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Due to the butterfly-effect, computer-generated chaotic simulations often deviate exponen-
tially from the true solution, so that it is very hard to obtain a reliable simulation of chaos 
in a long-duration time. In this paper, a new strategy of the so-called Clean Numerical 
Simulation (CNS) in physical space is proposed for spatio-temporal chaos, which is com-
putationally much more efficient than its predecessor (in spectral space). The strategy of 
the CNS is to reduce both of the truncation and round-off errors to a specified level by 
implementing high-order algorithms in multiple-precision arithmetic (with sufficient sig-
nificant digits for all variables and parameters) so as to guarantee that numerical noise is 
below such a critical level in a temporal interval t ∈ [0, Tc] that corresponding numerical 
simulation remains reliable over the whole interval. Without loss of generality, the com-
plex Ginzburg-Landau equation (CGLE) is used to illustrate its validity. As a result, a reliable 
long-duration numerical simulation of the CGLE is achieved in the whole spatial domain 
over a long interval of time t ∈ [0, 3000], which is used as a reliable benchmark solution 
to investigate the influence of numerical noise by comparing it with the corresponding 
ones given by the 4th-order Runge-Kutta method in double precision (RKwD). Our results 
demonstrate that the use of double precision in simulations of chaos might lead to huge 
errors in the prediction of spatio-temporal trajectories and in statistics, not only quantita-
tively but also qualitatively, particularly in a long interval of time.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In 1890 Poincaré [1] discovered that the trajectories of an N-body system (N ≥ 3), governed by Newtonian gravitational 
attraction, generally have sensitive dependance on the initial condition (SDIC), i.e. a tiny difference in initial condition might 
lead to a completely different trajectory. The so-called SDIC was rediscovered in 1963 by Lorenz [2] who numerically solved 
an idealized model of weather prediction, nowadays called the Lorenz equation, by means of a digital computer. The SDIC 
became popularized following the title of a talk in 1972 by Lorenz to the American Association for the Advancement of 
Science as “Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”. In his seminal paper, Lorenz stated 
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that “long-term prediction of chaos is impossible” [2]. The discovery of Poincaré [1] and Lorenz [2] has helped create a 
completely new field in science, called chaos theory.

Furthermore, Lorenz [3,4] found that computer-generated simulations of a chaotic dynamic system using the Runge-Kutta 
method in the double precision are sensitive not only to the initial condition but also to the numerical algorithms (including 
temporal/spatial discretization). For the specific problem investigated, Lorenz [4] reported that the Lyapunov exponent, one 
of the most important characteristics of a dynamic system, frequently varied its sign even when the time-step became 
rather small. It is well-known that only a positive Lyapunov exponent corresponds to chaos; a negative one does not! This 
is easy to understand from the viewpoint of the so-called butterfly-effect, because numerical noise from truncation and 
round-off error is unavoidable in any numerical simulation, and leads to some errors (or approximations) being introduced 
to the solution at each time-step. For example, let us consider the high-order Taylor expansion

f (t + �t) ≈ f (t) +
M∑

m=1

f (m)(t)

m! (�t)m, (1)

where f (t) is a function of time t , �t is the time-step, M is the order of Taylor expansion and f (m)(t) is the mth-order 
derivative of f (t). Given that M is finite in practice, we obtain a truncation error as the difference between the results of 
the infinite and truncated Taylor series. Moreover, because all variables and physical/numerical parameters, such as f (t), 
f (m)(t), �t and so on, are expressed in a precision (usually double precision) limited by a finite number of significant digits, 
a round-off error invariably arises. Logically, a chaotic system with the butterfly-effect should also be rather sensitive to 
these man-made numerical errors. This kind of sensitive dependence on numerical algorithm (SDNA) for a chaotic system 
has been confirmed by many researchers [5–7], and has led to some intense arguments and serious doubts concerning the 
reliability of numerical simulations of chaos. It has even been hypothesized that “all chaotic responses are simply numerical 
noise and have nothing to do with the solutions of differential equations” [8]. Note that the foregoing researchers [5–8]
undoubtedly used data in double precision for chaotic systems, although different types of numerical algorithm were tested. 
As a consequence, it was not clear how numerical noise influenced the reliability of numerical simulations of chaos.

Without doubt, the reliability of computer-generated simulation of chaotic systems is a very important fundamental 
problem. Anosov [9] in 1967 and Bowen [10] in 1975 showed that uniformly hyperbolic systems have the so-called shadowing 
property: a computer-generated (or noisy) orbit will stay close to (shadow) true orbits with adjusted initial conditions for 
arbitrarily long times. Let {pk}b

k=a denote a δ f -pseudo-orbit for f if |pk+1 − f(pk)| < δ f for a < k < b, where f is a D-
dimensional map and p is a D-dimensional vector representing the dynamical variables. Here the term pseudo-orbit is used 
to describe a computer-generated noisy orbit. The true orbit {yk}b

k=a δ-shadows {pk}b
k=a on [a, b] if |yk − pk| < δ, where the 

true orbit {yk}b
k=a satisfies yk+1 = f(yk). For details of the shadowing theorems, please refer to [9–14].

However, hardly any chaotic systems are uniformly hyperbolic. Dawson et al. [15] pointed out that the non-existence 
of such shadowing trajectories may be caused by finite-time Lyapunov exponents of a system fluctuating about zero. For 
non-hyperbolic chaotic systems with unstable dimension variability, no true trajectory of reasonable length can be found 
to exist near any computer-generated trajectories, as reported by Do and Lai [16]. Using examples having only two degrees 
of freedom, Sauer [17] showed that extremely small levels of numerical noise might result in macroscopic errors even in 
simulation average statistics that are several orders of magnitude larger than the noise level. Thus, the good promise from 
the Shadow Lemma [9,10] for a uniformly hyperbolic system does not work for many non-hyperbolic systems [18]. It seems 
that we had to be satisfied with finite-length shadows for non-hyperbolic systems [19]. Note that most of investigations 
on shadows are based on low dimensional dynamic systems, although a shadowing algorithm for high dimensional systems 
(such as the motion of one hundred stars) was proposed by Hayes and Jackson [19]. To the best of our knowledge, neither 
rigorous shadowing theorems nor practical shadowing algorithms have been proposed for spatio-temporal chaotic systems 
(such as turbulent flows), which are governed by nonlinear PDEs and thus have an infinite number of dimensions. It seems 
that, although the shadowing concept is rigorous in mathematics, it is hardly used in practice for complicated systems such 
as spatio-temporal chaos and turbulence that are non-hyperbolic in general and besides have an infinite number of degrees 
of freedom.

Liao [20–22] suggested a numerical strategy called “Clean Numerical Simulation” (CNS) that could provide reliable sim-
ulations of chaotic systems over a given finite interval of time. The CNS is based on an arbitrary-order Taylor expansion 
method [23–27], multiple-precision (MP) data [28] with arbitrary numbers of significant digits, and a solution verification 
check [29,30] (using another simulation for the same physical parameters but with even smaller numerical noise). Here, the 
word “arbitrary” means a value which can be “as large as required”. So, as long as the order M of the Taylor expansion 
(1) is sufficiently large and all data values are expressed in multiple-precision with a sufficiently large number of significant 
digits (denoted by Ns), both the truncation error and the round-off error can be held below specified thresholds through-
out a prescribed simulation time [0, Tc]. Here the so-called critical predictable time Tc is determined through the solution 
verification check by comparing it to an additional simulation with the same physical parameters but smaller numerical 
noise, such that the difference between them remains negligible in the interval [0, Tc]. Thus, a basic task of the CNS is to 
determine the relationship between Tc and numerical noise. This relationship needs clarification particularly as it has been 
largely ignored by researchers working on chaotic dynamics.
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The CNS is based on such a hypothesis that the level of numerical noise increases exponentially (in an average meaning) 
within an interval of time t ∈ [0, Tc], say,

E(t) = E0 exp(μ t), t ∈ [0, Tc], (2)

where the constant μ > 0 is the so-called “noise-growing exponent” that is dependent upon the physical parameters of the 
system, E0 denotes the level of initial noise (i.e. truncation and round-off error), E(t) is the level of evolving noise of the 
computer-generated simulation at the time t , respectively. The critical predictable time Tc is determined by a critical level 
of noise Ec , say,

Ec = E0 exp(μ Tc), (3)

which gives

Tc = (lnEc − lnE0)

μ
. (4)

So, for a given critical level of noise Ec , the smaller the level of the initial noise E0, the larger the critical predictable time 
of Tc .

However, it is practically impossible to exactly calculate the level of evolving noise E(t), because the true solution is 
unknown. So, we should propose a practical method with sufficiently high accuracy to determine Tc . Let x ∈ � denote a 
vector of spatial coordinates and ψ(x, t) a computer-generated simulation reliable in t ∈ [0, Tc] with the level of initial 
noise E0, ψ ′(x, t) is another computer-generated simulation reliable in t ∈ [0, T ′

c] with a level of initial noise E ′
0 that is 

several orders of magnitude smaller than E0. According to the hypothesis of exponential growth in numerical noise of 
chaotic systems, it holds that T ′

c > Tc and ψ ′(x, t) in t ∈ [0, Tc] should be much closer to the true solution than ψ(x, t)
and thus can be regarded as a reference to approximately calculate the level of numerical noise of ψ(x, t) in x ∈ �. Note 
that a similar idea was used by Turchetti et al. [31] who compared a numerical map computed for a given accuracy (single 
floating-point precision) with the same map evaluated numerically with a higher accuracy (double or higher floating-point 
precision) that is regarded as the reference map. In practice, the value of Tc can be determined by comparing ψ(x, t) with 
another better simulation ψ ′(x, t) having smaller initial noise E ′

0. In this way, the level of numerical noise of ψ(x, t) is not 
beyond the critical level Ec of noise in the temporal interval t ∈ [0, Tc] within the whole spatial domain x ∈ �. In other 
words, ψ(x, t) is a “clean” numerical simulation (CNS) in t ∈ [0, Tc] and x ∈ �. The above-mentioned can be regarded as a 
heuristic explanation of the strategy of the CNS.

