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a b s t r a c t

In this paper, we propose an iterative approach to increase the computation efficiency of the
homotopy analysis method (HAM), a analytic technique for highly nonlinear problems. By means of the
Schmidt–Gram process (Arfken et al., 1985) [15], we approximate the right-hand side terms of high-order
linear sub-equations by a finite set of orthonormal bases. Based on this truncation technique,we introduce
the Mth-order iterative HAM by using each Mth-order approximation as a new initial guess. It is found
that the iterative HAM ismuchmore efficient than the standard HAMwithout truncation, as illustrated by
three nonlinear differential equations defined in an infinite domain as examples. This work might greatly
improve the computational efficiency of the HAM and also the Mathematica package BVPh for nonlinear
BVPs.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Ordinary differential equations (ODEs) arewidely used inmath-
ematics, science and engineering. The so-called initial value prob-
lems (IVPs) specify some restrictions only at a single point. This
kind of problem is often solved by means of a numerical approach
based on integration, such as the Runge–Kutta method. However,
in many cases, a solution is described in a more complicated way.
The so-called boundary value problems (BVPs) specify some re-
strictions at more than one point. Unlike IVPs, BVPs might have
multiple solutions, or may satisfy some restrictions at infinity.
Hence, BVPs are often more difficult to solve than IVPs.

Thanks to the development of mathematical software, such
as Maple, Mathematica and MATLAB, some packages have been
developed to solve nonlinear BVPs, such as BVP4c, Chebfun and
BVPh. The famous MATLAB package BVP4c [1,2] implements a
collocation method, instead of a shooting method. The collocation
polynomial provides a C1-continuous solution that is fourth-order
accurate uniformly in [a, b]. Mesh selection and error control are
based on the residual of the continuous solution. However, it is not
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easy for BVP4c to resolve the singularity in governing equations
and/or boundary conditions. Besides, BVP4c regards an infinite
interval as a kind of singularity and replaces it by a finite one: this
leads to the additional inaccuracy and uncertainty of solutions.

Chebfun [3,4] is a collection of algorithms on the ‘‘chebfun’’
objectswritten inMATLAB. It aims to combine the feel of symbolics
with the speed of numerics. The basis of Chebfun is Chebyshev
expansions, fast Fourier transform, barycentric interpolation and
so on. The idea ‘‘computing numerically with functions instead
of numbers’’ [4] behind Chebfun makes it have the potential
to handle unbounded domains and singularities in a easy way.
Although linear differential equations can be solved in a single
step by Chebfun without iteration, only a few examples for
nonlinear differential equations are given [3,4]. Actually, Chebfun
uses Newton’s iteration to solve nonlinear problems. However, it is
well known that the convergence of Newton’s iteration is strongly
dependent upon initial guesses and thus is not guaranteed. Besides,
Chebfun searches for multiple solutions of nonlinear differential
equations by using different guess approximations. However, it is
not very clear how to choose these different guess approximations.

Based on the homotopy in topology, the so-called homotopy
analysis method (HAM) has been proposed by Liao [5–10] to gain
analytic approximations of highly nonlinear problems. The HAM
has some advantages over other traditional analytic approxima-
tionmethods. First, unlike perturbation techniques, the HAM is in-
dependent of small/large physical parameters, and thus is valid in
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more general cases. Besides, different from all other analytic tech-
niques, the HAM provides us with a convenient way to guarantee
the convergence of series solution. Furthermore, theHAMprovides
extremely large freedom to choose the initial guess and equation
type of linear sub-problems. It is found [7,5] that lots of nonlin-
ear BVPs in science, engineering and finance can be solved conve-
niently by means of the HAM, no matter whether the interval is
finite or not.

Based on the HAM, aMathematica package BVPh 1.0 for nonlin-
ear boundary value/eigenvalue problems with singularity and/or
multi-point boundary conditions was issued by Liao [5] in May
2012,which is free and available online (http://numericaltank.sjtu.
edu.cn/BVPh.htm). Its aim is to develop a kind of analytic tool for
as many nonlinear BVPs as possible such that multiple solutions
of highly nonlinear BVPs can be conveniently found out, and that
the infinite interval and singularities of governing equations and/or
boundary conditions at multi-points can be easily resolved. As il-
lustrated by Liao [5], BVPh 1.0 is valid for lots of nonlinear BVPs and
thus is a useful tool in practice.

Based on the HAM, the Maple package NOPH [11] for period-
ically oscillating systems of center and limit cycle types is cur-
rently being developed, which delivers accurate approximations
of frequency, mean of motion and amplitude of oscillation auto-
matically. NOPH combines Wu’s elimination method and the ho-
motopy analysis method (HAM). It is free and available online
(http://numericaltank.sjtu.edu.cn/NOPH.htm). Unlike BVPh, NOPH
is only applicable to periodic oscillations. This illustrates the gen-
eral validity of the HAM for nonlinear problems.

