σ4 = 0. (1.2)

Note that each actual frequency σi in (1.2) depends on all of the amplitudes in the
wave system. Therefore, a combination of constant amplitudes ai is required so as
to keep the actual frequencies σi not only constant but also satisfying the nonlinear
resonance condition (1.2) all the time.

As a first step to consider the nonlinear effects on the steady-state resonance waves,
we assume that

σ1/ω1 ≡ σ2/ω2 ≡ σ3/ω3 ≡ σ4/ω4 = ε, (1.3)
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where ε is a constant larger than 1, so that both the linear resonance condition (1.1)
and the nonlinear ones (1.2) are satisfied at the same time. However, it should be
emphasized here that such an assumption is not absolutely necessary by means of
the homotopy analysis method (HAM): only the nonlinear condition (1.2) must be
satisfied, but the linear one (1.1) is unnecessary, as mentioned in the conclusion of
this paper.

Recently, based on the HAM (Liao 1992, 2003, 2012, 2013), Liao (2011)
investigated such a steady-state resonance quartet in deep water, and found that
multiple steady-state resonance waves exist for the following quartet:

2k1 − k2 = k3, 2ω1 −ω2 =ω3, 2σ1 − σ2 = σ3. (1.4)

The existence of such steady-state resonant wave systems in water of finite depth has
been confirmed by Xu et al. (2012). Besides, using a numerical method from the
Zakharov equation, Xu et al. (2012) obtained qualitatively identical conclusions with
that from the fully nonlinear equations by means of the HAM.

However, in both Liao (2011) and Xu et al. (2012), only a single special resonant
quartet (1.4) is investigated. A single resonant quartet is not sufficiently general,
since a system that admits one resonant set of waves often admits many resonant
sets simultaneously (Hammack & Henderson 1993). Therefore, waves often interact
in coupled sets so that multiple and coupled resonances need to be considered. Also,
the role of higher-order nonlinearities in the evolution of random wave fields could
be dynamically important (Annenkov & Shrira 2006). The role of the higher-order
interaction in the steady-state resonant waves is still an open problem.

In this work, our objective is first to answer some of the above questions, i.e. to
investigate the steady-state resonant waves for more general sets in deep water. Then,
in order to demonstrate the physical implications of the steady-state resonant waves,
we study the topology of the energy distribution in the parameter space. Finally, we
investigate numerically the linear stability of steady-state resonance waves.

An outline of this paper is as follows. In § 2, the governing equations and a
brief description of the solution procedures are presented (the detailed mathematical
formulas are given in the appendix). The extension has been carried out in three
aspects: one towards the general resonant quartet in § 3.1; another towards the
multiple and coupled resonant quartets in § 3.2; and the third towards the high-order
resonant set, a sextet, in § 3.3. The topology of the steady-state resonance waves for
a quartet and sextet are shown in § 4.1 and § 4.2, respectively. The linear stability
analysis of a quartet is shown in § 5. The conclusions and discussions are given
in § 6.

2. The mathematical description
2.1. Governing equations

With the fluid motion assumed to be irrotational, a velocity potential φ(x, y, z, t) can be
defined, where t indicates time and (x, y, z) represents the usual Cartesian coordinate
system, in which (x, y) defines a horizontal plane located at the mean water level
and z is measured vertically upwards. Then we have the velocity u= (u, v,w)=∇φ,
where ∇= (∂x, ∂y, ∂z). Under the assumption of inviscid and incompressible fluid, and
without surface tension, the governing equation requires

∇2φ = 0, (2.1)
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subject to the kinematic and dynamic conditions on the unknown free surface z =
η(x, y, t),

∂2φ

∂t2
+ g

∂φ

∂z
+ ∂(u

2)

∂t
+ u · ∇

(
1
2

u2

)
= 0, (2.2)

gη+ ∂φ
∂t
+ 1

2
u2 = 0, (2.3)

respectively, and the impermeable condition at infinite depth,

∂φ

∂z
= 0, as z→−∞. (2.4)

The above fully nonlinear wave equations with the resonance criteria (1.1) and (1.2)
are solved by means of the HAM, as shown below.

2.2. Solution formulas
Note that our objective is to find the steady-state resonant waves governed by
(2.1)–(2.4) under the resonance criteria (1.1) and (1.2). As mentioned above, Liao
(2011) and Xu et al. (2012) found the steady-state waves of a single resonant quartet
in water of deep and finite depths, respectively, and Xu et al. (2012) qualitatively
verified their conclusions by means of the Zakharov equation.

Consider the nonlinear interaction of a wave system consisting of κ primary
progressive waves, with kn denoting the wavenumber and σn the actual frequency,
respectively. For steady-state wave systems, all of the wave amplitudes ai, the
wavenumbers ki and the actual wave frequencies σi are constant, i.e. independent
of time. Therefore, the original initial/boundary-value problem (2.1)–(2.4) can be
transformed into a boundary-value one by defining a new variable such as

ξi = ki · r− σit, i= 1, 2, . . . , κ, (2.5)

where r = x i + y j. In the new coordinate system (ξ1, ξ2, . . . , ξκ, z), the governing
equation (2.1) becomes

κ∑
i=1

κ∑
j=1

ki · kj
∂2φ

∂ξi∂ξj
+ ∂

2φ

∂z2
= 0, (2.6)

subject to two boundary conditions on the unknown free surface z= η(ξ1, ξ2, . . . , ξκ),

N1[φ] =
κ∑

i=1

κ∑
j=1

σiσj
∂2φ

∂ξi∂ξj
+ g

∂φ

∂z
− 2

κ∑
i=1

σi
∂f
∂ξi
+

κ∑
i=1

κ∑
j=1

ki · kj
∂φ

∂ξi

∂f
∂ξj

+ ∂φ
∂z
∂f
∂z
= 0, (2.7)

N2[η, φ] = η− 1
g

(
κ∑

i=1

σi
∂φ

∂ξi
− f

)
= 0, (2.8)

and also the bottom condition,

∂φ

∂z
= 0, as z→−∞, (2.9)
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where

f = 1
2

[
κ∑

i=1

κ∑
j=1

ki · kj
∂φ

∂ξi

∂φ

∂ξj
+
(
∂φ

∂z

)2
]
, (2.10)

and N1 and N2 are the corresponding nonlinear differential operators. Note that a
nonlinear boundary-value problem often has multiple solutions. In fact, we indeed
obtain the multiple solutions of the above equations for the steady-state resonant
waves, as shown below.

Since the steady-state solution means that there is no exchange of wave energy
between different wave components, in other words, all the physical quantities related
to the wave systems are constant, the steady-state wave elevation η(ξ1, ξ2, . . . , ξκ) can
be expressed by

η=
+∞∑

m1=0

+∞∑
m2=−∞

. . .

+∞∑
mκ=−∞

Cη
m1,m2,...,mκ cos(m1ξ1 +m2ξ2 + · · · +mκξκ), (2.11)

where Cη
m1,m2,...,mκ is a constant to be determined later. According to the linear

governing equation (2.6), the linear terms in the dynamic free surface boundary
condition (2.8) and the bottom boundary condition (2.9), the velocity potential
φ(ξ1, ξ2, . . . , ξκ, y) should be in the form

φ =
+∞∑

m1=0

+∞∑
m2=−∞

. . .

+∞∑
mκ=−∞

Cφ
m1,m2,...,mκΨm1,m2,...,mκ , (2.12)

with the definition

Ψm1,m2,...,mκ = sin

(
κ∑

i=1

miξi

)
exp

(∣∣∣∣∣
κ∑

i=1

miki

∣∣∣∣∣ z

)
, (2.13)

where Cφ
m1,m2,...,mκ is a constant to be determined later. Note that the linear governing

equation (2.6) and the bottom boundary condition (2.9) are automatically satisfied by
(2.12). Thus, the unknown coefficients Cη

m1,m2,...,mκ and Cφ
m1,m2,...,mκ are determined by

the two nonlinear boundary conditions (2.7) and (2.8) on the unknown free surface
z= η(ξ1, ξ2, . . . , ξκ).

2.3. Solution procedures
From the mathematical viewpoint, it is difficult to find the multiple solutions of the
nonlinear boundary-value problem governed by (2.6) to (2.9) under the resonance
criteria (1.1) and (1.2). Besides, it is well known that multiple solutions are hardly
ever found by means of numerical techniques.

Liao (2011) and Xu et al. (2012) successfully applied the HAM (Liao 1992, 2012)
to gain the multiple solutions of a special steady-state resonance quartet in water of
deep and finite depth, respectively. The HAM is an analytic approximation method for
highly nonlinear problems. First, the HAM is independent of any small/large physical
quantities. Besides, different from all other analytic approximation methods, the
HAM provides a convenient way to guarantee the convergence of solution series. In
addition, the HAM logically contains some other non-perturbation techniques such as
the Lyapunov artificial small parameter method, the famous Adomian decomposition
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method (ADM) and so on. Owing to these advantages, the HAM has been successfully
applied to solve lots of nonlinear problems in science, engineering and finance, as
illustrated by Liao (2012).

Following Liao (2011) and Xu et al. (2012), we solve the above nonlinear boundary-
value problem to consider coupled and more general resonant sets. For the sake of
simplicity, a brief description of the solution procedure in the framework of the
HAM is provided in appendix A. It is an extension of the work by Liao (2011)
from two primary wave components to multiple primary wave components, with the
major difference being the choice of the initial guess. For multiple resonances, all the
resonant wave components are to be considered in the initial guess as described in
appendix A. For wave resonances caused by high-order wave interactions, additional
trivial wave components need to be considered, as shown in the next section.