Liao [20] successfully used this strategy of the CNS to gain reliable chaotic simulations of the Lorenz equation and 
indeed found that the smaller the numerical noise, the larger the value of Tc . Liao also found that when the data are 
of high multiple-precision, such that Ns is sufficiently large for round-off errors to be ignored and the truncation error 
dominates, Tc is linearly proportional to M , the order of Taylor expansion. Moreover, when M reaches such a sufficiently 
high value that round-off error dominates, then Tc becomes linearly proportional to Ns , the number of significant digits. 
Using these linear relationships, it is possible to determine values for M and Ns that apply to any prescribed Tc . Here, Tc

is finite due to computer limitations, but can be quite large, depending on the computer resources available. For example, 
Liao [20] applied CNS to obtain a reliable chaotic simulation of Lorenz equation until Tc = 1000 Lorenz time unit (LTU) by 
means of �t = 0.01, M = 400 and Ns = 800. Furthermore, Liao and Wang [32] used the CNS to obtain, for the first time, 
a convergent/reliable chaotic simulation of Lorenz equation up to Tc = 10000 LTU by means of M = 3500 and Ns = 4180, 
using 1200 CPUs to the National Supercomputer TH-1A in Tianjin, China. Note that the reliability of this long-term chaotic 
simulation was verified by means of another better simulation using M = 3600 and Ns = 4515. These showed the validity 
of the CNS. Note that, exactly for the same physical parameters and the same initial conditions of the Lorenz equation, by 
means of the 4th-order Runge-Kutta’s method and many other algorithms in double precision, a reliable chaotic simulation 
is often obtained over a rather small interval, approximately [0, 30] LTU, which is only 0.3% of the interval [0, 10000]. This 
may be the underlying reason why there is such controversy about the reliability of numerical simulations of chaos [8], 
noting that most researchers neglect the influence of round-off error and use double precision in their computer-generated 
simulations.

In CNS, numerical noise arising from truncation and round-off errors is much smaller than the values of physical variables 
under consideration, provided t < Tc , where Tc is a specified parameter that can be as large as deemed necessary by the 
user. Consequently, many complicated chaotic systems can be studied by means of the CNS, as illustrated in [33–39]. For 
example, according to Poincaré [1], a three-body system can often be chaotic. In physics, the initial positions of the three-
bodies have inherent micro-level physical uncertainty, at scales below the Planck length scale. Such micro-level uncertainty 
in the initial position is much smaller than the round-off error caused by the use of double precision, and so its influence on 
macroscopic trajectories cannot be investigated by traditional algorithms using double precision arithmetic. However, using 
CNS, Liao and Li [35] investigated the propagation of micro-level physical uncertainty in the initial condition for a chaotic 
three-body system, and found that the uncertainty grows to become macroscopic, leading to random escape and symmetry-
breaking behaviour of the three-body system. This implies that micro-level physical uncertainty might be the origin of 
macroscopic randomness in the three-body system. Besides, given that micro-level uncertainty is physically inherent, the 
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escape and symmetry-breaking behaviour of the chaotic three-body system can happen even without any external forces 
present. In other words, such behaviour is self-excited. This suggests that macroscopic randomness, self-excited random 
escape, and self-excited symmetry-breaking of a chaotic three-body system are unavoidable. (Liao and Li [35] provide further 
details.) Notably, although the three-body problem can be traced back to Newton in 1680s, only three families of periodic 
orbits were found in the 300 years since then. In 1890 Poincaré [1] pointed out that a three-body system is chaotic in 
general and its closed-form solution does not exist. This is why so few periodic orbits have been discovered. However, by 
undertaking CNS on China’s national supercomputer, Li, Jing and Liao [36,37,39] successfully found more than 2000 new 
periodic orbits of three-body system. The new periodic orbits were profiled in New Scientists [40,41]. All of these illustrated 
the usefulness of CNS as a powerful tool for reliable and accurate investigation of chaotic systems in physics.

The Lorenz equation is a greatly simplified form of the Navier-Stokes equations that are widely used to describe turbulent 
flows. In 2017 Lin et al. [38] applied the CNS to study the relationship between inherent micro-level thermal fluctuation and 
the macroscopic randomness of a two-dimensional Rayleigh-Bérnard convection turbulent flow in a long enough interval of 
time, taking micro-level thermal fluctuation (expressed by Gaussian white noise) to be the initial condition, with no external 
disturbances applied. Using CNS with numerical noise set to be even smaller than the micro-level thermal fluctuations, Lin et 
al. [38] proved theoretically that inherent micro-level thermal fluctuations are the root source of macroscopic randomness 
of Rayleigh-Bérnard turbulent convection flows. Unlike the Lorenz system and three-body system, which are described 
mathematically by ordinary differential equations (ODEs), the Rayleigh-Bérnard convection system is governed by partial 
differential equations (PDE) as a spatio-temporal chaotic system. This case illustrated the validity of the CNS for reliable 
simulation of spatio-temporal chaotic systems governed by nonlinear PDEs. However, Lin et al. [38] used a Galerkin-Fourier 
spectral method with CNS to solve the system in spectral space. This involved mapping the original nonlinear PDE in 
physical space onto a huge system of nonlinear ODEs in spectral space, proving to be rather time-consuming and impractical 
on present-day computers for simulation for spatio-temporal chaotic systems.

In this paper, we propose a new strategy that greatly increases the computational efficiency of CNS for spatio-temporal 
chaotic systems. Without loss of generality, we consider the one-dimensional complex Ginzburg-Landau equation (CGLE) as 
an example of a spatio-temporal chaotic system, to outline the basic features of the strategy and then illustrate its validity 
and efficiency. Section 2 describes two CNS algorithms: one in spectral space using the Galerkin-Fourier spectral method; 
the other in physical space. The performance of these algorithms is compared in terms of computational efficiency, validity, 
etc. Section 3 discusses the influence of numerical noise on spatio-temporal trajectories and statistics of the chaotic system. 
Section 4 summarizes the discussions and conclusions.

2. CNS algorithms for spatio-temporal chaos

Spatio-temporal chaos, characterized by irregular behaviour in both space and time, arises when a spatially extended 
system is driven away from its equilibrium state [42]. The one-dimension complex Ginzburg-Landau equation (CGLE), which 
describes oscillatory media near the Hopf bifurcation, is commonly used in studies of spatio-temporal chaos [43–52], and is 
given by

At = A + (1 + i c1) Axx − (1 − i c3) |A|2 A, (5)

subject to the initial condition

A(x,0) = f (x)

and the periodic boundary condition

A(x, t) = A(x + L, t),

where i = √−1, A is an unknown complex function, the subscript denotes the partial derivative, t and x denote the temporal 
and spatial coordinates, c1 and c3 are physical parameters, respectively. The CGLE has spatio-temporal chaotic solutions in 
cases when c1c3 ≥ 1, corresponding to Benjamin-Feir unstability [53]. Depending upon the values of c1 and c3, the CGLE 
exhibits two distinct chaotic phases, namely “phase chaos” when A is bounded away from zero, and “defect chaos” for A = 0
when the phase exhibits singularities [43,45,47,54]. As pointed out by Shraiman et al. [45], the crossover between phase 
and defect chaos is invertible only when c1 > 1.9. Furthermore, the CGLE solution occupies a bichaos region when c1 < 1.9, 
where phase chaos and defect chaos coexist. Chaté [55] examined the relation with spatio-temporal intermittency, and 
defined an intermittency regime where defect chaos and stable plane waves coexist. By considering modulated amplitude 
waves (MAWs), Brusch et al. [47] found that the crossover between phase and defect chaos take place when the periods of 
MAWs are driven beyond their saddle-node bifurcation.

Despite intensive numerical investigations into solutions of the CGLE [43,45,47,55–58] for values of c1 and c3 ranging 
from L = 500 to L = 4000, the sensitive dependence on initial conditions (SDIC) of the CGLE has made it impossible to obtain 
reliable, long duration numerical simulations of the spatio-temporal chaotic solution by means of the traditional algorithms 
using double precision arithmetic. Here, we use Clean Numerical Simulation (CNS) to obtain reliable computer-generated 
simulations in a given specified finite interval of time. Taking the one-dimension complex Ginzburg-Landau equation as an 
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example, we outline two different CNS algorithms for spatio-temporal chaotic systems: one in spectral space, the other in 
physical space. We will demonstrate that the latter is computationally much more efficient than the former.