However, based on Mathematica, BVPh suffers from the com-
mon problem in symbolic computation: the intermediate expres-
sions ‘‘swell’’ so fast that it needs more and more CPU time to gain
high-order approximations. To obtain accurate approximations in
a short time, Yabushita et al. [12] suggested an optimal HAM ap-
proach byminimizing the squared residual of governing equations.
Niu et al. [13] and Liao [14] further developed some optimal ap-
proaches based on the HAM. Especially, Liao [5] suggested an iter-
ative analytic technique, in which the initial guess is replaced by
truncated analytic approximations over and over. For differential
equations in a finite interval, trigonometric functions (or polyno-
mial functions) are usually used to express solutions. In this case,
orthonormal trigonometric functions (or Chebyshev polynomials)
are used to approximate the right-hand side of high-order defor-
mation equations (see [5] for details). As illustrated by Liao [5], ac-
curate approximations can be gained more efficiently by means of
the HAM in this way.

In this paper, we generalize this kind of iterative analytic
approach for nonlinear differential equations in a semi-infinite in-
terval by means of the Schmidt–Gram process [15]. The orthonor-
mal functions derived from the Schmidt–Gram process are used to
approximate the right-hand side of high-order deformation equa-
tions during computation, and the Mth-order approximation is
then used as a new initial guess to gain a better approximation. In
this way, the computational efficiency of the HAM can be greatly
improved, as illustrated in this paper.

This paper is arranged as follows. In Section 2 the basic ideas
of the standard HAM are briefly described. In Section 3 the ideas of
the truncation and iteration technique based on the Schmidt–Gram
process [15] are explained, and the HAM-based iterative analytic
approach is proposed. Section 4 gives somekey points of the imple-
mentation of this HAM-based iterative approach. In Section 5 three
different boundary-layer flow problems are used as examples to
demonstrate the validity and efficiency of the iteration approach.
Some conclusions and discussions are made in the final section.
2. Basic ideas of the HAM

Consider a system of S equations,

Nj[u1(x), . . . , uS(x)] = 0, j = 1, . . . , S, x ∈ Ω, (1)

where Nj is a nonlinear differential operator, x and uj are the
independent and dependent variables, and Ω denotes the solution
interval, respectively.

The HAM is based on the concept of homotopy in topology,
which describes a continuous deformation or variation in general.
Let q ∈ [0, 1] denote an embedding parameter for homotopy,
c0,j ≠ 0 an auxiliary parameter (called a convergence-control
parameter), Hj(x) an auxiliary function, Lj an auxiliary linear
operator, and uj,0(x) an initial guess of the solution uj(x),
respectively. To build a continuous deformation (or variation) from
the initial guess uj,0(x) to the true solution uj(x), we construct the
so-called zeroth-order deformation equations

(1 − q)Lj[φj(x; q) − uj,0(x)]

= q c0,j Hj(x) Nj[φ1(x; q), . . . , φS(x; q)]. (2)

Obviously, we have the solution φj(x; 0) = uj,0(x) when q = 0,
and φj(x; 1) = uj(x) when q = 1, respectively. In other words,
φj(x; q)denotes a continuous variation from the initial guess uj,0(x)
to the solutionuj(x), as q increases from0 to 1. Then,we can expand
φj(x; q) in Taylor series with respect to the embedding parameter
q, i.e.

φj(x; q) = uj,0(x) +

+∞
k=1

uj,k(x)qk. (3)

It should be emphasized that we have great freedom to choose the
auxiliary linear operator Lj, the initial guess uj,0(x) and especially
the so-called convergence-control parameter c0,j, as pointed out by
Liao [16]. Assuming that all of them are properly chosen so that the
series (3) converges at q = 1, we get the series solution

uj(x) = uj,0(x) +

+∞
k=1

uj,k(x). (4)

Themth-order approximation of uj(x) is given by

uj(x) ≈ Uj,m(x) =

m
k=0

uj,k(x). (5)

Applying the so-called homotopy-derivative operator [17]

Dk(�) =
1
k!

∂k�

∂qk


q=0

(6)

to both sides of Eqs. (2) and using its properties, it is straightfor-
ward to derive the kth-order deformation equations (k ≥ 1)

Lj[uj,k(x) − χkuj,k−1(x)]

= c0,j Hj(x) Rj,k−1(x), j = 1, . . . , S, (7)

where

Rj,k−1(x) = Dk−1{Nj[φ1(x; q), . . . , φS(x; q)]}

= Dk−1


Nj


k−1
i=0

u1,i(x)qi, . . . ,
k−1
i=0

uS,i(x)qi


(8)

and

χk =


0, k ≤ 1,
1, k > 1. (9)

Note that Rj,k−1 is only dependent upon uj,0(x), . . . , uj,k−1(x),
j = 1, . . . , S. Thus, it is easy to gain uj,k(x), j = 1, . . . , S, by solving
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the linear equations (7). The convergence of the series (3) depends
upon the initial guess uj,0(x), the auxiliary linear operator Lj, the
auxiliary function Hj(x), and especially the convergence-control
parameter c0,j, j = 1, . . . , S.