Note that Xu et al. (2012) verified their analytical results by means of the Zakharov
equation and a numerical method. In this paper, in order to further verify the
correctness of the results obtained by the HAM, the collocation method (Okamura
1996) is applied. For the sake of simplicity, a brief description of it is given in
appendix B.

3. General resonant sets
From now on, let us focus on the physical meanings of the mathematical

solutions of the nonlinear boundary-value problem mentioned above. For the detailed
mathematics, please refer to appendices A and B.

Owing to the nature of the dispersion relation of surface gravity waves, the lowest-
order resonance belongs to the four-wave resonance, which controls the evolution of
the wave amplitudes (Grimshaw 2005). In this section, the general resonant quartet
is considered first in § 3.1. Then a resonance cluster made by combining three single
resonant quartets is investigated in § 3.2. Finally a resonant sextet that is generated by
higher-order interactions is dealt with in § 3.3.

3.1. General resonant quartets
Without loss of generality, we consider wavevectors satisfying the following interaction
condition:

k1 + k2 = k3 + k0 = (2, 0), (3.1)

where ki denotes the primary wave component and k0 represents the resonant one. The
corresponding linear resonance condition is

|k1|1/2 + |k2|1/2 = |k3|1/2 + |k0|1/2 =C, (3.2)

where the parameter C controls the path of the resonance curves. Note that, for
other sign combinations of the four wave components in the resonance condition, no
solution has been found (Phillips 1977). According to the interaction condition (3.1),
wavevectors are defined as

k1 = (k1x, k1y), k2 = (2− k1x,−k1y), (3.3)
k3 = (k3x, k3y), k0 = (2− k3x,−k3y). (3.4)

Once the parameter C is given, the curves for k1 and k3 can be shown in the (kx, ky)
wavenumber plane by the resonance condition (3.2), as shown in figure 1 (Phillips
1977).
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FIGURE 1. Resonant quartets for surface gravity waves. Lines from (0,0) and (2,0) to any
pair of points on one such curve determine a resonant quartet.

3.1.1. The case Q1 of resonant quartet when C= 2
Let us first consider the case C = 2, corresponding to the famous ‘figure of eight’

(Phillips 1960). Note that the special quartet case of k1 = k2 in (3.1) and (3.2) has
been investigated by Liao (2011) for steady-state resonant waves in deep water and
by Xu et al. (2012) for steady-state resonant waves in water of finite depth. As an
extension for the general case k1 6= k2, we investigate here k1x = 1.10 and k3x = 1.05,
without loss of generality. The corresponding values of k1y and k3,y are determined
by the resonant condition (3.2). The corresponding resonance curve and wavevector
configuration are shown in figure 2.

Unlike other analytic approximation methods, the HAM provides great freedom to
choose the initial guess for the solution. As mentioned in appendix A, the general
forms of the initial guess (A 18) and (A 19) read

η0 = 0, (3.5)
φ0 = A0,1Ψ1,0,0 + A0,2Ψ0,1,0 + A0,3Ψ0,0,1 + A0,4Ψ1,1,−1, (3.6)

where A0,1, A0,2, A0,3 and A0,4 are unknowns, which will be determined later.
Substituting the initial guesses into the so-called first-order deformation equation
(A 9) in the frame of the HAM, we have

L̄φ1 = c0∆
φ

0 − S̄1

= b1,0,0 sin(ξ1)+ b0,1,0 sin(ξ2)+ b0,0,1b1,0,0 sin(ξ3)+ b1,1,0 sin(ξ1 + ξ2)

+ b1,0,1 sin(ξ1 + ξ3)+ b0,1,1 sin(ξ2 + ξ3)+ b1,−1,0 sin(ξ1 − ξ2)

+ b1,0,−1 sin(ξ1 − ξ3)+ b0,1,−1 sin(ξ2 − ξ3)+ b1,1,1 sin(ξ1 + ξ2 + ξ3)

+ b1,−1,1 sin(ξ1 − ξ2 + ξ3)+ b1,1,−1 sin(ξ1 + ξ2 − ξ3)+ · · · , (3.7)
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FIGURE 2. Wavevector configuration of a resonant quartet Q1. Specification: C= 2, k1=
(1.10, 0.070227) and k3 = (1.05,−0.0352947).

where bm,n,l depends on the four unknown coefficients A0,1, A0,2, A0,3 and A0,4 in the
initial guess (3.6). Owing to the property of the inverse linear operator (A 12), the
coefficients of the terms sin ξ1, sin ξ2, sin ξ3 and sin(ξ1 + ξ2 − ξ3) on the right-hand
side of (3.7) must be zero so as to avoid the secular terms. Forcing the coefficients
b1,0,0, b0,1,0, b0,0,1 and b1,1,−1 to be equal to zero gives the coupled nonlinear algebraic
equations:

−0.000648788+ 1.47606 A2
0,1 + 1.63163 A2

0,2 + 2.56262 A2
0,3

+ 1.89437 A2
0,4 + 1.62616 A0,2A0,3A0,4/A0,1 = 0, (3.8)

−0.000531358+ 2.42765 A2
0,1 + 0.664114 A2

0,2 + 2.09448 A2
0,3

+ 1.55602 A2
0,4 + 2.42616 A0,1A0,3A0,4/A0,2 = 0, (3.9)

−0.000618388+ 2.82013 A2
0,1 + 1.54666 A2

0,2 + 1.21825 A2
0,3

+ 1.80773 A2
0,4 + 1.81121 A0,1A0,2A0,4/A0,3 = 0, (3.10)

−0.000559564+ 2.54652 A2
0,1 + 1.40358 A2

0,2 + 2.20723 A2
0,3

+ 0.816756 A2
0,4 + 2.2112 A0,1A0,2A0,3/A0,4 = 0. (3.11)

Here, each equation has been divided by A0,i to guarantee that A0,i 6= 0. This set of
nonlinear algebraic equations (3.8)–(3.11) has 48 real solutions, which can be divided
into six different groups according to the absolute values as shown in table 1.

It is found that it is the last terms (related to A0,1A0,2A0,3A0,4/A2
0,i, i= 1, 2, 3, 4) in

(3.8)–(3.11) that lead to multiple real solutions of A0,1, A0,2, A0,3 and A0,4. Without
these terms, only one group of real solutions exists. A detailed investigation shows
that these terms are generated by the last two terms in (2.7), in which the potential
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Group |A0,1| |A0,2| |A0,3| |A0,4|
1 0.00697277 0.00940638 0.00751135 0.00872688
2 0.0139994 0.00932267 0.00750222 0.00873061
3 0.00691502 0.0188538 0.00754224 0.00873289
4 0.00697889 0.00944319 0.0149749 0.00880325
5 0.00929137 0.0125585 0.0101486 0.0117792
6 0.00699333 0.00941644 0.00757762 0.0173988

TABLE 1. Solutions of the nonlinear algebraic equations (3.8)–(3.11) for the case Q1.
Specification: C= 2, k1 = (1.10, 0.070227), k3 = (1.05,−0.0352947) and ε= 1.00003.

function is of power three. The following manipulation on the initial guess (3.5)–(3.6)
shows this procedure more clearly:

∂

∂z
(A0,2Ψ0,1,0)

∂

∂z

(
∂

∂z
(A0,3Ψ0,0,1)

∂

∂z
(A0,4Ψ1,1,−1)

)∣∣∣∣
z=0

∼ A0,2A0,3A0,4 sin(ξ2) sin(ξ3) sin(ξ1 + ξ2 − ξ3)

∼ A0,2A0,3A0,4 sin(ξ1)+ · · · , (3.12)

which is extracted from the last term in (2.7). Equation (3.12) shows the influence
of the triad mutual interaction among the second and third primary and the resonant
wave components on the first primary ones, which leads to the last term in (3.8). For
all the primary and resonant wave components in the resonant quartet, each one can
be affected by the other three through the triad mutual interactions. So, it is due to the
cubic nonlinear terms in (2.7) that the triad mutual interaction among the primary and
resonant wave components leads to the multiple steady-state resonance waves for the
quartet. Note that recognizing the origin of the multiple steady-state resonant waves
is the cornerstone for higher-order interactions, as shown in § 3.3.

Once A0,1, A0,2, A0,3 and A0,4 are determined, all the terms on the right-hand side
of (A 9) and (A 10) in the first-order deformation equation are known. Thus, η1 can
be directly obtained from (A 10) and φ1, say,

φ1 = L̄−1[c0∆
φ

0 − S̄1] + A1,1Ψ1,0,0 + A1,2Ψ0,1,0 + A1,3Ψ0,0,1 + A1,4Ψ1,1,−1, (3.13)

which also contains the four unknown coefficients A1,1, A1,2, A1,3 and A1,4 that can
be determined in a similar way at the second-order approximation. For m > 1, the
unknown coefficients Am−1,1, Am−1,2, Am−1,3 and Am−1,4 and the two unknown functions
ηm and φm can be obtained in a similar way, except that the four unknown coefficients
are determined by a set of linear algebraic equations.