First of all, we temporally expand the unknown complex function A in the CGLE by means of the following high-order 
Taylor expansion

A(x, t + �t) =
M∑

m=0

A[m](x, t) (�t)m, (6)

where �t is the time step, the order M is a (sufficiently large) positive integer, and

A[m](x, t) = 1

m!
∂m A(x, t)

∂tm
. (7)

Note that |A|2 = A A, where A is the complex conjugate of A(x, t). From Eqs. (5) and (7), we have

A[m](x, t) = 1

m
A[m−1](x, t) + (1 + i c1)

m
A[m−1]

xx (x, t)

− (1 − i c3)

m

m−1∑
j=0

m−1− j∑
n=0

A
[ j]

(x, t) A[n](x, t) A[m−1− j−n](x, t). (8)

Note that A[m](x, t) is solely dependent upon A[n](x, t) and its spatial derivative A[n]
xx (x, t), where 0 ≤ n ≤ m −1, and thus can 

be calculated consecutively, up to a high-enough order M ensuring that the truncation error does not exceed a prescribed 
level. Hence, A(x + �t) is calculated to a required precision, provided the spatial derivative term A[n]

xx (x, t) is calculated to 
sufficient accuracy. This is a key to using the CNS in problems involving spatio-temporal chaos.

2.1. The CNS algorithm in spectral space

In CNS combined with a Galerkin Fourier spectral method, the unknown complex function A of Eq. (5) is expressed by 
Fourier series (see e.g. Finlayson et al. and Isaacson et al. [59,60]), as follows

A(x, t) ≈
N
2 −1∑

k=− N
2

ak(t) ϕk(x), (9)

where N is the mode number of the spatial Fourier expansion with the base function

ϕk(x) = 1√
L

ei kαx. (10)

Here α = 2π/L, and L is the spatial period of the solution. Then, according to (7),

A[m](x, t) ≈
N/2−1∑

k=−N/2

a[m]
k (t) ϕk(x). (11)

After transformation, Eq. (8) becomes

L∫
0

A[m](x, t) ϕk(x)dx = 1

m

L∫
0

A[m−1](x, t) ϕk(x)dx

+ (1 + i c1)

m

L∫
0

A[m−1]
xx (x, t) ϕk(x)dx

− (1 − i c3)

m

m−1∑
j=0

m−1− j∑
n=0

L∫
0

A
[ j]

(x, t) A[n](x, t) A[m−1− j−n](x, t) ϕk(x)dx, (12)

where ϕk(x) is the complex conjugate of the basis function ϕk(x). Substituting (11) into the above equation, we have for 
m ≥ 1 that
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a[m]
k (t) = 1

m
a[m−1]

k (t) − (1 + i c1)

m

(
2kπ

L

)2

a[m−1]
k (t)

− (1 − i c3)

mL

∑
−k1+k2+k3=k

m−1∑
j=0

m−1− j∑
n=0

a[ j]
k1

(t) a[n]
k2

(t) a[m−1− j−n]
k3

(t),

− N

2
≤ k,k1,k2,k3 ≤ N

2
− 1, (13)

where a[n]
k (t) is the complex conjugate of a[n]

k (t), with a[0]
k (t) = ak(t) and a[0]

k (t) = ak(t). The initial condition of ak(t) is given 
by

ak(0) =
L∫

0

A(x,0) ϕk(x)dx, − N

2
≤ k ≤ N

2
− 1. (14)

In the frame of CNS, we apply the temporal high-order Taylor expansion

ak(t + �t) ≈
M∑

m=0

a[m]
k (t)(�t)m, − N

2
≤ k ≤ N

2
− 1, (15)

subject to the initial condition (14), to decrease the truncation error to a required level. We also ensure that calculations 
are performed in multiple-precision using a sufficient number Ns of significant digits to limit the round-off error to below a 
specified level, and carry out a verification check on the solution by considering results from an additional simulation with 
even smaller numerical noise to determine the critical predictable time Tc . Here a[m]

k (t) is given by (13), �t is the time step, 
M is the order of the Taylor expansion, and N is the mode number of the spatial Fourier expansion, respectively. So long 
as all values of ak(t) in spectral space are known, the solution A(x, t) can be determined in physical space by means of (9), 
as and when required. As mentioned in the Introduction, this CNS algorithm in spectral space was successfully used by Lin 
et al. [38] to study the influence of inherent micro-level thermal fluctuations on the macroscopic randomness of turbulent 
Rayleigh-Bérnard turbulent convection. Lin et al. found that the accuracy of this Galerkin Fourier spectral method is very 
high, provided N , M , and Ns are all sufficiently large. However, as reported by Lin et al. [38], calculation of the nonlinear 
term in (13) is very time consuming when N is large.

2.2. The CNS algorithm in physical space

To overcome the shortcoming of the above-mentioned CNS algorithm in spectral space, we propose the following CNS 
algorithm in physical space. Instead of mapping the original governing equation and initial condition onto spectral space, via 
a collocation method [61,62], we directly solve the original equation in physical space by first dividing the spatial domain 
[0, L] into a uniform grid, such that

xk = kL

N
= k�x, k = 0,1,2,3, · · · , N,

and then approximating A(x, t) by a set of discrete unknown variables

{A(x0, t), A(x1, t), A(x2, t), · · · , A(xN , t)} , (16)

where A(xN , t) = A(x0, t) in order to satisfy the periodic condition. Thus, we have only N unknowns A(xk, t) (0 ≤ k ≤ N −1), 
whose temporal evolution is given by the high-order Taylor expansion

A(xk, t + �t) ≈
M∑

m=0

A[m](xk, t)(�t)m, k = 0,1,2, · · · , N − 1, (17)

where �t is the time step, and A[m](xk, t) defined by (7) is given by

A[m](xk, t) = 1

m
A[m−1](xk, t) + (1 + i c1)

m
A[m−1]

xx (xk, t)

− (1 − i c3)

m

m−1∑
j=0

m−1− j∑
n=0

A
[ j]

(xk, t) A[n](xk, t) A[m−1− j−n](xk, t), (18)

with the specified initial condition A(xk, 0) = f (xk).



T. Hu, S. Liao / Journal of Computational Physics 418 (2020) 109629 7
Note that there exists the spatial partial derivative A[n]
xx (xk, t) in (18), where 0 ≤ n ≤ m − 1 and 0 ≤ k ≤ N − 1 are positive 

integers. To evaluate accurately this spatial partial derivative term from the set of the known discrete variables A[n](x j, t), 
we first invoke the Fourier expansion in space,

A[n](x, t) ≈
N
2 −1∑

k=− N
2

b[n]
k (t) ei k α x, (19)

where α = 2π/L and

b[n]
k (t) ≈ 1

N

N−1∑
j=0

A[n](x j, t) e−i k α x j , − N

2
≤ k ≤ N

2
− 1. (20)

This is given by the set of the known variables A[n](x j, t) at discrete points x j (0 ≤ j ≤ N − 1). Then, we have the spatial 
partial derivative term

A[n]
xx (x j, t) ≈ −α2

N
2 −1∑

k=− N
2

k2 b[n]
k (t) ei k α x j , 0 ≤ j ≤ N − 1, (21)

where b[n]
k (t) is given by (20). The Fast Fourier Transform (FFT) [63] is used to increase computational efficiency, given that 

the discrete points x j are equidistant.
Obviously, the larger the order M of the Taylor expansion (17) in time and the mode number N of the Fourier expansion 

(19) in space, the smaller the corresponding truncation errors. To decrease the round-off error to a required level, all
variables and physical parameters are calculated in multiple-precision with Ns significant digits, where Ns is a sufficiently 
large positive integer. In this way, both the truncation and round-off errors are reduced to a required limiting level. Finally, 
an additional numerical simulation with smaller numerical noise is carried out to determine the critical predictable time 
Tc (i.e. the maximum time of reliable simulation) by comparing the results of both simulations; this ensures that the CNS 
result is reliable within the temporal interval t ∈ [0, Tc] over the whole spatial domain.

Comparing (18) with (13), it is obvious that the CNS algorithm in physical space is numerically much more efficient than 
the CNS algorithm in spectral space, especially for a large mode number N of the spatial Fourier expansion. This is indeed 
true, as shown in §2.5.

Note that the high order Taylor expansion method [23–27], the Fourier expansion method [63], the multiple precision 
[28], and the solution verification check [29,30] are widely used. However, their combination may give reliable simulations 
of spatio-temporal chaotic systems, which provide us benchmarks that can be used to study the influence of numerical 
noise on chaotic simulations given by traditional algorithms in double precision.

2.3. The optimal time-step

In CNS, the temporal truncation error is determined by the order M of the Taylor expansion (15) or (17), and the spatial 
truncation error is determined by the mode number N of the spatial Fourier expansion (9) or (19). As long as both M and N
are large enough, the temporal and spatial truncation errors are reduced to below a target level. In addition, the round-off 
error is reduced to a specified level by using multiple-precision with sufficiently large number Ns of significant digits.