To measure the accuracy of the mth-order approximation
Uj,m(x), where j = 1, . . . , S, the squared residual for the system
(1)

Em = max
1≤j≤S


Ω

|Nj[U1,m, . . . ,US,m]|
2dx (10)

is defined. Such kind of error (10) has been considered in other
works [14,18–21]. It is tied closely to the optimal HAM. The smaller
Em, the more accurate themth-order approximation Uj,m(x). Given
the initial guess uj,0(x), the auxiliary linear operator Lj and the
auxiliary function Hj(x), the squared residual Em is dependent on
the convergence-control parameters c0,j, where j = 1, 2, . . . , S,
whose optimal values are determined by the minimum of Em.
Thus, unlike other analytic methods, the HAM provides us with
a convenient way to guarantee the convergence of the series
solution. In fact, it is the so-called convergence-control parameter
that distinguishes the HAM from all other analytic techniques, as
pointed out by Liao [5].

3. Modification of the HAM

However, as the order of approximation increases, it needs
in general more and more CPU time to solve the linear high-
order deformation equations (7) since, due to the nonlinearity,
the number of terms on its right-hand side often grows rapidly.
To increase the computational efficiency, we develop a truncation
technique (called tHAM) and an iteration approach (called iHAM)
in the frame of the HAM. These two techniques can greatly
decrease the CPU time, as shown below.

Briefly speaking, the HAM provides us great freedom to choose
base functions of the solution and equation type of the linear sub-
problems, as pointed out by Liao [7,5]. Using this freedom, one
can choose proper base functions and the corresponding auxiliary
linear operator, and determine the optimal convergence-control
parameter by means of the minimum of the squared residual Em.
Due to the nonlinearity, the right-hand side term Rj,k−1 of Eqs. (7)
becomes more and more complicated so that it often costs most of
the CPU time to solve Eqs. (7).

The basic idea of the truncation technique (tHAM) is to approx-
imate Rj,k−1 by a set of finite base functions before solving Eqs.
(7). Suppose that Rj,k−1 can be expressed by a finite linear com-
bination of linearly independent functions ϕ1(x), ϕ2(x), . . . , ϕn(x).
Here, ‘‘linearly independent’’ means that

α1ϕ1 + α2ϕ2 + · · · + αnϕn = 0 (11)

is true only when all αi are zero. Define a proper inner product

⟨ϕs, ϕl⟩ =


Ω

ρ(x)ϕs(x)ϕl(x)dx, 1 ≤ s, l ≤ N (12)

in the linear space spanned by ϕ1, . . . , ϕN , where ρ(x) is a weight
function and Ω is the interval of interest. Since ϕ1, . . . , ϕN are
not necessarily orthonormal, we can apply the Schmidt–Grampro-
cess [15] to them and obtain N orthonormal functions e1, . . . , eN ,
which satisfy

⟨es, el⟩ = δs,l, 1 ≤ s, l ≤ N, (13)

where δs,l is the Kronecker delta. Therefore, as long as Rj,k−1 is ob-
tained,we first approximate it by the orthonormal bases e1, . . . , eN
so that the right-hand side of Eq. (7) contains only N terms. Math-
ematically speaking, we replace Rj,k−1 by its approximation

Rj,k−1 ≈ R̃j,k−1 =

N
l=1

⟨Rj,k−1, el⟩el, (14)
before we solve the kth-order deformation equations (7). In this
way, the solution uj,k(x) of Eqs. (7) is greatly simplified and short-
ened so that much less CPU time is needed to solve it. Obviously,
the larger the number of N , the more accurate the solution is, but
the more CPU time is needed. Therefore, the number N should be
properly chosen to ensure both the accuracy of solution and the
efficiency of computation.

The computation efficiency can be further greatly improved by
means of an iteration technique, which is based on the truncation
technique mentioned above. This is mainly because, unlike other
analytic techniques, the HAM provides us great freedom to choose
the initial guess. Obviously, the better the initial guess, the
faster the solution series converges. Here, a ‘‘better’’ initial guess
means that it is ‘‘closer’’ to the solution. Mathematically, an
initial guess ‘‘closer’’ to the solution corresponds to a ‘‘smaller’’
squared residual. Thus, if the Mth-order approximation (5) is not
accurate enough, we can use it as a new initial guess to gain a
betterMth-order approximation. This provides uswith an iteration
approach. In this way, we can gain accurate approximations by
means of much less CPU time, as illustrated by Liao [5] (see
Chapter 2). It should be emphasized that such kind of iteration
HAM approach, namely iHAM, must be based on the truncation
of the right-hand side of (7). Otherwise, the solution expression
quickly becomes so lengthy and complicated that the CPU time
increases exponentially.

4. The implementation of the modification

We have to efficiently calculate the expansion coefficients
⟨Rj,k−1, el⟩ in (14). If the inner product ⟨·, ·⟩ is hard to calculate,
or the approximation R̃j,k−1 is difficult to get, then the time
wasted will outweigh the time saved, making the modification
meaningless. We explain below how to deal with this problem and
give the formulas of fast integration for two typical kinds of base
functions.