Note that, unlike all other approximation methods, the HAM provides us with a
convenient way to guarantee the convergence of solution series by introducing the so-
called ‘convergence-control parameter’ c0. At the mth-order approximation, the optimal
approximation is given by the optimal value of the convergence-control parameter c0

that is determined by minimizing the averaged residual squares.
When ε= 1.0003 in the case Q1, four groups of convergent solutions are obtained

and the wave amplitudes of the primary and resonant wave components are listed in
table 2. The corresponding wave energy distributions are given in table 3. Here Π
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Amplitude of wave components
Group Primary wave Resonant wave

|Cη

1,0,0| |Cη

0,1,0| |Cη

0,0,1| |Cη

1,1,−1|
1 0.002909 0.002305 0.002816 0.002480
2 0.005588 0.002467 0.001564 0.002008
4 0.001701 0.002841 0.005490 0.002142
6 0.002356 0.003592 0.002453 0.005104

TABLE 2. Amplitude of wave components |Cη

1,0,0|, |Cη

0,1,0|, |Cη

0,0,1| and |Cη

1,1,−1| for the case
Q1. Specification: C= 2, k1= (1.10, 0.070227), k3= (1.05,−0.0352947) and ε= 1.00003.

Percentage of wave energy distribution (%)
Group Primary wave Resonant wave

|Cη

1,0,0|2
Π

|Cη

0,1,0|2
Π

|Cη

0,0,1|2
Π

|Cη

1,1,−1|2
Π

1 30.38 19.08 28.47 22.07
2 71.30 13.90 5.59 9.21
4 6.33 17.67 65.96 10.04
6 10.98 25.54 11.91 51.56

TABLE 3. Wave energy distribution for different groups of steady-state resonant wave
systems for the case Q1. Specification: C = 2, k1 = (1.10, 0.070227), k3 = (1.05,
−0.0352947) and ε= 1.00003.

denotes the total wave energy of the entire wave system,

Π =
+∞∑

m1=0

+∞∑
m2=0

. . .

+∞∑
mκ=0

(Cη
m1,m2,...,mκ )

2. (3.14)

For each group in table 2, the resonant wave amplitude is of the same order as that
of the three primary ones, which agrees with the conclusions given by Benney (1962),
Liao (2011) and Xu et al. (2012). Further, the resonant wave components may contain
the majority (51.56%) of the total wave energy, the same amount (22.07%) as that of
the primary wave component, or only a small amount (9.21%, 10.04%), as shown in
group 6, group 1, and groups 2 and 4 of table 3, respectively.

3.1.2. The case Q2 of resonant quartet when C< 2
It is found that, when C < 2, the resonance curve splits from the ‘figure of eight’

into two symmetrical curves. Without loss of generality, substituting C = 1.997,
k1x = 1.20 and k3x = 0.88 into the resonant condition (3.2), and applying only the
positive values of k1y and k3,y this time, we get the wavevector configuration as
shown in figure 3(a). Similarly to the case of ε= 1.00003, it is found that there exist
three steady-state resonant waves, and the resonant wave component may contain the
majority (78.15%) of the total wave energy, the same amount (34.84%) as that of
the primary wave component, or only quite a small amount (0.03%), as shown in
group 3, group 2 and group 1 in table 4, respectively. This illustrates the generality
of the existence of the multiple steady-state resonant waves.
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FIGURE 3. Wavevector configuration of two resonant quartets Q2 and Q3. Specification:
(a) Q2, k1 = (1.20, 0.115293) and k3 = (0.88, 0.0346442) when C = 1.997; (b) Q3, k1 =
(1.15, 0.12933) and k3 = (0.95,−0.0850699) when C= 2.003.

Percentage of wave energy distribution (%)
Group Primary wave Resonant wave

|Cη

1,0,0|2
Π

|Cη

0,1,0|2
Π

|Cη

0,0,1|2
Π

|Cη

1,1,−1|2
Π

1 86.93 12.98 0.06 0.03
2 39.65 11.08 14.43 34.84
3 0.94 17.88 3.03 78.15

TABLE 4. Wave energy distribution for different groups of steady-state fully resonant wave
systems for case Q2. Specification: C=1.997, k1= (1.20,0.115293), k3= (0.88,0.0346442)
and ε= 1.00003.

3.1.3. The case Q3 of resonant quartet when C> 2
When C > 2, the resonance curve merges into a single one. Without loss of

generality, substituting C = 2.003, k1x = 1.15 and k3x = 0.95 into the resonant
condition (3.2), we get the wavevector configuration for k1y > 0 and k3,y < 0, as
shown in figure 3(b). Similarly to the case of ε= 1.00003, it is found that there exist
four steady-state resonant waves, and in addition the resonant wave component may
contain the majority (67.39%) of the total wave energy, the same amount (28.69%)
as that of the primary wave component, or only a small amount (2.31%, 8.60%),
as shown in group 4, group 1, and groups 2 and 3 of table 5, respectively. This
confirms once again the generality of the existence of the steady-state resonant waves
for different values of C in the condition (3.2) for a single resonant quartet.

Note that Liao (2011) and Xu et al. (2012) only considered the case C= 2 of the
condition (3.2) for a single resonant quartet in deep and finite water depth, respectively.
So, the above works extend their conclusions to all cases of C< 2, C= 2 and C> 2,
and thus reveal the wide generality of the existence of steady-state resonant waves. We
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Percentage of wave energy distribution (%)
Group Primary wave Resonant wave

|Cη

1,0,0|2
Π

|Cη

0,1,0|2
Π

|Cη

0,0,1|2
Π

|Cη

1,1,−1|2
Π

1 33.33 15.97 22.00 28.69
2 78.04 15.91 3.74 2.31
3 7.41 27.39 56.59 8.60
4 4.04 21.56 7.01 67.39

TABLE 5. Wave energy distribution for different groups of steady-state fully resonant
wave systems for case Q3. Specification: C = 2.003, k1 = (1.15, 0.12933), k3 =
(0.95,−0.0850699) and ε= 1.00003.

will extend the same conclusions to multiple and coupled resonant quartets in § 3.2,
and even to a resonant sextet in § 3.3.

3.2. Multiple and coupled resonant quartets
To further investigate whether or not the steady-state resonant waves exist for more
general and complicated configurations, let us consider a wave system made up of
three single resonant quartets (case C1):{

k1 + k2 = k3 + k0,1 = k4 + k0,2 = (2, 0),
|k1|1/2 + |k2|1/2 = |k3|1/2 + |k0,1|1/2 = |k4|1/2 + |k0,2|1/2 = 2,

(3.15)

where ki denotes the primary wave component, and k0,i represents the resonant
ones. All the six harmonics are on the same resonance curve. Without loss of
generality, we choose here k1 = (1.10, 0.070227), k3 = (1.05, −0.0352947) and
k4 = (1.03, 0.0212001). The corresponding wavevector configuration is shown in
figure 4. The geometrical structure becomes more complicated from the case Q1 for
a resonant quartet to the case C1 for three coupled quartets, while their external
configurations are the same.

Compared to the case Q1 for a single resonant quartet, one more primary wave and
one more resonant one had to be considered in the case C1. Thus, we have two more
terms in the initial guess for the potential function,

φ0 = A0,1Ψ1,0,0,0 + A0,2Ψ0,1,0,0 + A0,3Ψ0,0,1,0 + A0,4Ψ0,0,0,1

+A0,5Ψ1,1,−1,0 + A0,6Ψ1,1,0,−1, (3.16)

where A0,i (16 i6 6) are unknown real constant coefficients. Here, we emphasize that
in the frame of the HAM we have great freedom to choose the initial guess. Similarly,
in the frame of the HAM, these six unknown constant coefficients are determined
by avoiding the secular terms of the first-order approximation, which leads to a set
of nonlinear algebraic equations of these six unknown coefficients. In the case C1,
six groups of steady-state resonant waves are found by means of the HAM. The
energy distributions of the six groups are shown in table 6. Note that the wave energy
distribution changes dramatically from group to group. The two resonant components
together may contain quite a small amount (10.89%) of the total wave energy.
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FIGURE 4. Wavevector configuration of coupled resonant quartets C1. Specification: k1=
(1.10, 0.070227), k3 = (1.05,−0.0352947) and k4 = (1.03, 0.0212001).

Percentage of wave energy distribution (%)
Group Primary wave Resonant wave

|Cη

1,0,0,0|2
Π

|Cη

0,1,0,0|2
Π

|Cη

0,0,1,0|2
Π

|Cη

0,0,0,1|2
Π

|Cη

1,1,−1,0|2
Π

|Cη

1,1,0,−1|2
Π

1 45.28 0.51 39.91 3.37 0.87 10.02
2 3.96 7.37 5.52 57.78 8.48 16.89
3 19.57 12.50 18.80 18.80 14.82 15.34
4 47.49 0.21 3.84 2.06 16.83 29.57
5 46.06 0.08 0.49 40.78 12.48 0.11
6 0.001 34.48 9.51 9.07 21.59 25.12

TABLE 6. Wave energy distribution for different groups of steady-state resonant wave
systems for case C1. Specification: k1 = (1.10, 0.070227), k3 = (1.05,−0.0352947), k4 =
(1.03, 0.0212001) and ε= 1.00003.

This work further confirms the generality of the existence of the steady-state
resonant waves for complicated systems with coupled resonant quartets.

3.3. Resonant sextet
In this subsection, we study the higher-order nonlinear resonant interactions so as
to investigate whether or not the multiple steady-state resonant waves exist for even
more complicated systems. Without loss of generality, a resonant sextet in the case
ε= 1.00001 is illustrated here.
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FIGURE 5. Wavevector configuration of one resonant sextet S1. Specification: k1 =
(0.667, 0) and k2 = (0.625, 0.0302171).