To calculate the Mth-order Taylor expansion (15) or (17) in time dimension, we use an optimal time-step [27]

�t = min

(
g(tol, M − 1)∥∥A(M−1)(xk, t)

∥∥1/(M−1)

∞
,

g(tol, M)∥∥A(M)(xk, t)
∥∥1/M

∞

)
, (22)

where tol is an allowed tolerance at each time step, 
∥∥A(M)(xk, t)

∥∥∞ is the infinite norm of the Mth-order Taylor expansion 
of the modules of A(xk, t), k = 0, 1, 2, 3, · · · , N − 1 and

g(tol, M) ≈ tol1/(M+1). (23)

To save computer resources and increase computational efficiency, it is reasonable to enforce the allowed tolerance to be at 
the same level as the round-off error, say,

tol = 10−Ns . (24)

Thus, we have the optimal time-step as

�t = min

(
10−Ns/M∥∥A(M−1)(x , t)

∥∥1/(M−1)
,

10−Ns/(M+1)∥∥A(M)(x , t)
∥∥1/M

)
. (25)
k ∞ k ∞
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Therefore, for a given number Ns of significant digits in multiple-precision, one has the freedom to choose the order M
of temporal Taylor expansion. According to (25), raising the order of the temporal Taylor expansion usually leads to an 
increased optimal time-step �t . So, in practice, it makes sense to set M to higher order because it can also improve the 
speed-up ratio of the parallelized algorithm.

In practice, we first choose a sufficiently large values for Ns and M to meet the error requirements, from which the 
optimal time-step �t is evaluated by (25) at each time-step. In this way, the temporal truncation error is kept to the same 
level of the round-off error.

For a spatio-temporal chaotic system (5), it is also necessary to limit the spatial truncation error, determined by the 
mode number N of the spatial Fourier expressions (9) or (19). Obviously, the larger the value of N , the smaller the spatial 
truncation error. In theory, to save computer resources and improve computational efficiency, it is better to let the spatial 
truncation error be equal to the temporal truncation error. Unfortunately, it is presently unknown how to do this. In practice, 
we often choose reasonably large values for Ns and N in order to guarantee that the round off error, temporal truncation 
error, and spatial truncation error are all below a specified level. Finally, the solution verification check is implemented by 
comparing the numerical result to that of an additional simulation with even smaller numerical noise; this determines the 
finite time interval [0, Tc], over which the spatio-temporal chaotic numerical results exhibit no distinct differences at all
spatial grid-points and thus are reliable.

2.4. Criteria of reliability and convergence

Due to the sensitivity dependence on initial conditions of chaotic systems, unavoidable numerical noise from round-off 
and truncation errors can increase exponentially. To guarantee the reliability of chaotic numerical simulations, we compare 
our CNS simulation of interest against one using the same physical parameters and the same algorithm but with even 
smaller numerical noise; this determines the finite time interval [0, Tc] over which the spatio-temporal chaotic numerical 
results display no distinct differences at all spatial grid-points.

Take the one-dimensional CGLE as an example. Let A(x, t) denote a numerical simulation of the one-dimensional CGLE, 
given by CNS using the Mth-order of Taylor expansion in the time dimension, the mode number N of the Fourier expansion 
in the spatial dimension, the number Ns of significant digits in the multiple precision scheme. Now, let A′(x, t) be another 
CNS result with even smaller numerical noise, given by the M ′th-order of the temporal Taylor expansion, the mode number 
N ′ of the spatial Fourier expansion, and number N ′

s of significant digits in the multiple precision scheme, where M ′ ≥ M , 
N ′ > N and N ′

s ≥ Ns . Since the level of numerical noise increases exponentially, A′(x, t) (with smaller numerical noises) 
should be closer to the true solution than A(x, t) and thus can be used as a reference solution to check the reliability of 
A(x, t).

If A(x, t) and A′(x, t) have the same spatial discretization, i.e. the same N , their deviation can be measured by

δ(t) =

√
N−1∑
k=0

∣∣∣A(xk, t) − A′(xk, t)
∣∣∣2

√
N−1∑
k=0

∣∣∣A′(xk, t)
∣∣∣2

. (26)

However, A′(x, t) often has different values of N from A(x, t) in practice. In this case, it is more convenient to compare their 
spatial spectrum. Rewrite A(x, t) and A′(x, t) in the spatial Fourier expressions

A(x, t) ≈
N
2 −1∑

k=− N
2

Bk(t) ei k α x, A′(x, t) ≈
N′
2 −1∑

k=− N′
2

B ′
k(t) ei k α x. (27)

Note that 
N′
2 −1∑

k=− N′
2

|B ′
k|2 has often physical meaning, such as the total energy of the system. So, from a physical viewpoint, it is 

important for a numerical simulation of a spatio-temporal chaos to have an accurate spatial spectrum at given time t . Thus, 
we define the so-called “spectrum-deviation”

δs(t) =

N
2 −1∑

k=− N
2

∣∣∣|B ′
k|2 − |Bk|2

∣∣∣
N′
2 −1∑

k=− N′
|B ′

k|2
(28)
2
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Table 1
CPU times of CNS simulations of the one-dimension CGLE for c1 = 2, c3 = 1 and L = 256 in the 
temporal interval t ∈ [0, 10], in spectral and physical spaces with the same Ns = 20, M = 14, a fixed 
time step �t = 0.01 and the same mode number N for the spatial Fourier expansion. T1 and T2

are the elapsed CPU times for the CNS algorithms in the spectral space; and the physical space, 
respectively.

N T1 T2 T1/T2

(in seconds) (in seconds)

16 694 7.93 87
32 5530 12.8 432
64 44366 25 1774
128 346490 51 6793

to quantify the difference between A(x, t) and A′(x, t) at a given time t . Obviously, the smaller the spectrum-deviation δs , 
the better the two simulations agree with each other and the greater their reliability. So, it is reasonable to define the 
reliability criterion as

δs < δc
s , (29)

where δc
s > 0 is a reasonably small number, called the “critical spectrum-deviation”. For the problem under consideration, 

it is found that δc
s = 0.01 is reasonable, which is used for all the remaining cases in this paper. Equation (29) provides a 

criterion of reliability, which determines the so-called “critical predictable time” Tc and the temporal interval [0, Tc], in 
which the reliability-criteria (29) is satisfied and the differences between the two simulations A(x, t) and A′(x, t) at all 
spatial grid-points are negligible.

2.5. Computational efficiency of the two CNS algorithms

In theory the CNS algorithm in spectral space undertakes about O  
(
M3N3

)
elementary operations, whereas the CNS algo-

rithm in physical space undertakes O  (N M log2N + N M3) elementary operations. This is partly due to the fewer nonlinear 
terms in the right-hand side of (18) than (13), and partly due to the implementation of the FFT in evaluating (21). Obvi-
ously, using the CNS algorithm in physical space can greatly improve the calculation speed at O  (N2), where N is the mode 
number of the spatial Fourier expansion. The resulting speed-up is huge in practice, especially for large N . This is confirmed 
by the results listed in Table 1 which compares the CPU times taken by the two CNS algorithms, for the same values of 
N , M , and Ns . For the purposes of comparison, a fixed time-step �t = 0.01 is used. Table 1 shows that the ratio T1/T2
of required CPU times for the 1st and 2nd CNS algorithms rises exponentially as N increases. Notably, when N = 128, the 
required CPU time of the CNS algorithm in spectral space is 6000 times more than that of the CNS algorithm in physical 
space! This illustrates that the CNS algorithm in physical space described in Section 2.2 is clearly much more efficient than 
that in its counterpart spectral space, and so is used for all the cases considered in the remainder of this paper (unless 
otherwise stated).

2.6. Validity of the CNS algorithm in physical space

The one-dimensional CGLE (5) is now used as an example to verify the validity of our CNS algorithms in physical space. 
First, the one-dimensional CGLE has closed-form plane-wave solutions [43,45,55,64] given by

A(x, t) =
√

1 − q2 ei (wq t+q x), (30)

where wq = c3 − (c3 + c1) q2. Provided c1 c3 < 1, these solutions are linearly stable. Along the line c1 c3 = 1, the band of 
wave-vectors shrinks to zero corresponding to Benjamin-Feir or modulation instability of the uniform oscillatory solution 
[42,53]. Beyond Benjamin-Feir instability, when c1 c3 > 1, the system enters the phase chaos and defect chaos regimes.

To verify the CNS algorithm in physical space, as mentioned in Section 2.2, let us first consider the plane-wave solution 
(30) when c1 = 1.1 and c3 = 0.2, with the initial condition

A(x,0) =
√

1 − q2 ei q x, (31)

in which q = 8π/L and L = 256. Given that c1c3 < 1, the solution should be in the form of (30) and linearly stable. We solve 
this problem by means of the two CNS algorithms using the same values of N , M , and Ns . As shown in Fig. 1, the numerical 
simulations produced by the two CNS algorithms agree well with the exact plane-wave solution (30) at t = 500. This verifies 
the validity of the two CNS algorithms in the spectral and physical spaces, described in Section 2.1 and Section 2.2.

Next, let us again consider the one-dimensional CGLE, but for the case c1 = 2 and c3 = 1, with the initial condition

A(x,0) = cos

(
4πx

)
+ cos

(
8πx

)
+ i cos

(
4πx

)
. (32)
L L L
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Fig. 1. Numerical simulations of the real part of A(x, t) at t = 500 given by the two CNS algorithms using the mode-number N = 64 for the spatial Fourier 
expansion, the order M = 8 of temporal Taylor expansion and the number Ns = 24 of significant digits in multiple precision, compared against the exact 
plane-wave solution: plane-wave solution (solid line); result from CNS algorithm in spectral space (red symbols); and result from CNS algorithm in physical 
space (blue symbols).

