A short communication on Dr. He's modified Lindstedt-Poincaré method

Shijun Liao

Received: 12 July 2006 / Accepted: 24 August 2006 / Published online: 29 September 2006
(C) Springer Science + Business Media B.V. 2006

The so-called "modified Lindstedt-Poincaré method" described by Dr. He [1] badly violates the fundamental theorems in calculus and besides contains serious logical paradox.
It is well known that a smooth real function $f(\varepsilon)$ can be expanded into a unique Taylor series $f(\varepsilon)=c_{0}+$ $c_{1} \varepsilon+c_{2} \varepsilon^{2}+\cdots c_{n} \varepsilon^{n}$, where the coefficient
$c_{k}=\left.\frac{1}{k!} \frac{d^{k} f}{d \varepsilon^{k}}\right|_{\varepsilon=0}$
is independent of ε (please refer to Fitzpatrick [2], Theorem 41). For example, considering $f(\varepsilon)=\sin \varepsilon$, one has $c_{0}=\sin 0=0, c_{1}=\cos 0=1$, and so on. In case of $f(\varepsilon)=a$, where a is a constant independent of ε, one has certainly $c_{0}=a$ and $c_{1}=c_{2}=c_{3}=\cdots=$ 0 . So, it has no meaning to expand a constant into a Taylor series of ε because all coefficients, except $c_{0}=a$, are zero. However, Dr. He expanded a constant into such a Taylor series of ε in [1]. For example, Dr. He expanded the constant zero into the following series
$0=\omega^{2}+c_{1} \varepsilon+c_{2} \varepsilon^{2}+\cdots$,

[^0]and Dr. He even obtained a nonzero constant $c_{1}=$ $-(3 / 4) A^{2}$. This badly violates the fundamental theorem in calculus (please refer to Fitzpatrick [2], Theorem 41).

Besides, in the Section 6.17 of the textbook [3], there is such a corollary: if a power series has a nonzero convergence radius and has a sum that is identically zero, then every coefficient of the series is zero. Clearly, Dr. He's above expression (A) with nonzero coefficient $c_{1}=-(3 / 4) A^{2}$ also violates this corollary.

Even if one regards the expression (A) as an asymptotic sequence, all coefficients in (A) must be zero. As pointed out by Nayfeh [4], given an asymptotic sequence $\delta_{m}(\varepsilon)=\varepsilon^{m}$, the sequence of $f(\varepsilon)$ in terms of this sequence is unique. Besides, using formulae (1.4.16) and (1.4.37) in Nayfeh's book [4], all coefficients of (A) must be zero. Therefore, Dr. He's expression (A) with the nonzero coefficients $c_{1}=$ $-(3 / 4) A^{2}$ also violates the theorem of perturbation techniques, even if Dr. He regards (A) as an asymptotic sequence.

Therefore, when the constant zero is expand into a series in (A), all coefficients must be zero, no matter either it is a Taylor series or an asymptotic sequence. Thus, it is out of question that Dr. He's expression (A) with the nonzero coefficients $c_{1}=-(3 / 4) A^{2}$ is completely wrong.

This kind of mistake brings serious logical paradox in Dr. He's approach [1]. Dr. He first rewrote the equation $u^{\prime \prime}+\varepsilon u^{3}=0$ into $u^{\prime \prime}+0 \cdot u+\varepsilon u^{3}=0$. Then, substituting (A) and the perturbation expression
$u=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\cdots$ into it, Dr. He has
$\left(u_{0}^{\prime \prime}+\omega^{2} u_{0}\right)+\varepsilon\left(u_{1}^{\prime \prime}+\omega^{2} u_{1}+c_{1} u_{0}+u_{0}^{3}\right)+\cdots$.
Equating the coefficients of the like power of ε, Dr. He obtained the equations

$$
\begin{aligned}
\varepsilon^{0}: & u_{0}^{\prime \prime}+\omega^{2} u_{0}=0 \\
\varepsilon & : u_{1}^{\prime \prime}+\omega^{2} u_{1}+c_{1} u_{0}+u_{0}^{3}=0
\end{aligned}
$$

which are exactly Equations (21) and (22) in [1], respectively. It must be pointed out that, to obtain the previous equations, Dr. He must assume here that ω^{2} is independent of ε. Otherwise, he had to expand ω^{2} into a power series of ε, and therefore cannot obtain the above equations (please refer to Nayfeh [4]). Unfortunately, according to Equation (27) in [1], Dr. He finally obtained such a result $\omega^{2}=(3 / 4) \varepsilon A^{2}$, which is dependent on ε. How can the same term ω^{2} be first assumed a constant independent of ε but finally be given a value dependent on ε ? So, there exists a serious logical paradox in Dr. He's approach.

Similarly, all of Dr. He's related publications (such as [5, 6]) based on this kind of expansion are completely wrong. This logical paradox comes from the mathematical mistakes that Dr. He expanded a constant into a Taylor series or asymptotic sequence with many nonzero coefficients.

References

1. He, J.-H.: Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations: 1 . Expansion of a constant. Int. J. Non-Linear Mech. 37, 309-314 (2002)
2. Fitzpatrick, P.M.: Advanced Calculus. PWS Publishing Company, Boston, MA (1996)
3. Kaplan, W.: Advanced Calculus. 3rd edn. Addison-Wesley, Reading, MA (1984)
4. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)
5. He, J.-H.: Application of homotopy perturbation method to nonlinear wave equation. Chaos Solitons Fractals 26, 695700 (2005)
6. He, J.-H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Modern Phys. B 20(10), 1141-1199 (2006)

[^0]: S. Liao

 School of Naval Architecture, Ocean and Civil
 Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
 e-mail: sjliao@sjtu.edu.cn