Without loss of generality, let us consider the case S1:{
3k1 = 2k2 + k0 = (2, 0),
3|k1|1/2 = 2|k2|1/2 + |k0|1/2 =

√
6,

(3.17)

where k1 and k2 denote the primary wave components and k0 represents the resonant
ones, respectively. The corresponding resonance curve is still a ‘figure of eight’, but
the symmetry along the vertical line is broken, as shown in figure 5. Note that k1 =
(2/3, 0) is determined automatically by the resonance condition (3.17). For the second
primary wavevector, k2= (0.625, 0.030217) is considered here, and the corresponding
wavevector configuration is shown in figure 5.

Recall that it is due to the cubic nonlinear terms of the potential function that
we could find the multiple steady-state resonant waves. However, the higher-order
harmonic cos(mξ1 + nξ2) (|m| + |n|> 3) cannot be directly affected by the first-order
harmonics cos(ξ1) and cos(ξ2) within the triad mutual interactions; thus no multiple
solutions can be gained if the same kind of initial guess as in a resonant quartet is
used. From the mathematical viewpoint, one can add such a tertiary component in the
initial guess that the primary and resonant components can be affected through the
triad mutual interaction. Fortunately, the HAM indeed provides us with great freedom
to choose initial guesses. In the case S1 defined by (3.17), the possible candidates for
the tertiary component are sin(ξ1 − 2ξ2), sin(2ξ1 − ξ2) and sin(3ξ1). Taking sin(ξ1 −
2ξ2) as an example, the initial guess for the potential function now becomes

φ0 = A0,1Ψ1,0 + A0,2Ψ0,1 + A0,3Ψ3,−2 + A0,4Ψ1,−2, (3.18)

where A0,1, A0,2, A0,3 and A0,4 are unknown constant coefficients. Similarly, avoiding
the secular terms gives us three nonlinear algebraic equations. These however are
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Group |A0,1| |A0,2| |A0,3| |A0,4|
1 0.0149336 0.0163336 0.000128827 0.000193217
2 0.0114729 0.012641 0.00961348 3.544×10−7

3 0.0114245 0.0126743 0.00969989 0.000176524

TABLE 7. Solutions of the nonlinear algebraic equations (3.19)–(3.22) for case S1.
Specification: k1 = (0.667, 0), k2 = (0.625, 0.0302171) and ε= 1.00001.

not enough, because we have now four unknown coefficients. In addition, since the
additional tertiary component is a trivial one, we can force the coefficient of sin(ξ1−
2ξ2) on the right-hand side of (A 9) in the first-order approximation to be zero. In this
way, we get the following four coupled nonlinear algebraic equations:

−0.000130801+ 0.197531 A2
0,1 + 0.326866 A2

0,2 + 0.568799 A2
0,3 + 0.269745 A2

0,4

−0.134459 A0,4A2
0,2/A0,1 − 0.39717 A0,4A0,3 = 0, (3.19)

−0.000122769+ 0.371006 A2
0,1 + 0.153302 A2

0,2 + 0.534936 A2
0,3 + 0.252622 A2

0,4

− 0.307381 A0,4A0,1 = 0, (3.20)
−0.000147628+ 0.446697 A2

0,1 + 0.370513 A2
0,2 + 0.320528 A2

0,3 + 0.306777 A2
0,4

− 0.152045 A0,4A2
1,0/A0,3 = 0, (3.21)

0.00346688+ 0.348341 A2
0,1 + 0.287563 A2

0,2 + 0.502895 A2
0,3 + 0.118288 A2

0,4

− 0.173814 A0,1A2
0,2/A0,4 − 0.250811 A2

0,1A0,3/A0,4 = 0, (3.22)

which has three groups of real solutions, as shown in table 7. Note that, without
the tertiary component added in the initial guess, only one solution (corresponding
to group 2) can be found.

It is found that there exist three groups of steady-state resonant waves, and
the corresponding amplitudes of the primary, resonant and candidate tertiary wave
components are given in table 8. Note that the primary and resonant wave components
are of the same order in group 2 and group 3, but the amplitude of the resonant
wave in group 1 is one order lower than that of the primary ones. Besides, the
amplitudes of all the candidate tertiary wave components are much lower than that of
the primary and resonant ones (this however is not always the case, as shown in the
next section). It is found that, for this resonant sextet, the resonant wave components
may contain the majority (52.25%) of the total wave energy, or only a small amount
(0.44%), as shown in group 3 and group 1 in table 9, respectively.

Similarly, when the second candidate tertiary component sin(2ξ1− ξ2) is considered
in the initial guess, three groups of real solutions are found for the four corresponding
unknown coefficients. These three groups of solutions give exactly the same results
as those listed in tables 8 and 9. In addition, when both the first candidate tertiary
components sin(ξ1−2ξ2) and the second ones sin(2ξ1− ξ2) are considered in the initial
guess, exactly the same three groups of solutions are found. This verifies the validity
of our HAM-based approach for the higher-order resonant sextet.

It should be emphasized that not only the primary and resonant wave components
but also the trivial ones are considered in the initial guess, so that the primary
and resonant wave components can be affected by each other through the triad
mutual interaction. In the considered case for a resonant sextet, it is found that the
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Amplitude of wave components
Group Primary wave Resonant wave Candidates tertiary wave

|Cη

1,0| |Cη

0,1| |Cη

3,−2| |Cη

1,−2| |Cη

2,−1| |Cη

3,0|
1 0.004181 0.004020 0.000384 0.000038 0.000288 1.037×10−8

2 0.003019 0.002269 0.003510 0.000011 0.000116 3.654×10−9

3 0.003069 0.001899 0.003783 0.000026 0.000214 1.001×10−8

TABLE 8. Amplitude of primary, resonant and candidate tertiary wave components for case
S1. Specification: k1 = (0.667, 0), k2 = (0.625, 0.0302171) and ε= 1.00001.

Percentage of wave energy distribution (%)
Group Primary wave Resonant wave

|Cη

1,0|2
Π

|Cη

0,1|2
Π

|Cη

3,−2|2
Π

1 51.61 47.7 0.44
2 34.27 19.36 46.31
3 34.4 13.18 52.25

TABLE 9. Wave energy distribution for different groups of steady-state resonant wave
systems for case S1. Specification: k1 = (0.667, 0), k2 = (0.625, 0.0302171) and ε =
1.00001.

amplitudes of the primary and resonant components are much greater than that of
the trivial tertiary ones. Besides, the order of the resonant component is not always
the same as that of the primary ones. Even so, our HAM-based approach works well,
no matter whether the amplitudes of the wave components are of the same order
or not. This is mainly because the HAM is entirely independent of small physical
parameters. Besides, the HAM provides us with great freedom to choose the initial
guess. This kind of freedom relies strongly on the advantage of HAM: it does not
need any assumptions about the amplitudes of the wave components.

In summary, using the HAM as a tool, we successfully extended the existence of the
multiple steady-state resonant waves in three aspects: from a special, single quartet to
more general quartets; or to more complicated wave systems such as coupled resonant
quartets; or from the four-wave interactions to the higher-order interactions. In all of
the considered cases, there exist multiple steady-state resonant waves, and the number
of multiple solutions may increase as more wave components are involved in the
resonant sets. Therefore, for a resonance cluster (Kartashova 2010) that contains many
resonant sets, lots of steady-state resonant waves should exist.

4. Topology of the steady-state resonance waves

To examine the topology of the steady-state resonant waves in the parameter space,
we investigate the energy distribution versus the wavevectors or the dimensionless
frequency ε. Both a resonant quartet and a resonant sextet are considered, and the
corresponding linear resonance conditions are given in (4.1) and (4.2), respectively.
The wavevectors on the right-hand side of (4.1) and (4.2) may change along the
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FIGURE 6. (Colour online) (a) Wavevector configuration and (b) frequency detuning of
six near-resonant components: (top) quartet; (bottom) sextet.

corresponding linear resonance curves, as shown in the left-hand panels in figure 6.
This process can be well defined through the x component of the wavevector of the
second primary component k2,x. In this section, we focus on the interval 0.55< k2,x< 1
for a resonant quartet (case T1),

2k1 = k2 + k0, 2|k1|1/2 = |k2|1/2 + |k0|1/2 = 2, (4.1)

and 0.59< k2,x < 0.667 for a resonant sextet (case T2),

3k1 = 2k2 + k0, 3|k1|1/2 = 2|k2|1/2 + |k0|1/2 =
√

6. (4.2)

In cases where the linear resonance condition is not exactly satisfied for the nearly
resonant components, we introduce the frequency detuning

1w(m, n)=
√
|mk1 + nk2| −

∣∣∣m√|k1| + n
√
|k2|
∣∣∣ (4.3)

to quantitatively identify them. Obviously, a small enough value of the frequency
detuning 1w(m, n) corresponds to a near-resonant wave component. It is found that
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the frequency detuning of near-resonant components decrease rapidly as k2,x tends to
1 for a quartet, or to 0.667 for a sextet, respectively. For a quartet and sextet, the
six near-resonant components with the smallest magnitude of the frequency detuning
are shown in the right-hand panels in figure 6, respectively. Note that almost the
same near-resonant components appear in both quartet and sextet, and they are all
generated by 2N-wave interactions, where N = 2, 3, 4 and even N = 5 is included.
We define Πe as the energy of the exact resonant set and Πn as the energy of the
six near-resonant components, respectively.