Fig. 2. Comparison of |A(x, t)| profiles (at t = 25) obtained by the two CNS algorithms using the mode number N = 128 for the spatial Fourier expansion and 
the number Ns = 24 of significant digits in multiple-precision: converged results from the CNS algorithm in spectral space (solid line); and corresponding 
results from the CNS algorithm in physical space (red symbols).

Here c1c3 > 1, and so the solution is unstable and becomes chaotic. The problem was solved using both CNS algorithms for 
N = 128 and Ns = 24. The results shown in Fig. 2 obtained using the two CNS algorithms are in close agreement with each 
other. This validates the CNS algorithm in physical space for problems involving the chaos regime.

Let Ã(x, t) denote the numerical simulation for c1 = 2, c3 = 1 with the initial condition (32), given by the CNS algorithm 
in physical space with much smaller numerical noise by setting N = 2048. Hence, Ã(x, t) can be regarded as much more 
accurate than the numerical simulations given by the two CNS algorithms in the spectral/physical space with N = 128. So, 
Ã(x, t) can be used as a benchmark (or a reference solution). According to (26),

δ(t) =

√
N−1∑
k=0

( ∣∣∣ Ã(x16k, t)
∣∣∣ − |A(xk, t)|

)2

√
N−1∑
k=0

∣∣∣ Ã(x16k, t)
∣∣∣2

(33)

is the deviation of |A(xk, t)| (given by the CNS algorithm using N = 128) from the much more accurate simulation | Ã(x, t)|
(given by the same CNS algorithm using N = 2048). As shown in Fig. 3, the deviation δ(t) defined by (33) and the spectrum-
deviation δs(t) defined by (28) of the numerical simulation |A(x, t)| given by the CNS algorithm in physical space grow in 
a similar fashion to those given by the CNS algorithm in spectral space; in both cases, N = 128 and Ns = 24, with the 
reliability check using N = 2048 and Ns = 24.

The foregoing has shown that the CNS algorithm in physical space not only can greatly improve computational efficiency 
(see Section 2.5), but also can attain the same “critical predictable time” Tc as that of the CNS algorithm in the spectral 
space.
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Fig. 3. Left: Comparison of the deviation δ(t) of |A(x, t)| obtained by the two CNS algorithms using the mode number N = 128 for the spatial Fourier 
expansion and the number Ns = 24 of significant digits in multiple-precision, with reliability check using N = 2048 and the same Ns . Right: Comparison of 
the corresponding spectrum-deviation δ|A|

s (t) of |A(x, t)|. Results given by the CNS algorithm in spectral space (black solid line); and by the CNS algorithm 
in physical space (red dashed line).

Fig. 4. Critical predictable time Tc versus the mode number N of the spatial Fourier expansion in a chaotic case of c1 = 2 and c3 = 1 with the initial 
condition (32), obtained by the CNS algorithm in physical space using the number Ns = 105 of significant digits in multiple-precision and different values 
of mode number N (from 32 to 2048). Tc given by the CNS (symbols); and analytic approximation formula (34) (solid line).

2.7. Relationship between Tc and the level of numerical noises

In summary, the basic idea of the CNS is to reduce the temporal/spatial truncation error and round-off error to such a 
required level that the computer-generated simulations are reliable throughout the entire spatial domain over a specified 
finite time interval [0, Tc], where Tc is the critical predictable time. It is found that Tc is often dependent upon the level of 
numerical noises, dominated by the order M of temporal Taylor expansion, the mode number N of spatial Fourier expansion, 
and number Ns of significant digits in multiple-precision data for all variables and parameters. Thus, for a given critical 
predictable time Tc , we should choose sufficiently large values of M , N and Ns to guarantee such a reliable simulation in 
the whole spatial domain within t ∈ [0, Tc]. Given that a universal relationship between Tc and M , N , and Ns is unknown, 
it is often necessary to have to carry out an additional CNS simulation with even smaller noise in order to determine Tc in 
practice. Furthermore, because we have the freedom to choose the order M of the temporal Taylor expansion according to 
(25) for the optimal time-step, we need determine the relationship between Tc and N, Ns only. Here, let us again consider 
the one-dimensional CGLE for a chaotic case when c1 = 2, c3 = 1 with the initial condition (32) as an example to illustrate 
how to evaluate such kind of relationships.

To investigate the relationship between Tc and N , we first set Ns = 105 to guarantee that the round-off and temporal 
truncation errors are below a given threshold, noting that both errors are at the same level in the present CNS algorithm, 
whereby tol = 10−Ns (see Section 2.3). In this case, the spatial truncation error should be larger than other errors and thus 
make up the bulk of the numerical noise. Then, for the same problem, we alter N (N = 2n with n being a positive integer, 
in order to implement the FFT) from 32 to 2048 to obtain a series of CNS results at different levels of spatial truncation 
error, and then determine the corresponding critical predictable time Tc of each CNS result by comparing it with another 
CNS result using a larger N (and hence smaller spatial truncation error). Fig. 4 shows that the critical predictable time Tc

in this case is almost directly proportional to N , such that
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Fig. 5. Critical predictable time Tc versus the number Ns of significant digits in multiple precision in a chaotic case of c1 = 2 and c3 = 1 with the initial 
condition (32), given by the CNS algorithm in physical space using the mode number N = 4096 for the spatial Fourier expansion, the tolerance tol = 10−105

for the temporal Taylor expansion and different values of Ns ranging from 16 to 70: Tc given by the CNS (symbols); and analytic approximation formula 
(34) (solid line).

Tc ≈ 1.643 N − 154. (34)

In addition, to investigate the relationship between Tc and Ns , we set mode number N = 4096 for the spatial Fourier 
expansion and the tolerance tol = 10−105 for the temporal Taylor expansion and vary the number Ns of significant digits 
in multiple-precision from 16 to 70 with 10−Ns > tol in order to ensure that the round-off error is the major source of 
numerical noise. In this way, for the same problem, we obtain a series of simulations given by the CNS, from which the 
corresponding critical predictable time Tc of each simulation is gained by comparing it against others with a larger Ns . 
Fig. 5 shows that the critical predictable time Tc is almost directly proportional to Ns in this case, such that

Tc ≈ 45 Ns − 140. (35)

Notably, when Ns = 16, corresponding to double precision, one has Tc ≈ 580, say, using double precision, one can gain a 
reliable computer-generated simulation at most in t ≤ 580, even if truncation error is very small by using a rather high order 
of temporal Taylor expansion and a rather large mode number N for the spatial Fourier expansion. This is exactly the same 
reason why high-order algorithms in double precision are useless for modifying convergence of chaotic computer-generated 
results, as previously mentioned by many researchers [2–5,7].

From (34) and (35), we have the linear relationship

Tc ≈ min {1.643 N − 154,45 Ns − 140} . (36)

Note that (36) provides an approximate relationship between Tc and N, Ns , which is important, although valid only for the 
case under consideration. Fortunately, it has been found that Tc is always directly proportional to Ns or N , approximately. 
Note that a similar linearity was reported by Turchetti et al. [31] about a chaotic map. So, this kind of linearity between Tc

and N, Ns should exist in general. In practice, we can first gain such kind of linear relationship by means of relatively small 
values of N and Ns (corresponding to small values of Tc ), and then further use this relationship to estimate the required 
(large) values of N and Ns for a given large value of Tc . In this way, the reliability check of the CNS simulation in a large 
interval of time may be avoidable, so that much CPU times is cut down.

According to (34) and (35), for the same Tc , the required value for the mode number N of spatial Fourier expansion 
grows faster than the required value for the number Ns of significant digits in multiple-precision. Thus, it is much more ex-
pensive and thus more challenging to obtain a reliable numerical simulation of a spatio-temporal chaotic system (governed 
by a nonlinear PDE) than a temporal chaotic one (by a set of nonlinear ODEs).

3. Influence of numerical noise on trajectories and statistics

It has been widely conjectured that long-term reliable computer-generated simulation of a chaotic system is impossible 
[2] even when the initial condition is exactly specified, because numerical noise from truncation and round-off errors 
inevitably occurs during each time-step of numerical simulation, and increases exponentially due to the butterfly-effect. 
Moreover, although double precision is widely used in computer-generated simulations, the influence of round-off error on 
reliable simulation of chaotic systems has been grossly underestimated. As several researchers have previously mentioned 
[3–5,7,20,21,33], it is impossible to achieve reliable, long-duration numerical simulations of chaotic systems by means of 
high-order algorithms in double precision. The importance of verification and validation (V & V) of computer-generated 
simulations is well known, and established techniques exist by which to determine the reliability of a numerical simulation 
(see e.g. [29,30]). The key point of the CNS is to ensure the reliability of computer-generated simulations: unlike traditional 
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Fig. 6. Spatio-temporal plot of |A(x, t)| using grey level representation from |A| = 1.25 (white) to |A| = 0 (black): (a) 0 ≤ t ≤ 400; (b) 400 ≤ t ≤ 800; (c) 
1200 ≤ t ≤ 1600; and (d) 2000 ≤ t ≤ 2400. CNS results (left panels); and RKwD results (right panels).

algorithms, CNS acts to decrease both the truncation and round-off errors to a required level for reliable simulations of 
chaotic systems over a specified, large but finite interval of time, as illustrated by Liao and Wang [20,65] for the Lorenz 
equation. Therefore, the CNS can provide us reliable, convergent simulations of chaotic systems as benchmarks that make it 
possible to investigate the influence of numerical noise over a given interval of time by comparing these benchmarks with 
those produced by traditional algorithms in the double precision.