Letϕ1, ϕ2, . . . be linearly independent functions, and e1, . . . , eN
be orthonormal functions obtained from ϕ1, . . . , ϕN by means of
the Schmidt–Gram process [15]. Write

Rj,k−1 =

N∗
k=1

clϕl, (15)

where cl are coefficients. Consider the two cases of R̃j,k−1:

(i) If N∗
≤ N , then

R̃j,k−1 = Rj,k−1. (16)

(ii) If N∗ > N , then

R̃j,k−1 =

N
i=1


N∗
l=1

clϕl, ei


ei (17)

=

N
l=1

clϕl +

N
i=1


N∗

l=N+1

clϕl, ei


ei (18)

=

N
l=1

clϕl +

N
i=1

N∗
l=N+1

cl⟨ϕl, ei⟩ei. (19)

It is necessary to calculate ⟨ϕl, ei⟩ only once and store the value in
a table. Further more, write

ei =

i
s=1

αsϕs, (20)
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where αs is a constant determined in the Schmidt–Gram process.
According to the linear property of the inner product, it holds

⟨ϕl, ei⟩ =


ϕl,

i
s=1

αsϕs


=

i
s=1

αs⟨ϕl, ϕs⟩. (21)

According to (19) and (21), the calculation of ⟨ϕl, ϕs⟩ is a primitive
operation. The above approach greatly saves CPU time.

In the frame of the HAM, two kinds of base functions are
often used for boundary value problems (BVPs) in a semi-infinite
interval. Luckily, for these two typical kinds of base functions we
have fast integration formulas to calculate the inner product.

First, let us consider the case that Rj,k−1 can be expressed by a
finite linear combination of linearly independent functions

{xne−mx
|n ≥ 0,m ≥ 1}, (22)

which depend on two parameters m and n. To access all of the
functions in (22), an order is given to them as

xne−mx
= ϕn+1+(m+n−1)(m+n)/2, (23)

i.e. xne−mx is the n+1+ (m+n−1)(m+n)/2th function in the list
ϕ1, ϕ2, . . . . The corresponding inner product is defined in a natural
way

⟨ϕl, ϕs⟩ =


+∞

0
ϕl(x)ϕs(x)dx, l, s ≥ 1, (24)

whose exact value can be easily calculated bymeans of the formula
+∞

0
e−mxxndx =

n!
mn+1

, (25)

wherem is a positive integer and n is a non-negative integer. In this
way, it is efficient to calculate the inner product ⟨ϕl, ϕs⟩.

Secondly, let us consider the case that Rj,k−1 can be expressed
by a finite linear combination of linearly independent functions

{x−n
|n ≥ 1}. (26)

Write ϕn = x−n and define the corresponding inner product

⟨ϕl, ϕs⟩ =


+∞

1
ϕl(x)ϕs(x)dx, (27)

whose exact value can be easily gained by means of the formula
+∞

1
x−ndx =

1
n − 1

, n ≥ 2. (28)

5. Some examples

To illustrate the computational efficiency and validity of
the iterative approach described above, three boundary value
problems in a semi-infinite interval are used as examples,
including two similarity boundary-layer flow problems and a non-
similarity boundary-layer flow problem. The codes are written in
Mathematica 7.0, and a desktop system with an Intel Core 2 Quad
2.66 GHz CPU (4 GB memory) is used.

5.1. Example 1: Blasius boundary-layer flow

First of all, let us consider the famous Blasius boundary-layer
flow in fluid mechanics, governed by the nonlinear differential
Table 1
The squared residual, the number of terms in the approximations and the
approximations of f ′′(0) using the standard HAM for Example 1.

m, order of approx. Em Number of terms f ′′(0)

5 0.2 38 0.256390
10 2.5 × 10−2 123 0.327756
15 8.5 × 10−3 258 0.331256
20 7.5 × 10−4 443 0.331851
25 1.5 × 10−4 678 0.332004
30 3.8 × 10−5 963 0.332040
35 5.4 × 10−6 1298 0.332052
40 7.2 × 10−7 1683 0.332055
45 1.6 × 10−7 2118 0.332057
50 4.0 × 10−8 2603 0.332057

equation (see [22] for details)

f ′′′(η) +
1
2
f (η)f ′′(η) = 0, f (0) = f ′(0) = 0,

f ′(+∞) = 1,
(29)

where η is a similarity variable, f (η) is related to the stream-
function, and the prime denotes the derivative with respect to η.
Let λ > 0 denote a kind of scale parameter and introduce the
transformation

f (η) = λ−1F(ξ), ξ = λη. (30)

Then, Eq. (29) becomes

F ′′′(ξ) +
1

2λ2
F(ξ)F ′′(ξ) = 0, F(0) = F ′(0) = 0,

F ′(+∞) = 1,
(31)

where the prime denotes the derivative with respect to ξ . This
equation has been solved by means of the HAM in a high level
of accuracy [14,23]. Following Liao [14,23], we choose the same
auxiliary linear operator

L =
∂3

∂ξ 3
+

∂2

∂ξ 2
, (32)

the same initial approximation F0(ξ) = ξ − 1 − e−ξ , the same
convergence-control parameter c0 = −1 (if not mentioned), and
the same value λ = 4. According to the boundary condition of (31),
its solution F(ξ) can be expressed in the form

F(ξ) = A0,0 + ξ +

+∞
m=1

+∞
n=0

Am,nξ
ne−mξ , (33)

where Am,n is a constant. Thus, the base function (22) is used here.
Bymans of the standard HAM,we gain the convergent solution:

at the 50th-order approximation, the solution converges to the
correct result f ′′(0) = 0.332057 with the squared residual 4.0 ×

10−8, as shown in Table 1. However, the 50th-order approximation
is rather lengthy: it has 2603 terms. Besides, it takes 7270.9 s CPU
time.