For the sake of computational efficiency, we first search for multiple solutions of
initial approximations of the steady-state resonant waves by means of the HAM, and
then use them as initial guess to obtain the convergent numerical results by means of
the collocation method (see appendix B). In this way, we can quickly find the multiple
steady-state resonant waves for complicated resonant wave systems, especially those
with lots of near-resonant components studied in this section.

4.1. Topology of a resonant quartet in parameter space
Firstly, we investigate the topology of the energy distribution when the wavevectors
change along the resonance curve in quartet (4.1). In a similar way as described in § 3,
three groups of solutions are found in the case of ε= 1.0001, and the corresponding
energy distributions are shown in figure 7. For all of the three groups, the energy
distribution forms a continuum in the parameter space and changes dramatically as
the x component of the second primary wavevector k2,x increases along the resonance
curve (the corresponding wave patterns tend to long-crested waves), especially in the
interval k2,x ∈ (0.9, 1).

When k2,x < 0.9, very little wave energy is contained by the near-resonant
components, thus the wave energy distribution is dominated by the exact resonance.
When 0.9 < k2,x < 1, it is found that the wave energy distribution is dominated by
both the exact and near-resonances, mainly because the magnitude of the frequency
detuning of near-resonant components becomes so small (as shown in figure 6)
that the near-resonances become important. As k2,x increases towards 1, the wave
energy of the exact resonant component may either increase (figure 7a) or decrease
(figure 7b,c), but the sum of the wave energy of the six near-resonant components
always increases. Therefore, as k2,x→ 1, i.e. wave patterns tend from two dimensions
to one dimension, the interaction among different resonance sets may enhance or
suppress the exact resonance, but always enhances the near-resonances as a whole. It
is found that, when k2,x = 0.982, the six near-resonant components together contain
the majority of the total wave energy (46.11% in group 1, 82.65% in group 2 and
90.68% in group 3), which demonstrates the significance of the near-resonance in
long-crested waves.

To further investigate the topology of the near-resonant components along the
resonance curve, we consider the wave energy distribution in each near-resonant
component, as shown in figure 8. Though the sum of the wave energy of the six
near-resonant components always increases, the wave energy of each near-resonant
component may either increase or decrease for all three groups of solutions. Thus,
taking the exact resonance component into account, we conclude that the interaction
between the exact resonance and near-resonances may either enhance or suppress
each single resonant component.

Note that, in figure 8 at k2,x = 0.982, the wave energy of the near-resonant
components is mainly contained by the higher-order harmonics cos(3ξ1 − 2ξ2),
cos(3ξ1−4ξ2), cos(4ξ1−3ξ2) and cos(5ξ1−4ξ2), which are generated by the six-wave,
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FIGURE 7. (Colour online) Wave energy distribution along the resonance curve in quartet
(4.1) when ε= 1.0001: (a) group 1; (b) group 2; (c) group 3. Dashed line: |Cη

1,0|2/Π (first
primary component). Dash-dotted line: |Cη

0,1|2/Π (second primary component). Dotted
line: |Cη

2,−1|2/Π (exactly resonant component). Solid line: Πn/Π (six near-resonant
components). Solid line with circles: (Πe +Πn)/Π (all the components considered).

eight-wave and even 10-wave interactions. These higher-order near-resonances do
not disappear even as the wave patterns tend to long-crested ones. Moreover, the
number of near-resonant wave components increases as the pattern tends towards one
dimension. Note that similar phenomena have also been found by Ioualalen & Kharif
(1993) and Badulin et al. (1995) for exact resonance on short-crested waves.

Secondly, we investigate the topology of wave energy distribution when wavevectors
are given and ε (the ratio of the actual frequency to the linear frequency) increases.
When k2,x = 0.9, the wave energy distribution for all three groups of solutions
in quartet (4.1) are shown in figure 9. Very little wave energy is contained by
near-resonant components at ε= 1.0001. This can be found from figures 7 and 8, too.
However, it is found that the near-resonant components as a whole contain more and
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FIGURE 8. (Colour online) Wave energy distribution of six near-resonant components
along the resonance curve in quartet (4.1) when ε = 1.0001: (a) group 1; (b) group 2;
(c) group 3.

more wave energy as ε increases. Note that a larger value of ε often corresponds to
larger wave amplitude, or higher nonlinearity. Thus, as the nonlinearity of a resonant
quartet increases, all near-resonant waves as a whole contain more and more wave
energy; the wave energy tends to transfer to the near-resonant components. This
reveals the influence of nonlinearity on the wave energy distribution of resonant
wave systems. Thus, for steady-state resonant waves with finite amplitudes, the
near-resonance deserves more attention even than that of the exact resonance.

Thirdly, from a different viewpoint of the resulting continuum of patterns, we
investigate the dependence of maximal instantaneous steepness on total wave energy.
Here the maximal instantaneous steepness is defined as

Hsteepness = η(ξ1, ξ2)max|k1|, for ξi ∈ [0, 2π]. (4.4)

For k2 = (0.90, 0.070227) and 1.0001 6 ε 6 1.002, the maximal steepness in all of
the three groups increases as the total energy increases, as shown in figure 10. As
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FIGURE 9. (Colour online) Wave energy distribution for increased dimensionless
frequencies ε in quartet (4.1) when k2 = (0.90, 0.070227): (a) group 1; (b) group 2;
(c) group 3. Dashed line: |Cη

1,0|2/Π (first primary component). Dash-dotted line: |Cη

0,1|2/Π
(second primary component). Dotted line: |Cη

2,−1|2/Π (exactly resonant component).
Solid line: Πn/Π (six near-resonant components). Solid line with left-pointing triangles:
|Cη

1,−2|2/Π . Solid line with right-pointing triangles: |Cη

3,−2|2/Π . Solid line with squares:
|Cη

4,−3|2/Π . Solid line with circles: (Πe +Πn)/Π (all components considered).

the maximal steepness increases, the state in group 3 tends to own more energy than
that in the other two groups, as one component in group 3 owns the majority of the
energy.

The surface elevations of the multiple steady-state resonant waves for quartet (4.1)
in the case of k2 = (0.90, 0.070227) and ε = 1.001 are as shown in figure 11. The
perspective views of the three groups are in the left-hand column (see the correspond-
ing supplementary movies available at http://dx.doi.org/10.1017/jfm.2014.2). Note
that with angles close to the collinear limit, the wave pattern behaviour is like
long-crested waves, which is warped by the wave group node. The elevations along
the specific line y = 0 are shown in the right-hand column in figure 11. The large

http://dx.doi.org/10.1017/jfm.2014.2
shijun
高亮
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FIGURE 10. (Colour online) The dependence of maximal wave height on total wave
energy for the three groups in quartet (4.1) when k2 = (0.90, 0.070227) and 1.0001 6
ε6 1.002.

difference of elevation among the three groups demonstrates further the variety of
energy distribution in a resonant set.

4.2. Topology of a resonant sextet in parameter space
The topology of wave energy distribution corresponding to a resonant sextet defined
in (4.2) is plotted in figure 12. The left-hand column in figure 12 shows the energy
distribution when the wavevectors change along the resonance curve of sextet (4.2)
for ε= 1.00001. For the given wavevector k2,x = 0.625 and the increased ε, the wave
energy distribution is shown in the right-hand column of figure 12. For all three
groups of steady-state resonant sextets, it is found that the near-resonant components
as a whole contain more and more wave energy, when the wave patterns tend from
two dimensions to one dimension, or when the nonlinearity of the resonant sextet
increases. All this verifies the generality of our conclusions given in § 4.1. The
dependence of maximal steepness on total wave energy for sextet (4.2) is given in
figure 13. Note that, for a given total energy, the steady-state resonance wave in a
sextet has a smaller maximal steepness compared with that in a quartet.

The close relation between resonance and bifurcation has long been observed: in
some sense, they are similar phenomena, as regarded by Chen & Saffman (1978)
and Roberts (1983). For steady-state resonance waves in sextet (4.2), a bifurcation
caused by resonance is found, as shown in figure 14, which can be divided into three
subregions, namely regions a, b and c, respectively. In region a, there exists only one
steady-state resonant wave. Region b is dominated by the exact resonance, and region
c is dominated by both the exact and near-resonances, as mentioned above. At the
transition from region a to region b where the exact resonance becomes dominant,
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FIGURE 11. Surface elevation of the three groups in quartet (4.1) when k2 = (0.90,
0.070227) and ε= 1.001: perspective views in (a) group 1, (c) group 2 and (e) group 3;
and elevation along line y= 0 in (b) group 1, (d) group 2 and (f ) group 3.

the original trivial solution bifurcates into two steady-state resonant waves. It seems
that more steady-state resonant waves should exist in region c, since a series of near-
resonances are excited at the transition from region b to region c.
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FIGURE 12. (Colour online) Wave energy distribution in sextet (4.2): ε = 1.00001
as wavevectors changed along the resonance curve in (a) group 1, (c) group 2 and
(e) group 3; and k2,x = 0.625 as dimensionless frequencies ε increased in (b) group
1, (d) group 2 and (f ) group 3. Dashed line: |Cη

1,0|2/Π (first primary component).
Dash-dotted line: |Cη

0,1|2/Π (second primary component). Dotted line: |Cη

3,−2|2/Π (exactly
resonant component). Solid line: Πn/Π (six near-resonant components). Solid line with
circles: (Πe +Πn)/Π (all components considered).
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FIGURE 13. (Colour online) The dependence of maximal wave height on total wave
energy for the three groups in sextet (4.2) when k2,x = 0.625 and 1.00001 6 ε6 1.0008.
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FIGURE 14. (Colour online) Bifurcation due to resonant interactions in sextet (4.2) when
σi/wi = 1.00001: lines without points, group 2; lines with points, group 3.
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5. Stability analysis

In this section, we consider the linear stability of the steady-state resonant waves
in deep water to an infinitesimal disturbance.