Without loss of generality, let us consider the one-dimensional CGLE within the chaotic regime when c1 = 2 and c3 =
1 for the same initial condition (32). In this case, the solution exhibits periodicity and symmetry in space. The reliable 
numerical simulations obtained by the CNS algorithm in physical space (marked as “CNS”) using Ns = 105 are used as 
benchmarks, which are compared with the corresponding results obtained by the temporal 4th-order Runge-Kutta method 
with double precision (marked as “RKwD”). Both the CNS and RKwD results have the same mode number N = 4096 for 
spatial Fourier expansion so that they have the same spatial truncation error. For time evolution, the CNS algorithm in 
physical space uses a high-order Taylor expansion with tolerance tol = 10−105, whereas the RKwD utilises a time-step 
�t = 10−4 with associated temporal truncation error of order O (10−16) (which is at the same level of the round-off error 
of the RKwD due to the use of double precision). According to (36), the CNS result (with Ns = 105 and N = 4096) has critical 
predictable time Tc > 4500, which is much larger than Tc ≈ 580 for the RKwD simulation (with Ns = 16 and N = 4096). 
Notably, the CNS result is reliable over an interval of time about 7.7 times longer than that of the RKwD one. To guarantee 
the reliability, we use the CNS result in a smaller interval of time, say, t ∈ [0, 3000], which therefore can be certainly used 
as a benchmark for comparisons described below.

Note that the initial condition (32) has a kind of spatial symmetry, which, according to the governing equation, should 
be retained by the solution (if evaluated correctly). As shown in Fig. 6, this is indeed true for the CNS result in the whole
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Fig. 7. Time histories of total spectrum-energy of the real and imaginary parts of the numerical simulations obtained by CNS and RKwD in the chaotic case 
of c1 = 2 and c3 = 1 with the initial condition (32): (a) real part, with maximum relative error 417.14%; and (b) imaginary part, with maximum relative 
error 465.80%. CNS results (red line); and RKwD results (black dashed line).

spatial domain x ∈ [0, L] throughout the entire interval t ∈ [0, 3000]. However, the numerical simulation given by the RKwD 
loses the spatial symmetry at t ≈ 580. For t < 580, the result given by the RKwD agrees quite well with that by the CNS. 
However, thereafter, the deviation between the two simulations becomes larger and larger, and the spatial symmetry in 
the RKwD result even breaks. This occurs mainly because, due to the butterfly-effect, numerical noise in the RKwD result 
increases exponentially. For t > 580, the RKwD result appears to become a mixture of the true solution and numerical noise 
at the same level of magnitude: as the numerical noise increases exponentially, the randomness in the noise first creates 
a distinct difference in the spatio-temporal trajectories and then causes a spatial symmetry-breaking. This indicates that 
numerical noise in the RKwD solvers might generate not only quantitative differences in the spatio-temporal trajectories but 
also some qualitative deviations in computer-generated simulation of chaotic system.

We now investigate the influence of numerical noise on the real and imaginary parts of the RKwD result, separately. 
At any given time, the result for each part can be expressed as a spatial Fourier expansion. Note that a spatial energy-
spectrum of a spatio-temporal chaos at a given time often has important physical meanings. With this in mind, Fig. 7
depicts the comparison of the total spectrum-energy of the real and imaginary parts of the two simulations given by the 
CNS (in physical space) and RKwD, respectively. The two methods give almost the same total spectrum-energy when t ≤ 580. 
However, thereafter, the deviation becomes increasingly distinct, with the maximum relative error reaching 417.14% for the 
real part and 465.80% for the imaginary part. The corresponding spectrum-deviation of the RKwD result (compared with the 
CNS one), defined by (28), becomes distinct after t > 580, with a maximum value of 551.23% for the real part and 603.83% 
for the imaginary part, as shown in Fig. 8. These results demonstrate that numerical noise can lead to great deviations not 
only in the spatio-temporal trajectories but also in the total spatial spectrum-energy of a chaotic system!

Why does numerical noise have such a huge influence on the total spectrum-energy of the real and imaginary parts of 
the RKwD simulation? To answer this question, let us compare the spatial Fourier spectra of the real part of the CNS and 
RKwD results at different times, as shown in Fig. 9. Note that, the odd wave numbers, i.e. k = 1, 3, 5, · · · , of the spatial 
Fourier spectra of the CNS result do not contain any energy at any stage throughout the whole interval of time 0 ≤ t ≤ 3000. 
In other words, the odd wave number components of the spatial Fourier spectrum of the CNS result always remain zero. This 
is exactly the reason why the CNS results invariably retain the spatial symmetry over the entire time interval 0 ≤ t ≤ 3000. 
However, this property of the true solution does not hold for the RKwD simulation. For small time, such as t = 20, the two 
spectra agree quite well. When t = 600, tiny differences can be discerned between the two spectra, and some odd wave 
number components in the spatial Fourier spectrum of the RKwD simulation have become energetic. Furthermore, Fig. 9 (c) 
and (d) show that as time increases, the deviation between the two spectra grows, and the odd wave number components 
in the spatial Fourier spectrum of the RKwD simulation contain an increasing amount of energy. At a sufficiently large time, 
such as t = 1600, the odd wave number components in the spatial Fourier spectrum of the RKwD simulation reach the same
level of energy as the even components, as shown in Fig. 9 (d). This reveals a fundamental mistake in the RKwD simulation 
methodology. By comparing the spatial Fourier spectra (Fig. 10) of the imaginary part of the RKwD simulation with that of 
the CNS one, we reach the same conclusion. These results demonstrate that the random numerical noise of a chaotic system 
can rapidly increase to the same level (in both the real and imaginary parts) of the true solution and besides could transfer 
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Fig. 8. Time histories of spectrum-deviation of the real and imaginary parts of the RKwD simulation in the chaotic case of c1 = 2 and c3 = 1 with the initial 
condition (32), compared with the benchmark given by CNS: (a) real part with maximum value δRe

s = 551.23%; and (b) imaginary part with maximum 
value δ Im

s = 603.83%.

to all wave numbers of the spatial Fourier spectrum! The foregoing comparisons explain why the RKwD simulation might 
not only lose the spatial symmetry but also lead to great deviations in total spectrum-energy, and why numerical noise can 
lead to huge deviations in the spatio-temporal trajectories, the total spectrum-energy, and certain fundamental properties 
(such as spatial symmetry) of a chaotic system.

Fig. 11 presents a comparison between the spatial Fourier spectra of |A(x, t)| obtained using the CNS and RKwD at 
different times. Again, the odd wave number components in the CNS spectrum contain no energy throughout the entire 
time interval, corresponding to the spatial symmetry of the true chaotic solution. At small times, such as t = 20, the two 
spectra are in close agreement. However, as time further increases, the odd wave number components in the spatial Fourier 
spectrum of |A| obtained using RKwD amplify to the point at which they could reach the same energy level as the even 
components (Fig. 11 (b), (c) and (d)) at t = 600, t = 1000 and t = 1600. Again, this is incorrect, and is an artifact of numerical 
noise as it grows in the system as predicted by RKwD.

However, Fig. 12 indicates that |A(x, t)| of the RKwD simulation has a maximum relative error 3.35% of the total spatial 
spectrum-energy with a maximum spectrum-deviation 20.99%, which are much smaller than those obtained above for the 
real and imaginary parts of A(x, t). Note that |A(x, t)| is a function of the real and imaginary parts of A(x, t). It seems that 
the numerical errors of the real and imaginary parts of A(x, t) might counteract each other for |A(x, t)| in the case under 
consideration.

Note that the constant term in the spatial Fourier spectrum has the wave number zero, i.e. k = 0, corresponding to the 
overall spatial average of the simulation, and thus does not contain any information about the structure of the solution. In 
fact, it is the spatial Fourier spectrum without k = 0 that contains information on the solution structure. The spatial energy-
spectrum without the wave number k = 0 of |A(x, t)| obtained by the RKwD has a maximum relative error that is 735.99% 
of the total spatial spectrum-energy and a maximum relative error that is 803.54% of the spatial spectrum-deviation, as 
shown in Fig. 13. This reveals that numerical noise has a huge influence on the solution structure of |A(x, t)| (as may be not 
evident in Fig. 12).

It is often assumed that numerical simulations of chaotic systems are sufficiently accurate in terms of their statistics 
even if their spatio-temporal trajectories are completely different. We now examine whether this is really true. First, let us 
compare the spatial mean value

μ|A|(t) = 1

L

L∫
0

|A(x, t)|dx

of |A(x, t)| and the corresponding spatial standard deviation
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Fig. 9. Comparison of the spatial Fourier energy spectra of the real part of the computer-generated simulation obtained by the CNS and RKwD in the chaotic 
case of c1 = 2 and c3 = 1 with the initial condition (32): (a) t = 20; (b) t = 600; (c) t = 1000; and (d) t = 1600. CNS results (solid triangles); and RKwD 
results (open circles).