Using the 3rd-order iterativeHAMwithN = 40,wegain amuch
more accurate approximation bymeans ofmuch less CPU time: the
40th iteration gives the accurate value f ′′(0) = 0.332057 with the
squared residual 1.6 × 10−12 in only 61.9 s CPU time, as shown in
Table 2. Note that the CPU time used by the standard HAM is more
than 117 times longer than that by the iterative HAM, even though
the squared residual of the former is 25000 times larger than that
of the latter. This clearly illustrates the efficiency and validity of the
iterative HAM.

Let us compare the accuracy and the CPU time used of the
standard and the iterative HAM in detail. It is found that the CPU
time increases linearly with the iteration times for the iterative
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Table 2
The squared residual and approximations of f ′′(0) using the 3rd-order iterative
HAM approach with N = 40 for Example 1.

Iteration times (m) Em Number of terms f ′′(0)

5 2.2 × 10−2 43 0.367709
10 3.2 × 10−4 43 0.329884
15 6.2 × 10−6 43 0.331085
20 1.2 × 10−7 43 0.331991
25 1.9 × 10−9 43 0.332068
30 4.2 × 10−11 43 0.332060
35 2.5 × 10−11 43 0.332057
40 1.6 × 10−12 43 0.332057
45 1.6 × 10−12 43 0.332057
50 1.6 × 10−12 43 0.332057

Fig. 1. CPU time versusm for Example 1. Solid line: standardHAMwithout iteration
(m denotes the order of approximation); dashed line: 3rd-order iterative HAM
approach with N = 40 (m denotes the iteration times).

HAM, but exponentially with the order of approximation for the
standard HAM, as shown in Fig. 1. Thus, the iterative HAM is
computationally much more efficient. As shown in Fig. 2, the
squared residual by the iterative HAM decreases more quickly
than that by the standard HAM, until the minimum of the squared
residual Emin = 1.6 × 10−12 is arrived at, which is mainly
determined by the value of N for the truncation. This clearly
indicates that the approximations given by iterativeHAMconverge
much faster than the standard HAM.

The squared residual versus the CPU time of the standard and
iterative HAM are given in Fig. 3. It is found that the squared
residual given by the iterative HAM decreases exponentially with
the CPU time until its minimum value Emin is reached, where the
squared residual given by the non-iterative HAM decreases much
more slowly. Thus, using the same CPU time, one can obtain much
more accurate approximations by means of the iterative HAM. All
of the above conclusions have general meanings: they are correct
for different-order iterative HAM, as shown in Fig. 3. Note that the
approximations given by the 1st-order iterative HAM converges
a little faster than those given by the 3rd-order iterative HAM,
whereas the approximations given by the 3rd-order iterative HAM
converge a little faster than those given by the 5th-order iterative
HAM. The approximations given by the 1st, 3rd and 5th-order
iterative HAM converge faster than those given by the truncated
HAM without iteration. All of these indicate that, in the frame of
the HAM, the iteration can greatly accelerate the convergence of
approximations of BVPs in an infinite interval.
Fig. 2. Squared residual Em versus m for Example 1. Solid line: standard HAM
without iteration (m denotes the order of approximation); dashed line: 3rd-order
iterative HAM approach with N = 40 (m denotes the iteration times).

Fig. 3. Squared residual versus CPU time for Example 1. Dotted line: standard
HAM without iteration; solid line: 1st-order iterative HAM; dashed line: 3rd-order
iterativeHAM; dash dot line: 5rd-order iterativeHAM; long dash line: the truncated
HAM without iteration.

As shown in Figs. 2 and 3, when the minimum squared
residual Emin = 1.6 × 10−12 is reached, we cannot get better
approximations by more iterations. Theoretically speaking, the
minimum squared residual Emin of the iterative HAM is dependent
upon the value of N used for the truncation. Obviously, the larger
N corresponds to the smaller Emin. This is indeed true in practice,
as shown in Table 3 and Fig. 4, which illustrate that: (i) Emin is
dependent upon N , the number of terms reserved in the right-
hand side of the high-order deformation equation, but has nothing
to do with the order of iteration formula; and (ii) Emin decreases
exponentially with the increase of N (it is found that Emin ≈

e−0.8402N+5.3712 in this case).
It is found that the convergence-control parameter c0 also has

some influence on the convergence-rate. As shown in Fig. 5, the
approximations by the 3rd-order iterative HAM when c0 = −3/2
converge faster than those when c0 = −1, and approximations
when c0 = −1 converge faster than those when c0 = −1/2,
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Fig. 4. Solid dot: the minimum squared residual Emin versus the number of
truncated terms N by the iterative HAM for Example 1. Dashed line: the curve of
e−0.8402N+5.3712 .

Fig. 5. Squared residual versus CPU time by the 3rd-order iterative HAM with
different values of convergence-control parameter c0 for Example 1. Solid line:
c0 = −1/2; dashed line: c0 = −1; dash dot line: c0 = −3/2.

Table 3
Theminimumof the squared residual bymeans of the different order iterative HAM
with the different number of terms N for Example 1.