5.1. Mathematical derivation
For simplicity, we take the steady-state resonance quartet (4.1) as the unperturbed
wave. Let

η(ξ1, ξ2, t) = η̄(ξ1, ξ2)+ η′(ξ1, ξ2, t), (5.1)
φ(ξ1, ξ2, z, t) = φ̄(ξ1, ξ2, z)+ φ′(ξ1, ξ2, z, t), (5.2)

where (η̄, φ̄) and (η′, φ′) denote, respectively, the unperturbed and infinitesimal
perturbative motions (η′� η̄, φ′� φ̄).

Substituting (5.1) and (5.2) into the original equations (2.1)–(2.4) and recasting them
in the coordinate system (ξ1, ξ2, z, t), we obtain the first-order perturbation equations

∇2φ′ = 0, z 6 η̄(ξ1, ξ2), (5.3)
φ′t + R1φ

′
ξ1
+ R2φ

′
ξ2
+ φ̄zφ

′
z + R3η

′ = 0,
η′t + R4η

′ + R1η
′
ξ1
+ R2η

′
ξ2
+ R5φ

′
ξ1
+ R6φ

′
ξ2
− φ′z = 0,

}
z= η̄(ξ1, ξ2), (5.4)

∂φ′

∂z
= 0, as z→−∞, (5.5)

where

R1 = −σ1 + k2
1φ̄ξ1 + k1 · k2φ̄ξ2, (5.6)

R2 = −σ2 + k2
2φ̄ξ2 + k1 · k2φ̄ξ1, (5.7)

R3 = g− σ1φ̄ξ1,z − σ2φ̄ξ2,z + k2
1φ̄ξ1 φ̄ξ1,z + k2

2φ̄ξ2 φ̄ξ2,z

+ k1 · k2(φ̄ξ1,zφ̄ξ2 + φ̄ξ1 φ̄ξ2,z)+ φ̄zφ̄zz, (5.8)

R4 = k2
1φ̄ξ1,zη̄ξ1 + k2

2φ̄ξ2,zη̄ξ2 + k1 · k2
(
φ̄ξ1,zη̄ξ2 + φ̄ξ2,zη̄ξ1

)− φ̄zz, (5.9)

R5 = k2
1η̄ξ1 + k1 · k2η̄ξ2, (5.10)

R6 = k2
2η̄ξ2 + k1 · k2η̄ξ1, (5.11)

and ki = |ki|. We look for non-trivial solutions of (5.4) of the form

η′ = e−iσ tei(p′ξ1+q′ξ2)

∞∑
J=−∞

∞∑
K=−∞

aJKei(Jξ1+Kξ2), (5.12)

φ′ = e−iσ tei(p′ξ1+q′ξ2)

∞∑
J=−∞

∞∑
K=−∞

bJKei(Jξ1+Kξ2)eκJK z, (5.13)

where κJK = {[(p′ + J)k1,x + (q′ + K)k2,x]2 + [(p′ + J)k1,y + (q′ + K)k2,y]2}1/2, and
(p′, q′) is the wavevector of perturbation for the linear case in the new coordinate
system (ξ1, ξ2, z, t). The corresponding wavevector in the Cartesian coordinate system
is (kp, kq)= (p′k1,x+ q′k2,x, p′k1,y+ q′k2,y). The coefficients aJK , bJK and the eigenvalue
σ , the frequency of the perturbations, can be determined once the unperturbed waves
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η̄ and φ̄ are known. Instability corresponds to Im(σ ) 6= 0 as eigenvalues σ appear in
complex conjugate pairs.

When no unperturbed wave exist in the wave field, η̄= φ̄= 0 with σi=√g|ki|. Then
the eigenvalues are

σ s
JK =
√

g{−[|k1|1/2(p′ + J)+ |k2|1/2(q′ +K)] + sκ1/2
JK }, s=±1. (5.14)

The sign of s defines the direction of propagation of the disturbance in the (ξ1, ξ2, z, t)
coordinate system. Note that the degeneracy with respect to p′ and q′,

σ s
JK(p

′, q′)= σ s
J−M,K−N(p

′ +M, q′ +N), (M,N) ∈N2, (5.15)

also appears as in the work of McLean (1982) and Ioualalen & Kharif (1994).
Once unperturbed wave appears in the wave field, instabilities can arise if the

eigenvalues satisfy
σ s1

J1K1
(p′, q′)= σ s2

J2K2
(p′, q′). (5.16)

This corresponds to the necessary condition formulated by MacKay & Saffman (1986)
that the unperturbed wave can lose spectral stability with finite-amplitude effects if
two simple eigenvalues coalesce with opposite signature or at zero frequency. A
similar criterion has also been obtained by Badulin et al. (1995), who proposed an
asymptotic procedure on the instability of short-crested water waves.

In a linear approximation the condition when instability happens may be reduced
to

κ
1/2
J1K1
+ κ1/2

J2K2
= (J1 − J2)|k1|1/2 + (K1 −K2)|k2|1/2, (5.17)

with s1 =−s2 = 1. Alternatively, the above criterion may be written as

[(kp + kJ1K1,x)
2 + (kq + kJ1K1,y)

2]1/4 + [(kp + kJ2K2,x)
2 + (kq + kJ2K2,y)

2]1/4
= ω̃J1K1 − ω̃J2K2, (5.18)

where kJK = (Jk1,x + Kk2,x, Jk1,y + Kk2,y) and ω̃JK = J|k1|1/2 + K|k2|1/2 are the
corresponding wavenumber and frequency depending on J and K. Following McLean
(1982) and Ioualalen & Kharif (1994), we define two general classes of instabilities
from (5.18): class I corresponds to J1 + K1 − J2 − K2 even, and class II corresponds
to J1 + K1 − J2 − K2 odd. Considering the degeneracy noted above, we may further
choose Ji and Ki so that

J1 +K1 = j, J2 +K2 =−j for the class I(j),
J1 +K1 = j, J2 +K2 =−j− 1 for the class II(j),

}
j= 1, 2, 3, . . . . (5.19)

For a weakly nonlinear unperturbed wave, like the small-amplitude steady-state
resonance waves, the instability caused by higher-order resonances are very weak
(Zakharov 1968). Thus we focus on the class I for j = 1, which corresponds to the
dominant instability caused by four-wave interactions. For simplicity, ε = 1.0001 and
k2,x= 0.9 in (4.1) are applied so that only the two primary components together with
the exact resonant one are non-trivial in the basic wave.

Given the symmetry in the basic wave, we consider the following five cases, which
belong to classes Ia and Ib, respectively:

Ia:
{

J1 = 0, K1 = 1, J2 =−1, K2 = 0,
J1 = 1, K1 = 0, J2 =−2, K2 = 1,

(5.20)
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Ib:


J1 = 0, K1 = 1, J2 = 0, K2 =−1,
J1 = 1, K1 = 0, J2 =−1, K2 = 0,
J1 = 2, K1 =−1, J2 =−2, K2 = 1.

(5.21)

The coalescence of the eigenvalues can alternatively be interpreted as a resonance
of two infinitesimal modes of wavevectors k′1 and k′2 with the fundamental components
of wavevectors k̄1 and k̄2 in the basic wave. In the Cartesian coordinate system, the
resonance condition

k′1 + k′2 = k̄1 + k̄2, ω′1 +ω′2 = ω̄1 + ω̄2, (5.22)

is satisfied, where ω′i and ω̄i denote the frequencies of the corresponding perturbed
and unperturbed waves, respectively. For example, the first case in (5.20) corresponds
to

k′1 = (kp + k2,x, kq + k2,y)
t, k′2 = (kp − k1,x, kq − k1,y)

t, (5.23)

k̄1 = k2, k̄2 = k1, (5.24)
ω′1 = |k′1|1/2 = [(kp + k2,x)

2 + (kq + k2,y)
2]1/4, (5.25)

ω′1 = |k′2|1/2 = [(kp − k1,x)
2 + (kq − k1,y)

2]1/4, (5.26)

ω̄1 = |k̄1|1/2 = |k2|1/2, ω̄2 = |k̄2|1/2 = |k1|1/2, (5.27)

in (5.22). Once the values of J and K are given, the resonance condition (5.18) is
determined; the five cases defined in (5.20) and (5.21) are plotted in figure 15. As
more components in the basic wave need to be considered, compared with that of the
Stokes wave (McLean 1982) and short-crested waves (Ioualalen & Kharif 1994), the
instability region predicted by the linear resonance condition (5.18) should be wider
than that of the former works.

5.2. Numerical approach
The expressions in (5.12) and (5.13) are truncated with J and K up to N, and
substituted into (5.4). Then, we obtain the following eigenvalue problem for σ with
eigenvector u= (aJK, bJK)

t:
Au= iσBu. (5.28)

Matrices A and B are complex ones that depend on the basic wave and the
wavenumbers kp and kq (p′ and q′). The detailed expressions for A and B are
given in appendix C.