σ|A|(t) =

√√√√√1

L

L∫
0

[
|A(x, t)| − μ|A|(t)

]2
dx ,

of the CNS and RKwD results (using N = 4096) in the chaotic case of c1 = 2 and c3 = 1, subject to the initial condition 
(32). Fig. 14 shows that, for t > 580, the results given by RKwD are obviously different from those given by CNS, with a 
maximum relative error of 4.70% in the spatial mean μ|A|(t) and 189.13% in the corresponding spatial standard deviation 
σ|A|(t). The differences grow considerably after t > 1200. This again confirms the deleterious effect of the contamination by 
numerical noise of computer-generated simulations of chaos even on the statistics, especially for long-duration simulations.

Secondly, let us examine the temporal mean

μ|A|(x) = 1

T

T∫
0

|A(x, t)|dt

and the corresponding temporal standard deviation

σ|A|(x) =

√√√√√ 1

T

T∫ [
|A(x, t)| − μ|A|(x)

]2
dt
0



T. Hu, S. Liao / Journal of Computational Physics 418 (2020) 109629 17
Fig. 10. Comparison of the spatial Fourier energy spectra of the imaginary part of the computer-generated simulations obtained by the CNS and RKwD in 
the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): (a) t = 20; (b) t = 600; (c) t = 1000; and (d) t = 1600. CNS results (solid triangles); 
and RKwD results (open circles).

of |A(x, t)| given by the CNS and RKwD, where T = 3000. The temporal statistic results given by the RKwD exhibit obvious 
differences from those by the CNS, with a maximum relative error 9.88% in μ|A|(x) and 536.05% in σ|A|(x), as can be seen 
in Fig. 15. Notably, although the temporal mean μ|A|(x) and standard deviation σ|A|(x) obtained by the CNS have a kind of 
spatial symmetry, this fundamental statistical property of the true solution is lost in the RKwD simulation.

Turning thirdly to the spatial mean value

μϕ(t) = 1

L

L∫
0

ϕ(x, t)dx

of the phase ϕ(x, t) of A(x, t) and its corresponding spatial standard deviation

σϕ(t) =

√√√√√1

L

L∫
0

[
ϕ(x, t) − μϕ(t)

]2
dx ,

obtained by the CNS and RKwD results in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32). For t > 580, 
the results given by RKwD differ considerably from those given by CNS, with a maximum relative error of 1597139% and 
the maximum absolute error of 17.18 for the spatial mean μϕ(t), maximum relative error of 1084.6% for the corresponding 
spatial standard deviation σϕ(t) (Fig. 16). The results continue to diverge for t > 1200. This again confirms the great impact 
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Fig. 11. Comparison of the spatial Fourier energy spectra of the computer-generated simulation |A(x, t)| obtained by CNS and RKwD in the chaotic case of 
c1 = 2 and c3 = 1 with the initial condition (32): (a) t = 20; (b) t = 600; (c) t = 1000; and (d) t = 1600. CNS results (solid triangles); and RKwD results 
(open circles).

Fig. 12. Left: Time histories of total spectrum-energy of the computer-generated simulations |A(x, t)| obtained by CNS and RKwD in the chaotic case of 
c1 = 2 and c3 = 1 with the initial condition (32): CNS result (red line); and RKwD result (black dashed line). Right: Time histories of corresponding 
spectrum-deviation δ|A|

s , with a maximum value of 20.99%.
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Fig. 13. Left: Time histories of spatial spectrum-energy Ek>0 of |A(x, t)| except the zero wave number component, obtained by CNS and RKwD in the 
chaotic case of c1 = 2 and c3 = 1 with the initial condition (32), with a maximum relative error of 735.99%. CNS results (red line); and RKwD results (black 
dashed line). Right: Time histories of corresponding spectrum-deviation δk>0

s with a maximum value of 803.54%.

Fig. 14. Time histories of (a) spatial mean value μ|A|(t) and (b) spatial standard deviation σ|A|(t) of |A(x, t)| obtained by CNS and RKwD in the chaotic case 
of c1 = 2 and c3 = 1 with initial condition (32), with maximum relative errors of 4.70% for μ|A|(t) and 189.13% for σ|A|(t), respectively: CNS results (red 
line); and RKwD results (black dashed line).

of numerical noise on computer-generated simulations of chaos even in terms of the statistics, particularly for long-duration 
simulations.

Next, we examine the temporal mean

μϕ(x) = 1

T

T∫
0

ϕ(x, t)dt

of the phase ϕ(x, t) of A(x, t) and its corresponding temporal standard deviation

σϕ(x) =

√√√√√ 1

T

T∫
0

[
ϕ(x, t)| − μϕ(x)

]2
dt,

where T = 3000. In Fig. 17 these temporal statistics of the RKwD numerical predictions display obvious differences from 
those by CNS, with maximum relative error of 857737% and maximum absolute error of 0.67 for μϕ(x) and maximum 



20 T. Hu, S. Liao / Journal of Computational Physics 418 (2020) 109629
Fig. 15. Comparison of spatial profiles of (a) temporal mean μ|A|(x) and (b) corresponding spatial standard deviation σ|A|(x) of |A(x, t)|, obtained by CNS 
and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32), with maximum relative errors of 9.88% for μ|A|(x) and 536.05% for 
σ|A|(x), respectively. CNS results (red line); and RKwD results (black dashed line).

Fig. 16. Time histories of (a) spatial mean value μϕ(t) and (b) spatial standard deviation σϕ(t) of phase of A(x, t), obtained by CNS and RKwD in the 
chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): CNS results (red line); and RKwD results (black dashed line).

relative error 166.53% for σϕ(x). The temporal mean μϕ(x) and standard deviation σϕ(x) obtained by CNS again demonstrate 
a kind of spatial symmetry correctly, unlike the corresponding results from the RKwD simulations.

Fig. 16 shows that the spatial mean μϕ(t) and the spatial standard deviation σϕ(t) of the CNS result remain similar 
throughout the entire interval t ∈ [0, 3000]. However, the corresponding RKwD results are highly non-stationary, with con-
siderable changes between the values of spatial mean μϕ(t) and spatial standard deviation σϕ(t) before and after t ≈ 1200. 
Similar behaviour is exhibited by the spatial mean μ|A|(t) and the spatial standard deviation σ|A|(t) shown in Fig. 14, the 
spatial spectrum energy of |A| except the constant term (corresponding to the wave number k = 0) in Fig. 13, the total 
spectrum energy of |A| in Fig. 12, and the total spectrum energy of the real and imaginary parts of A(x, t) in Fig. 7.

The one-dimensional CGLE exhibits two distinct chaotic phases, namely “phase chaos” when A is bounded away from 
zero, and “defect chaos” when the phase of A exhibits singularities where A ≈ 0, respectively [43,45,47]. Shraiman et al. 
[45] pointed out that the crossover between phase and defect chaos is invertible when c1 > 1.9 (we consider c1 = 2 in this 
section). Let

|A|min(t) = min
{
|A(x, t)|

∣∣∣ x ∈ [0, L]
}
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Fig. 17. Comparison of spatial profiles of (a) temporal mean μϕ(x) and (b) corresponding standard deviation σϕ(x) of the phase of A(x, t), obtained by CNS 
and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): CNS results (red line); and RKwD results (black dashed line).

Fig. 18. Time histories of the spatial minimum of |A(x, t)| obtained by CNS and RKwD over t ∈ [0, 3000] in the chaotic case of c1 = 2 and c3 = 1 with the 
initial condition (32): CNS results (red line); and RKwD results (black dashed line).

Fig. 19. Spatial profiles of |A(x, t)| obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): (a) t = 1528; and (b) 
t = 2599. Left: CNS results (red line); Right: RKwD results (black line).

denote the spatial minimum of |A(x, t)| at a given time t . Fig. 18 compares time histories of |A|min(t) given by CNS and 
RKwD. It can be seen that the CNS result of |A| is invariably bounded away from zero, implying that the solution is in 
the so-called phase chaos regime throughout the entire duration of the simulation, i.e. t ∈ [0, 3000]. However, the |A|min(t)
given by RKwD often exhibits a sudden drop to a value very close to zero after t > 1200 (Fig. 18), corresponding to the 
so-called defect chaos displayed in Fig. 19 for |A| and Fig. 20 for the phase ϕ with occasional jumps in phase indicating the 
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Fig. 20. Spatial profiles of the phase of A(x, t) obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): (a) t = 
1528; and (b) t = 2599. Left: CNS results (red line); Right: RKwD results (black line).

Fig. 21. Time histories of spectrum-deviation of the real part of the RKwD simulations in the chaotic case of c1 = 2 and c3 = 1 with the initial condition 
(32) using different values of time-step, with the CNS result as the benchmark: �t = 1 × 10−4 (red solid line); and �t = 1 × 10−5 (black dashed line).

presence of singularities. The RKwD simulation therefore incorrectly predicts a crossover between phase and defect chaos in 
the interval [0, 3000], which does not occur in the reliable CNS result. This illustrates the risk posed by numerical noise in 
computer-generated simulation of chaotic systems.

Note that both of CNS and RKwD use the same number of modes, N = 4096, in the spatial Fourier expansion in space 
and thus have the same spatial truncation error. Given that CNS utilizes the temporal high-order Taylor series in multiple 
precision, the CNS algorithm should have a much smaller truncation error in time dimension than the 4th-order Runge-
Kutta method in double precision (RKwD). It is found that using a smaller time-step (such as �t = 1 × 10−5) can not 
improve the spectrum-deviations of the real part of A(x, t) given by the RKwD, as evident in Fig. 21. This means that 
the temporal truncation error of RKwD is not the dominant source of its numerical noise. Instead, the numerical noise 
of the RKwD result primarily arises from the round-off error due to the use of double precision. So, all of the above-
mentioned comparisons illustrate the risk of using double precision in computer-generated simulation of spatio-temporal 
chaotic systems, particularly for a long-duration simulation.