N 1st-order iteration 3rd-order iteration 5th-order iteration

30 5.39 × 10−9 5.39 × 10−9 5.39 × 10−9

40 1.58 × 10−12 1.58 × 10−12 1.58 × 10−12

50 3.49 × 10−16 3.49 × 10−16 3.49 × 10−16

60 1.62 × 10−20 1.62 × 10−20 1.62 × 10−20

70 5.38 × 10−24 5.38 × 10−24 5.38 × 10−24

respectively. Note that the squared residual of the three different
approaches decrease to the same level Emin = 1.6 × 10−12,
indicating once again that Emin is only determined by N for the
truncation.
5.2. Example 2: Kuiken’s equation

Let us consider a set of two coupled nonlinear differential
equations (see [24] for details)

f ′′′(η) + θ(η) − f ′
2
(η) = 0, (34)

θ ′′(η) − 3σ f ′(η)θ(η) = 0, (35)

with the boundary conditions

f (0) = f ′(0) = 0, θ(0) = 1, f ′(+∞) = θ(+∞) = 0,

where σ is the Prandtl number. Under the transformation

ξ = 1 + λη, F(ξ) = f ′(η), S(ξ) = θ(η),

Eqs. (34) and (35) become

λ2F ′′(ξ) + S(ξ) − F 2(ξ) = 0, (36)

λ2S ′′(ξ) − 3σ F(ξ)S(ξ) = 0, (37)

with the boundary conditions

F(1) = 0, S(1) = 1, F(+∞) = S(+∞) = 0.

Considering their algebraic property at infinity, we seek the
solution F(ξ) and S(ξ) in the form

F(ξ) =

+∞
n=2

anξ−n, S(ξ) =

+∞
n=4

bnξ−n,

respectively, where an, bn are coefficients. Thus, the base function
(26) is used here.

Following Liao [7], we choose the same auxiliary linear
operators

LF =


ξ

3


∂2

∂ξ 2
+

∂

∂ξ
, LS =


ξ

5


∂2

∂ξ 2
+

∂

∂ξ
,

the same initial guesses

F0(ξ) = γ (ξ−2
− ξ−3), S0(ξ) = ξ−4,

and the same parameters λ = 1/3, γ = 3. Then, the
corresponding high-order deformation equations read

LF [Fn(ξ) − χnFn−1(ξ)] = cFRF
n−1,

LS[Sn(ξ) − χnSn−1(ξ)] = cSRS
n−1,

subject to the homogeneous boundary conditions

Fn(1) = Sn(1) = Fn(+∞) = Sn(+∞) = 0,

where cF , cS are convergence-control parameters, and

RF
n−1 = λ2F ′′

n−1(ξ) + Sn−1(ξ) −

n−1
j=0

Fj(ξ)Fn−1−j(ξ),

RS
n−1 = λ2S ′′

n−1(ξ) − 3σ
n−1
j=0

Fj(ξ)Sn−1−j(ξ).

It is found that RF
n−1 and RS

n−1 are expressed by a finite combination
of functions

{ξ−n
|n ≥ 4}, (38)

and

{ξ−n
|n ≥ 6}, (39)

respectively. Applying the Schmidt–Gram process to the first
N functions in (38) and (39), respectively, we obtain two sets
of N orthonormal functions, which are used to calculate the
corresponding inner product.
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Table 4
The squared residual, the number of terms in the approximations, and the
approximations of f ′′(0)using the standardHAM for Example 2 (in the case ofσ = 1
and cF = cS = −1/2).

m, order of approx. Em Number of terms f ′′(0)

15 9.9 × 10−5 32 0.702546920
30 1.7 × 10−7 62 0.693537549
45 7.2 × 10−10 92 0.693227314
60 8.9 × 10−12 122 0.693211627
75 1.0 × 10−12 152 0.693211551
90 2.3 × 10−13 182 0.693211633

105 6.4 × 10−14 212 0.693211633
120 2.1 × 10−14 242 0.693211632
135 7.5 × 10−15 272 0.693211632
150 3.0 × 10−15 302 0.693211632

Table 5
The squared residual and the approximations of f ′′(0) by means of the 3rd-order
iterative HAM with N = 30 for Example 2 (in the case of σ = 1 and cF = cS =

−1/2).

m, iteration times Em Number of terms f ′′(0)

15 1.1 × 10−9 31 0.693227799
30 2.0 × 10−14 31 0.693211615
45 4.1 × 10−16 31 0.693211632
60 3.6 × 10−17 31 0.693211632
75 6.0 × 10−18 31 0.693211632
90 1.2 × 10−18 31 0.693211632

105 3.1 × 10−19 31 0.693211632
120 1.7 × 10−19 31 0.693211632
135 1.6 × 10−19 31 0.693211632
150 1.7 × 10−19 31 0.693211632

To compare the computational efficiency of the standard and
iterative HAM for Example 2, we follow Liao [7] to consider the
case of σ = 1 and use the same parameters λ = 1/3, γ = 3
and the same convergence-control parameters cF = cS = −1/2.
The approximations given by the standard HAM converge: it takes
237 s CPU time to gain the 150th-order of approximation with the
squared residual 3.0 × 10−15 and the convergent value f ′′(0) =

0.693211632, as shown in Table 4.
For the iterative HAM, we use the truncation number N = 30,

say, the right-hand sides of the high-order deformation equations
are approximated by the first 30 terms, i.e. from ξ−4 to ξ−33 for the
1st equation, and from ξ−6 to ξ−35 for the 2nd one, respectively.
As shown in Table 5, the approximations given by the 3rd-order
iterative HAM converge much faster than those by the standard
HAM: the 45th iteration gives the convergent value f ′′(0) =

0.693211632 in only 29 s CPU time even with the less squared
residual 4.1 × 10−16. This is mainly because the approximations
given by the standard HAM become more and more complicated,
however, the approximations given by the iterative HAM always
have 43 terms but are accurate enough. This confirms once again
that the iterative HAM is indeed much more efficient than the
standard HAM.