Ioualalen & Kharif (1994) compared the computational efficiencies of the
collocation method and the Galerkin method. They found that both methods are of the
same order of accuracy for small wave steepness. In this work, the collocation method
is applied by enforcing (5.28) to be satisfied at (2N + 1)(2N + 1) points distributed
over one period of the free surface in the two horizontal directions ξ1 and ξ2.

The small nonlinear effects of unperturbed wave are expected to produce bands of
instability in the neighbourhood of the loci of collisions of the eigenvalues (Francius &
Kharif 2006), so the linear resonance curves shown in figure 15 may be a reasonable
prediction of where instability happens as the amplitudes of the components in the
basic wave (4.1) are quite small, aiki < 0.01. For steady-state resonance waves, our
numerical results confirm that instability does happen along the linear resonance



692 Z. Liu and S. J. Liao

kq = 0.3176 kq =−0.3176
N Im(σ ) Re(σ ) Im(σ ) Re(σ )

13 0.210616(−03) −0.338311(−02) 0.532218(−04) 1.48349
15 0.222869(−03) −0.349616(−02) 0.531804(−04) 1.48349
17 0.219439(−03) −0.348663(−02) 0.531800(−04) 1.48349
19 0.222381(−03) −0.349546(−02) 0.531806(−04) 1.48349
21 0.222380(−03) −0.349546(−02) 0.531806(−04) 1.48349
23 0.222381(−03) −0.349546(−02) 0.531806(−04) 1.48349

TABLE 10. Examples of the dependence of the eigenvalues on the truncation. Specification:
k2 = (0.9, 0.070227) in quartet (4.1), ε= 1.0001 and kp = 0.55.
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FIGURE 15. Resonance curves of classes Ia and Ib from the linear dispersion relation
when k2,x = 0.9 in (4.1): solid line, class Ia; dashed line, class Ib.

curves. For example, the eigenvalues of two points in the (kp, kq) plane that laid on
the resonance curves are shown in table 10, where the dependence of the eigenvalues
on the truncation is also given.

Note that the two points in table 10 are symmetrical about the line kq= 0, whereas
their eigenvalues converge to different values. This lack of symmetry is due to the
interaction of instabilities (Badulin et al. 1995), as all the resonance curves overlap
each other in the whole region and two of them are asymmetrical about the line kq=0.

In summary, according to our calculations, the steady-state resonant waves are
stable as long as the disturbance does not resonate with any components of the
basic wave. This conclusion qualitatively agrees with that for the Stokes waves and
short-crested waves, and thus is reasonable. The interaction between instabilities is not
the primary objective of the present work, and the instability region of steady-state
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resonance waves will be the object of a further paper for more noticeable wave
patterns.

6. Conclusion and discussion
In this paper, we investigate steady-state resonance of multiple wave interactions in

deep water. The fully nonlinear wave equations are solved for both exact and near-
resonances. Here, both Phillips’ linear resonance conditions (1.1) together with the
nonlinear ones (1.2) based on the actual frequency are satisfied simultaneously by
exact resonance sets.

Firstly, unlike Liao (2011) and Xu et al. (2012), who considered only a special
resonant quartet corresponding to C = 2 in (3.2), we investigated the existence of
steady-state resonant waves in more general and complicated cases, including general
resonant quartets for arbitrary C in (3.2), three coupled resonant quartets, and even a
resonant sextet. It is found that the multiple steady-state resonant waves exist in all
considered cases. Besides, the number of multiple solutions tends to increase as more
wave components are involved in the resonant sets. All of these verify that multiple
steady-state resonant waves indeed exist widely in general.

Secondly, we studied the topology of steady-state resonant waves in parameter
space, and revealed the significant role of the near-resonance. It is found that all
of the near-resonant components as a whole contain more and more wave energy,
as resonant wave patterns tend from two dimensions to one dimension, or as the
nonlinearity of the resonant wave system increases. The maximal instantaneous
steepness increases as the total energy increases and it has a larger value in a quartet
than that in a sextet. Besides, a bifurcation of steady-state resonant waves due to
resonance is found in a sextet.

Finally, we analysed the linear stability of the steady-state resonant waves. Based
on the numerical procedure applied by McLean (1982) and Ioualalen & Kharif
(1994), we developed it further to investigate the stability of steady-state resonant
waves to infinitesimal three-dimensional perturbations of arbitrary wavelength. It is
found that the steady-state resonant waves are stable as long as the disturbance
does not resonate with any components of the basic wave. Here the stability is with
respect to perturbations belonging to the same specific manifold in the wavenumber
space as the steady-state resonant waves. Considering the infinitesimal amplitude of
perturbations, there might be a considerable time lag until the generic perturbations
become important and destabilize the steady-state wave pattern. Thus the steady-state
resonance waves will be, at least in principle, metastable three-dimensional waves,
which might be observed in experiments.

To the best of our knowledge, the above-mentioned results have never been reported
for the steady-state resonant wave systems. All of them are helpful to enrich and
deepen our understanding about resonant gravity waves.

In this article, the homotopy analysis method (HAM) is successfully applied to gain
the multiple steady-state resonant waves. To verify the multiple steady-state resonant
waves found by the HAM, the collocation method (see appendix B) is applied using
initial approximations found by the HAM as a starting point of iteration. It is found
that both the analytic and numerical methods converge to the same results. This
confirms the correctness of our solutions. For the sake of computational efficiency,
this combined approach is used to study the topology of steady-state resonant waves
in parameter space and to analyse the stability of the steady-state resonant waves.

As mentioned in the introduction, for the sake of simplicity, we assume that the
ratio of the actual frequency to the corresponding linear ones of each exact resonant
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component is the same. In this case, both Phillips’ linear resonance condition together
with the nonlinear ones are satisfied at the same time. However, it is worth mentioning
that the existence of multiple steady-state resonance waves depends only upon the
nonlinear resonance condition, and it is not necessary to satisfy Phillips’ linear
resonance condition in general cases. When the nonlinear resonance condition is
satisfied, but the frequency ratio of each exact resonant component is not the same,
Phillips’ linear resonance condition is no longer satisfied. However, even in this
general case, the convergent analytic approximations of multiple resonant waves have
been obtained by means of the HAM using such a new linear operator,

Lp[φ] =
κ∑

i=1

κ∑
j=1

σiσj
∂2φ

∂ξi∂ξj
+ ε2g

∂φ

∂z
, (6.1)

where

ε=



ε1, m1 = 1, m2 = 0, . . . , mκ = 0,
ε2, m1 = 0, m2 = 1, . . . , mκ = 0,
...

...

εκ, m1 = 0, m2 = 0, . . . , mκ = 1,
ε0,1, mi =m1,i,

ε0,2, mi =m2,i,
...

...

ε0,l, mi =ml,i,

1, else.

(6.2)

is a piecewise parameter whose value depends on the subscript mi in φ expressed
by (2.12) and (2.13), εi denotes the frequency ratio of the ith primary component,
and ε0,i is the frequency ratio of the ith resonant component, respectively. Here, we
consider l resonant wave components generated by κ primary wave components. The
homogeneous solutions of this piecewise linear operator (6.1) satisfy all of the l
nonlinear resonance conditions{

mι,1k1 +mι,2k2 + · · · +mι,κkκ + k0,ι = 0,
mι,1σ1 +mι,2σ2 + · · · +mι,κσκ + σ0,ι = 0,

ι= 1, 2, . . . , l. (6.3)

Considering the limited length of this paper, we neglect the details of the mathematics,
and just mention that convergent analytic approximations of multiple steady-state
resonant waves based on this kind of piecewise linear operator are obtained, which
will be reported in future. This is mainly because the HAM provides great freedom
to choose such a proper auxiliary linear operator, as pointed out by Liao (2012).

Obviously, it is important to reproduce the steady-state resonant waves in
experiments. Besides, for the L1–L4 ‘horseshoe’ patterns (Fructus et al. 2005) caused
by a resonant quintet, we have not found steady-state resonant waves. This is not
surprising, since steady-state resonant waves do not absolutely exist in arbitrary
cases, as pointed out by Xu et al. (2012). Note that Shrira, Badulin & Kharif (1996)
qualitatively analysed the persistent character of ‘horseshoe’ patterns by taking the
pumping and dissipation into consideration. So, generalizing the existing procedure
to cover non-conservative effects may be a promising attempt for a quintet. All of
these issues are interesting and deserve further investigations in future.
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高亮
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Appendix A. Solution procedure of the homotopy analysis method

First, we construct a family of partial differential equations (PDEs) about two
homotopies φ̆(ξ1, ξ2, . . . , ξκ, z; q) and η̆(ξ1, ξ2, . . . , ξκ; q), governed by the so-called
zeroth-order deformation equations,

(1− q)L[φ̆(ξ1, ξ2, . . . , ξκ, z; q)− φ0(ξ1, ξ2, . . . , ξκ, z)]
= qc0N1[φ̆(ξ1, ξ2, . . . , ξκ, z; q)], (A 1)

(1− q)η̆(ξ1, ξ2, . . . , ξκ; q)= qc0N2[η̆(ξ1, ξ2, . . . , ξκ; q), φ̆(ξ1, ξ2, . . . , ξκ, z; q)], (A 2)

where q∈ [0, 1] denotes an embedding parameter, c0 6= 0 is the so-called convergence-
control parameter, L is an auxiliary linear operator, and N1 and N2 are nonlinear
operators defined in (2.7) and (2.8), respectively.