4. Concluding remarks and discussions

Due to the famous butterfly-effect, numerical noise caused by the truncation and round-off errors increases exponen-
tially for chaotic system so that it is hard to obtain a reliable computer-generated simulation in a long-duration time. 
The shadowing method [9–14] works for a uniformly hyperbolic system, but hardly any chaotic systems are uniformly hy-
perbolic [15,16]. Particularly, there is no practical method to efficiently gain reliable computer-generated simulations in a 
long-duration time for spatio-temporal chaotic systems governed by nonlinear PDEs, to the best of our knowledge.
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Unlike the shadowing method, the strategy of the Clean Numerical Simulation (CNS) is to greatly reduce numerical noises 
(caused by both of temporal/spatial truncation error and round-off error) to such a tiny level that is required for a reliable 
simulation in a given interval of time t ∈ [0, Tc]. Based on such a hypothesis that numerical noise of chaotic system increases 
exponentially, the so-called “critical predictable time” Tc is determined by comparing a simulation with an additional new 
one given by the same initial condition and physical parameters but smaller numerical noise. In this way, we gain a “clean” 
numerical simulation in [0, Tc], whose noise is below a given criterion of noise. This kind of “clean” numerical simulation 
should be close to the true solution and thus can be used as a benchmark solution for many purposes, for example, verifying 
numerical results given by a developing code, studying the propagation of physical micro-level uncertainty of a chaotic 
dynamic system [21,35,38], finding new periodic orbits of the three-body problem [36,37,39], investigating the influence of 
numerical noise on chaotic simulations given by the traditional algorithms in double precision (as illustrated in this paper), 
and so on.

In this paper, a new CNS algorithm in physical space is proposed for spatio-temporal chaos, which is computationally 
much more efficient than its predecessor in spectral space [38]. To verify its computational performance, the new CNS 
algorithm was used to solve the one-dimensional complex Ginzburg-Landau equation (CGLE), a well known example of 
spatio-temporal chaos. In the case of c1 = 2, c3 = 1 with the initial condition (32), the CNS result (using the spatial Fourier 
mode number N = 4096 and the number Ns = 105 of significant digits in multiple precision) remained convergent over 
considerably long time interval t ∈ [0, 3000] throughout the whole spatial domain x ∈ [0, L], where L = 256. This CNS result 
was considered reliable, and was therefore used as a benchmark.

By comparing this benchmark solution with that obtained using the 4th-order Runge-Kutta integration in double pre-
cision (RKwD), it was found that the two simulations only exhibited agreement over a small interval of time t ∈ [0, 580]. 
The CNS solution retained a kind of spatial symmetry and the phase chaos over the entire time interval t ∈ [0, 3000], unlike 
the RKwD simulation which lost the spatial symmetry when t > 580 and degenerated into a mixture of phase and defect 
chaos after t > 1200. Moreover, the odd wave number components in the spatial spectrum of the CNS benchmark solution 
invariably remained zero, i.e. did not attract energy, unlike the RKwD simulation where the odd wave number components 
progressively gained energy after t > 580. This energy transfer in the RKwD simulation has arisen as a consequence of the 
double precision arithmetic where random information at the level of the last significant figure has grown exponentially 
to the macroscopic level, contaminating all wave numbers in the spatial spectrum. Particularly, the RKwD simulation in a 
long-duration interval t ∈ [0, 3000] is obviously different from the CNS result even in statistics! The overall message of this 
paper, based on the foregoing findings, is that numerical noise from truncation and round-off errors in double precision 
arithmetic could lead to huge quantitative and statistical discrepancies in predictions on spatio-temporal chaos.

It again should be noted that the Lorenz equation essentially derives from a greatly simplified form of the Navier-Stokes 
equations that are commonly used to describe turbulent flows. Given that chaos inherently has a close relationship to 
turbulence, it is important to check the risk posed by the use of double precision for numerical simulations of turbulent 
flows, particularly in a rather long interval of time.

Currently, the deep learning [66] has been widely used to many complicated problems including the turbulent flows 
[67,68] and the three-body problems [69]. What will happen when the deep learning is applied to solve spatio-temporal 
chaos whose statistic results are sensitive to numerical noises (as mentioned in this article)? This is an interesting but open 
question.

Since rather small truncation error is required in time dimension, a low order temporal algorithm is unacceptable in the 
frame of the CNS. For example, it is found that the standard low order method such as the third-order exponential time 
differencing (ETD) method [70,71], which is a straightforward extension of the 4th-order Runge-Kutta integration and can 
provide a rather long time step-size for stiff systems, requires a quite small time-step �t ≈ 10−25 to obtain the reliable 
simulation in the time interval t ∈ [0, 3000] for the considered problem. Its corresponding CPU time cost is too expansive.

Therefore, high order temporal algorithms must be considered in the frame of the CNS. Although the exponential time 
differencing (ETD) method also have high-order scheme of multi-step type [70,71], the high-order Taylor series method still 
has some irreplaceable advantages in practice. First, using the high-order Taylor series method is very convenient, because 
only initial condition is required for it. But using the multi-step type ETD is not easy, because a kth-order multi-step ETD 
requires k previous time step values. However, sufficiently accurate previous time step values are difficult to obtain, especially 
when the order k is high. In addition, this might bring additional numerical noise. Secondly, for the high-order Taylor series 
method, the code is the same for arbitrary order M . However, using the multi-step type ETD, one had to modify the code 
for a different order. This is rather inconvenient, especially when the required order is very high, as illustrated in [32]. 
Furthermore, according to our experience, the high-order Taylor series method seems more stable than the multi-step type 
ETD, especially when the order is rather high.

In this paper, a new CNS algorithm is proposed, which is based on the discretization of unknown variables in physical 
space, as illustrated in (16). The Fourier collocation method with the FFT is used to calculate the spatial partial derivatives 
only. As shown in §2.5, the new CNS algorithm in physical space is computationally much more efficient than its predecessor 
in spectral space described in §2.1. Besides, it gives as accurate simulation as its predecessor, as shown in §2.6. Since the 
new CNS algorithm directly solves problems in physical space, it is unnecessary for us to use the Fourier pseudo-spectral 
method [72,73], which is equivalent to the Fourier collocation method, as pointed by Peyret [61,62]. This also explains why 
the two CNS algorithms can give the simulations at the same level of accuracy, as shown in §2.6.



24 T. Hu, S. Liao / Journal of Computational Physics 418 (2020) 109629
The CGLE has stiff solutions such as Bekki-Nozaki holes [74], and there exist isolated non-analyticities when defect chaos 
occur. Note that the so-called Bekki-Nozaki holes [74] has a closed-form solution, which is certainly not chaotic. However, 
in the case of c1 = 2, c3 = 1 with the initial condition (32), the CNS benchmark solution in t ∈ [0, 3000] retains the “phase 
chaos”, because |A| is always bounded away from zero, as shown in Figs. 18 and 19, and besides its phase has no jumps 
at all, as shown in Fig. 20. This is quite different from the RKwD simulation, whose |A| often exhibits a sudden drop to 
a value very close to zero after t > 1200 (see Fig. 18), corresponding to the defect chaos displayed in Fig. 19 for |A| and 
Fig. 20 for the phase ϕ with occasional jumps indicating the presence of singularities. Obviously, the singularity (related to 
the defect chaos) of the RKwD simulation is a kind of artifact, caused by the numerical noises and the butterfly-effect of 
chaos. Generally speaking, any singularities are difficult to solve numerically. So, it is worth investigating whether the CNS 
can handle such kind of singularities in spatio-temporal chaos, when they indeed exist.

According to our experience of the CNS on the Lorenz equation [20,32], the three-body problem [34–37,39], the Rayleigh-
Bénard turbulent flows (governed by the Navier-Stokes equation) [38] and so on, a computer-generated simulation of a 
chaotic system often has a finite value of the critical predictable time Tc , which seems to be dependent upon values of 
physical parameters and level of numerical noises. From the viewpoint of the CNS, this is easy to understand, since numer-
ical noise at a specfied level needs, more or less, some time to propagate to a critical level, below which the simulation is 
clean and thus reliable. Obviously, the lower the specified level of the numerical noise, the larger the value of Tc , and besides, 
the lower the critical level of the noise, the more accurate and the more reliable is the CNS result. Here, Tc is determined 
by comparing two simulations, using the butterfly-effect of chaos (although it is traditionally often regarded to be negative). 
The CNS is generally valid for most of chaotic systems, even if they are not hyperbolic. So, compared to the shadowing 
lemma [9,10], the strategy of the CNS is more practical, though it loses somewhat mathematical rigour. Note that, using a 
simple model, Yuan and Yorke [75] showed that a numerical artifact may persist even for an arbitrary high numerical pre-
cision. Indeed, there is a long way to go to reach a reliable computer-generated simulation for any spatio-temporal chaotic 
systems in a reasonably long interval of time within a complicated spatial domain.
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