Let us compare the accuracy and the CPU time used of
the standard and iterative HAM. It is found that the CPU
time increases linearly for the iterative HAM with the iteration
times, but exponentially for the standard HAM with the order of
approximation, as shown in Fig. 6. Besides, as shown in Fig. 7,
the squared residual for the iterative HAM decreases much faster,
until the minimum of the squared residual Emin = 1.7 × 10−19

is arrived. This confirms once again that the approximations given
by iterative HAM indeed converge much faster. These conclusions
about the iterative HAM have general meanings: they are correct
for different orders of iterative approaches, as shown in Fig. 8.
Therefore, using the same CPU time, one can obtain much more
accurate approximations by means of the iterative HAM.

As shown in Figs. 7 and 8, when the minimum of the squared
residual Emin = 1.7 × 10−19 (when N = 30) arrives, one
Table 6
The minimum of squared residual by means of the Mth-order iterative HAM with
different truncation number N for Example 2 (in the case of σ = 1 and cF = cS =

−1/2).

N M = 1 M = 3 M = 5

10 4.7 × 10−12 4.7 × 10−12 4.7 × 10−12

30 1.7 × 10−19 1.7 × 10−19 1.7 × 10−19

40 3.3 × 10−21 3.3 × 10−21 3.3 × 10−21

50 1.5 × 10−22 1.5 × 10−22 1.5 × 10−22

70 1.4 × 10−24 1.4 × 10−24 1.4 × 10−24

Fig. 6. CPU time versusm for Example 2 (in the case ofσ = 1 and cF = cS = −1/2).
Dotted line: standard HAM (m denotes the order of approximation); solid line: 3rd-
order iterative HAM (m denotes the iteration times).

Fig. 7. Squared residual Em versus m for Example 2 (in the case of σ = 1 and cF =

cS = −1/2). Solid line: standard HAM (m denotes the order of approximation);
dashed line: 3rd-order iterative HAM (m denotes the iteration times).

cannot get better approximations bymore iterations. Theoretically,
the minimum of the squared residual is dependent upon the
truncation number N . This is indeed true, as shown in Table 6 and
Fig. 9. Therefore, Emin decreases with the increase of the truncation
number N . Note that the larger truncation number N corresponds
to more CPU time but more accurate approximations. In practice,
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Fig. 8. Squared residual versus the CPU time for Example 2 (in the case ofσ = 1 and
cF = cS = −1/2). Dotted line: standard HAM; solid line: 1st-order iterative HAM;
dashed line: 3rd-order iterative HAM; dash dot line: the truncated HAM without
iteration.

we should choose a proper truncation number N for the iterative
HAM, so that accurate enough approximations can be gained with
high enough computational efficiency.

5.3. Example 3: non-similarity boundary-layer flow

The iterative HAM can be applied to some nonlinear PDEs. For
instance, let us consider a nonlinear PDE [25]

∂3f
∂η3

+
1
2
f
∂2f
∂η2

+ (1 − ξ)


∂ f
∂η

∂2f
∂η2

−
∂ f
∂η

∂2f
∂ξ∂η


= 0, (40)

subject to the boundary conditions

f (ξ , 0) = 0, fη(ξ , 0) = ξ, fη(ξ , +∞) = 0. (41)

It describes the non-similarity boundary-layer flows over a
stretching flat sheet [25].
Table 7
The squared residual and the number of terms in the approximations by means
of the standard HAM (without truncation, with linear operator (42), initial guess
f0(ξ , η) = ξ(1 − e−η) and the convergence-control parameter c0 = −1/2) for
Example 3.

m, order of approx. Em Number of terms

5 3.0 × 10−4 62
10 8.9 × 10−6 297
15 1.7 × 10−6 832
20 4.2 × 10−7 1792
25 1.8 × 10−7 3302
30 1.0 × 10−7 5487

As pointed out by Liao [25], the solution f (ξ , η) can be
expressed in the form

f (ξ , η) =

+∞
m=0

+∞
n=0

+∞
s=0

am,n,s ξ nηs exp(−mη),

where am,n,s is a constant coefficient to be determined. Using the
standard HAM (without truncation), Liao [25] gained convergent
approximations bymeans of the initial guess f0(ξ , η) = ξ(1−e−η),
the auxiliary linear operator

L[f ] =
∂3f
∂η3

−
∂ f
∂η

(42)

and the convergence-control parameter c0 = −1/2. The corre-
sponding squared residual and the number of terms appearing in
the approximations are listed in Table 7. Note that the 30th-order
approximation has 5487 terms, with the corresponding squared
residual 1.0 × 10−7. Thus, it needs more and more CPU time to
get high-order approximations because of exponentially increas-
ing intermediate expressions.