Assuming that the convergence-control parameter c0 is properly chosen so that the
Maclaurin series of φ̆(ξ1, ξ2, . . . , ξκ, z; q) and η̆(ξ1, ξ2, . . . , ξκ; q), with respect to the
embedding parameter q,

φ̆(ξ1, ξ2, . . . , ξκ, z; q) =
+∞∑
m=0

φm(ξ1, ξ2, . . . , ξκ, z)qm, (A 3)

η̆(ξ1, ξ2, . . . , ξκ; q) =
+∞∑
m=0

ηm(ξ1, ξ2, . . . , ξκ)qm, (A 4)

exist and converge at q= 1, we have the so-called homotopy-series solution

φ(ξ1, ξ2, . . . , ξκ, z) =
+∞∑
m=0

φm(ξ1, ξ2, . . . , ξκ, z), (A 5)

η(ξ1, ξ2, . . . , ξκ) =
+∞∑
m=0

ηm(ξ1, ξ2, . . . , ξκ), (A 6)

respectively. The unknown term φm(ξ1, ξ2, . . . , ξκ, z) is governed by a linear PDE and
ηm(ξ1, ξ2, . . . , ξκ) is straightforward to obtain.

http://dx.doi.org/10.1017/jfm.2014.2
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Based on the freedom in the choice of auxiliary linear operator and the linear part
of (2.7), we define

L[φ] =
κ∑

i=1

κ∑
j=1

ωiωj
∂2φ

∂ξi∂ξj
+ g

∂φ

∂z
, (A 7)

where
ωi =

√
g|ki|, i= 1, 2, . . . , κ (A 8)

is the linear frequency of the ith primary wave.
Substituting the Maclaurin series (A 3)–(A 4) into the zeroth-order deformation

equations (A 1)–(A 2) with z = η(ξ1, ξ2, . . . , ξκ; q), then equating like powers of q,
we have the mth-order deformation equations

L̄[φm] = c0∆
φ

m−1(ξ1, ξ2, . . . , ξκ)− S̄m(ξ1, ξ2, . . . , ξκ)+ χmSm−1(ξ1, ξ2, . . . , ξκ), (A 9)
ηm = c0∆

η

m−1(ξ1, ξ2, . . . , ξκ)+ χmηm−1(ξ1, ξ2, . . . , ξκ), (A 10)

The expressions for ∆φ

m−1, S̄m, Sm−1 and ∆
η

m−1 are extensions of the definitions in
appendix A in Xu et al. (2012) from two to κ primary wave components. The linear
operator L̄ is defined by

L̄[φm] =
(

κ∑
i=1

κ∑
j=1

ωiωj
∂2φm

∂ξi∂ξj
+ g

∂φm

∂z

)∣∣∣∣∣
z=0

, (A 11)

with the property

L̄−1[sin(m1ξ1 +m2ξ2 + · · · +mκξκ)] = Ψm1,m2,...,mκ

λm1,m2,...,mκ
, λm1,m2,...,mκ 6= 0, (A 12)

where

λm1,m2,...,mκ = g

∣∣∣∣∣
κ∑

i=1

miki

∣∣∣∣∣−
(

κ∑
i=1

miωi

)2

. (A 13)

Up to the mth order, all terms on the right-hand sides of (A 9) and (A 10) are already
known, so ηm can be directly expressed by (A 10), and the special solution for φm is

φ∗m = L̄−1[c0∆
φ

m−1 − S̄m + χmSm−1]. (A 14)

When l resonant wave components (k0,1, k0,2, . . ., k0,l) are generated by κ primary
wave components (k1, k2, . . ., kκ), the corresponding resonance conditions are{

mι,1k1 +mι,2k2 + · · · +mι,κkκ + k0,ι = 0,
mι,1ω1 +mι,2ω2 + · · · +mι,κωκ +ω0,ι = 0,

ι= 1, 2, . . . , l (A 15)

or alternatively

g

∣∣∣∣∣
κ∑

i=1

mι,iki

∣∣∣∣∣=
(

κ∑
i=1

mι,iωi

)2

, (A 16)

where the linear frequency ω0,ι =
√

g|k0,ι| is applied. It is worth mentioning that the
resonance conditions (A 16) (or (A 15)) are a special case of λm1,m2,...,mκ , defined in
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(A 13), equal to zero. Besides, owing to the definition of λm1,m2,...,mκ , it holds that
λ1,0,0,... ≡ 0, λ0,1,0,... ≡ 0, . . . and λ0,0,...,1 ≡ 0 all the time. In other words, there are
κ + l zero eigenvalues of λm1,m2,...,mκ when the resonance condition is exactly satisfied.
Thus, from a mathematical viewpoint, the common solution of φm reads

φm = φ∗m + Am,1Ψ1,0,...,0 + Am,2Ψ0,1,...,0 + · · · + Am,κΨ0,0,...,1 +
l∑

i=1

Am,κ+iΨ
∗

i , (A 17)

where φ∗m is the special solution of φm defined in (A 14), Ψ ∗i is the eigenfunction
related to resonant wave components and Am,i is a constant to be determined.

According to the definition of (A 12), there should be no terms of sin(m1ξ1 +
m2ξ2 + · · · + mκξκ) related to λm1,m2,...,mκ = 0 appearing on the right-hand side of
(A 9), otherwise secular terms are generated. So in order to avoid secular terms in
the first-order approximation, we choose

η0(ξ1, ξ2, . . . , ξκ) = 0, (A 18)
φ0(ξ1, ξ2, . . . , ξκ, z) = A0,1Ψ1,0,...,0 + A0,2Ψ0,1,...,0 + · · · + A0,κΨ0,0,...,1

+
l∑

i=1

A0,κ+iΨ
∗

i . (A 19)

Here, the coefficients A0,i are unknown constants determined by avoiding the secular
terms in the first-order approximation.

Note that regardless of whether the order of the resonant wave components is the
same as that of the primary ones or not, we consider them both in the initial guess
(A 19). This relies on there being no dependence on small/large physical parameters
in HAM, in which the transfer of the original nonlinear PDEs to an infinite number of
linear subproblems does not need to consider the orders of different wave components.

Appendix B. Solution procedure of the collocation method
For simplicity, we consider the steady-state resonance waves caused only by two

primary wave components. It is believed that the procedure described below can be
easily extended to the case of multiple primary wave components. According to the
solution expression (2.12), the velocity potential φ is expressed as follows:

φ =
N∑

m=1

N∑
n=−N

Cφ
m,nΨm,n +

N∑
n=1

Cφ

0,nΨ0,n, (B 1)

where N = 17 is the maximum order of expansion. Considering the symmetry
condition φ(ξ1, ξ2, z)=−φ(2π− ξ1, 2π− ξ2, z), the collocation points are selected as

ξ1,i = i− 1
N + 1

π, i= 2, 3, . . . ,N + 1, (B 2)

ξ2,j = j− 1
N + 1

2

π, j= 1, 2, . . . , 2N + 1, (B 3)

together with

ξ2,j = j− 1
N

π, j= 1, 2, . . . ,N for ξ1 = 0. (B 4)
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The ξ2 derivative of the kinematic condition (2.7) is used instead of the original
equation at ξ1 = ξ2 = 0, as the kinematic condition (2.7) becomes trivial when
ξ1 = ξ2 = 0. Substituting (B 1) into (2.7) and (2.8) and the above collocation points
into ξ1 and ξ2 in them, we obtain 2N(2N + 2) equations for 2N(2N + 2) unknown
quantities: Cφ

m,n and η(ξ1,i, ξ2,j).
The 2N(2N + 2) nonlinear equations are solved by the Newton method. The

iteration stops when the differences of unknown quantities before and after an
iteration is smaller than 10−12. The fifth-order approximation provided by HAM is
the initial solution of the iteration. Then, the initial solution for another solution at
a slightly different set of parameters comes from the previous solution, provided the
values of the two sets of parameters are close enough. For more details, please refer
to Okamura (1996).

Appendix C. Detailed mathematical formulas for (5.23)
We have

N∑
J=−N

N∑
K=−N

R(1)JK aJK +
N∑

J=−N

N∑
K=−N

S(1)JK bJK = iσ
N∑

J=−N

N∑
K=−N

T (1)JK aJK, (C 1)

N∑
J=−N

N∑
K=−N

R(2)JK aJK +
N∑

J=−N

N∑
K=−N

S(2)JK bJK = iσ
N∑

J=−N

N∑
K=−N

T (2)JK bJK, (C 2)

where

R(1)JK = {R4 + i(p′ + J)R1 + i(q′ +K)R2}ei(Jξ1+Kξ2), (C 3)

S(1)JK = {i(p′ + J)R5 + i(q′ +K)R6 − κJK}ei(Jξ1+Kξ2)eκJK η̄, (C 4)

T (1)JK = ei(Jξ1+Kξ2), (C 5)

R(2)JK = R3ei(Jξ1+Kξ2), (C 6)

S(2)JK = {i(p′ + J)R1 + i(q′ +K)R2 + κJKφ̄z}ei(Jξ1+Kξ2)eκJK η̄, (C 7)

T (2)JK = ei(Jξ1+Kξ2)eκJK η̄. (C 8)
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