Since Eq. (40) is a PDE, the term Rk−1 on the right-hand
side of the high-order deformation equation depends on the two
variables ξ and η. The Chebyshev polynomials in the ξ -direction
and the orthonormal functions (22) in the η-direction are used to
approximate the term Rk−1. Let Nξ and Nη denote the truncation
numbers in the ξ and η direction, respectively. In theory, the
larger the truncation numbers Nξ and Nη , the more complicated
the expression of approximations, but the smaller theminimum of
squared residuals.

However, if we use the same initial guess f0(ξ , η), the same
auxiliary linear operator L and the same convergence-control
Fig. 9. The minimum squared residual versus the truncation number N of the iterative HAM for Example 2 (in the case of σ = 1 and cF = cS = −1/2).
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Fig. 10. Squared residual versus CPU time for Example 3. Solid line: the standard
HAM with linear operator (42), initial guess f0(ξ , η) = ξ(1 − e−η) and the
convergence-control parameter c0 = −1/2; dashed line: 1st-order iterative HAM
with linear operator (43), initial guess f0(ξ , η) = ξ(1− e−η), c0 = −2,Nξ = 6 and
Nη = 15; long dash line: 1st-order iterative HAM with linear operator (43), initial
guess f0(ξ , η) = ξ(1 − e−η), c0 = −2, Nξ = 6 and Nη = 25.

Table 8
The minimum of squared residual by means of 1st-order iterative HAM with
different Nξ and Nη for Example 3.

Nη Nξ = 15 Nξ = 20 Nξ = 25 Nξ = 30 Nξ = 40

5 2.6×10−8 2.0×10−8 7.5×10−9 6.7 × 10−9 6.4 × 10−9

6 2.1×10−8 5.3×10−9 2.2×10−9 1.3 × 10−9 9.6 × 10−10

10 2.0×10−8 4.4×10−9 1.3×10−9 4.8×10−10 1.0 × 10−10

15 2.0×10−8 4.4×10−9 1.3×10−9 4.8×10−10 9.8 × 10−11

parameter c0 as those by Liao [25], we cannot gain convergent
results by means of the iterative HAM. It is found that the
truncation error in the ξ direction increases quickly during the
iteration. Since the HAM provides us great freedom to choose
the auxiliary linear operator, we use such a new auxiliary linear
operator

L[f ] =
∂

∂ξ


ξ


∂3f
∂η3

−
∂ f
∂η


(43)

with a property

L−1
[ξ n

] = L−1


ξ n

n + 1


, n ≥ 0, (44)

which leads to the convergence of the approximations given by the
iterative HAM when c0 = −2. As shown in Fig. 10, the iterative
HAM is more efficient than the standard HAM without truncation.
For example, it takes about 400 s for the 1st-order iterative HAM
(with Nξ = 6,Nη = 15 and c0 = −2) to reach its minimum
squared residual Emin = 2.1 × 10−8, but for the standard HAM
(with linear operator (42) and the convergence-control parameter
c0 = −1/2) it obtains a much more complicated approximation
with the squared residual larger than 1.0× 10−7 in the same time.
As shown in Fig. 10, when the minimum of squared residual is ar-
rived at, one cannot get better approximations by more iterations.
In order to get more accurate approximations, larger truncation
numbers should be used, as shown in Table 8.

This example illustrates that the iterative HAM is valid even for
some nonlinear PDEs, and thus has general meanings.
6. Conclusions

The homotopy analysis method (HAM) has been successfully
applied to solve a lot of nonlinear ODEs and PDEs in science
and engineering. Based on the HAM, the Mathematica package
BVPh 1.0 was issued for nonlinear ODEs, which is free and
available online (http://numericaltank.sjtu.edu.cn/BVPh.htm) and
is becoming an easy-to-use analytic tool. As pointed out by
Trfethen [4], ‘‘computing numerically with functions instead of
numbers’’ hasmany advantages over numerical ones. For example,
the analytic approaches can exactly handle an infinite interval,
since boundary conditions at infinity can be easily satisfied by
means of proper base functions.

Briefly speaking, the HAM transfers a nonlinear problem into an
infinite number of linear sub-problems by means of the homotopy
in topology. However, due to the nonlinearity, the right-hand
side of the high-order deformation equation (corresponding to the
sub-problems) becomes more and more complicated so that it
needs more and more CPU time to gain a better approximation.
For equations defined in a finite interval, it is convenient to use
polynomial or Fourier series to approximate the right-hand side,
as illustrated by Liao in Section 7.2 of his book [5]. For equations
defined in an infinite interval, the Schmidt–Gram process [15] is
used in this paper to approximate the right-hand side by means of
a finite set of orthonormal bases. Based on this kind of truncation
technique, we introduce the Mth-order iterative HAM by using
each Mth-order approximation as a new initial guess. It is found
that the iterative HAM is much more efficient than the standard
HAM without truncation, as illustrated by the three nonlinear
differential equations defined in an infinite interval as examples.

In summary, this iterative HAM approach can greatly improve
the computational efficiency of the HAM (and also the Mathemat-
ica package BVPh) for many nonlinear BVPs.
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