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Abstract

We give a short review of the so-called general boundary element method for strongly nonlinear
problems in heat and viscous flow and a brief discussion about opportunity and challenge of the boundary

element method as a numerical tool, compared with other numerical techniques.
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1. Introduction

The boundary element method (BEM) [1,2] is rather efficient to solve linear problems governed
by homogeneous equation
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subject to linear boundary conditions, provided the fundamental solution of the linear operatorL
exists and can be found. In this case the BEM replaces the original linear differential equations
with a set of integral equations defined on the boundary only and hence reduces the dimension of
the problem by one. This is the major advantage of the BEM over other domain numerical
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techniques such as finite difference method (FDM), finite element method (FEM), finite volume
method (FVM) and so on, which in principle require discretization of full domain.

However, this advantage of the BEM is lost even for linear problems governed by inhomo-
geneous linear equation
Lu ¼ f ; ð2Þ
where f is a known function, often regarded as body force term. This is mainly because additional
domain-integral terms appear. Domain integrals can be evaluated by cell integration approach [3],
which however makes the BEM lose its boundary-only nature, resulting in a numerical scheme
several orders of magnitude more time consuming than other domain techniques mentioned
above.

This disadvantage of the BEM becomes more prominent for nonlinear equations
Au ¼ f ; ð3Þ
where A is a nonlinear operator. Generally speaking, the traditional nonlinear BEM schemes [3–
6] are based on iteration techniques, which regard nonlinear terms as‘‘pseudo-body force’’ moved
to the right-hand side of differential equations, i.e.
L0u ¼ f �N0u; ð4Þ
where L0 is a linear operator, N0 is a nonlinear operator and
A ¼L0 þN0: ð5Þ
If the fundamental solution of the linear operator L0 exists and can be found, the right-hand side
term
f �N0u
can be regarded as a known ‘‘pseudo-body force’’ term and the BEM can be employed to solve the
linear inhomogeneous equation (4) at each iteration. Obviously, domain integrals appear due to
the right-hand side term
f �N0u;
which varies at different step of iteration.
Some techniques are developed to overcome the numerical inefficiency of the BEM due to

domain integrals. For some special inhomogeneous linear equations it is possible to find a
particular solution, which can be employed to transform the domain integrals to boundary
integrals [6–8]. However, the shortage of closed form of particular solution makes a general
implementation difficult. More general approaches are the dual reciprocity method [9–14] and
the domain decomposition technique [15,16]. The dual reciprocity method reduces domain
integrals to boundary integrals by using basis functions such as radial basis functions [11],
global shape functions [12], hybrid functions [13] and so on, to approximate the inhomogeneity.
By means of the domain decomposition technique one divides the original domain into sub-
regions, and in each of them, a full integral representation formula is given. The unknown
functions and their derivatives are enforced to be continuous at the common interface between
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adjacent sub-regions. This leads to block sparse systems with one block for each sub-region and
overlapping blocks when two sub-regions have a common interface, while matrices arising from
a single domain formulation are fully populated. The dual reciprocity method and domain
decomposition technique can be combined to increase the efficiency of the nonlinear BEM
schemes [17–20]. To our knowledge, the efficiency and effectiveness of the dual reciprocity
method and domain decomposition method for three-dimensional nonlinear problems are
barely reported [21].

Second, the traditional nonlinear BEM schemes are generally valid only for weakly nonlinear
problems. For example, many researchers applied the BEM to solve viscous flow problems
governed by Navier–Stokes equations [16–20,22–28], among which the two-dimensional driven
cavity flow might be the simplest. However, ‘‘the BEM approaches based on convective velocity
free kernels fail to converge’’ for high and even moderate Reynolds number, and ‘‘neither severe
underrelaxation nor Newton–Raphson iteration are remedies’’, as pointed out by Grigoriev and
Dargush [16]. For two-dimensional driven cavity flow, many researchers cannot give BEM
solutions at Reynolds number greater than 1000, except Grigoriev and Dargush [16] who applied
poly-region technique and Oseen fundamental solution to obtain convergent results at Reynolds
number up to 5000. Note that Ghia et al. [29] employed the finite difference method to obtain
convergent steady-state solutions of the driven cavity flow with Reynolds number up to 7500.
Note also that Oseen fundamental solution has physical meanings only for viscous flow problems
and hence it seems difficult to apply Grigoriev and Dargush’s [16] BEM approach to other sorts of
problems with strong nonlinearity.

Third, it seems to be neglected that the above-mentioned nonlinear BEM approaches are based
on two assumptions. First of all, there must exist such a linear operator L0 that A can be divided
as (5). If all terms of a nonlinear differential equation are nonlinear, i.e. A ¼N0, nothing is left
on the left-hand side of Eq. (4), if we regard nonlinear terms as ‘‘pseudo-body force’’ and move
them to the right-hand side of equations. Unfortunately some problems with very strong non-
linearity indeed do not contain any linear terms at all. Furthermore, the linear operator L0 must
be simple enough that the fundamental solution of L0 exists and can be found. Otherwise, (4)
cannot be replaced by integration equations. Thus, different from domain numerical techniques
such as FDM, FEM, FVM and so on, the traditional nonlinear BEM approaches cannot be
applied to highly nonlinear problems without linear terms.

In summary, the traditional nonlinear BEM schemes have the following limitations:

• Inefficiency: it is numerically inefficient due to domain integrals;
• Divergence: iteration often diverges for strongly nonlinear problems;
• Restricted application: it cannot be applied to nonlinear equations without any linear terms.

The last two ones are related to the ability of the BEM and thus greatly restrict the application
regions of the BEM as a numerical tool.

Liao and his co-authors generalized the traditional nonlinear BEM schemes and proposed the
so-called general boundary element method [30–40], which can overcome two of the above-
mentioned limitations of the traditional nonlinear boundary element method. In the following
sections the basic ideas of the general boundary element method are briefly described and some
examples are given to show its validity.
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2. Homotopy analysis method

The general boundary element method is based on an analytic technique for nonlinear prob-
lems, namely the homotopy analysis method [41–50]. Unlike perturbation techniques [51,52], the
artificial small parameter method [53], the d-expansion method [54] and the decomposition
method [55], the homotopy analysis method itself provides us with a convenient way to control the
convergence of approximation series and adjust convergence regions when necessary. Briefly
speaking, the homotopy analysis method has the following advantages:

1. it is valid even if a given nonlinear problem does not contain any small/large parameters at all;
2. it itself can provide us with a convenient way to control the convergence of approximation ser-

ies and adjust convergence regions when necessary;
3. it provides us with great freedom to choose auxiliary linear operators so that we can approx-

imate a nonlinear problem by choosing different sets of base functions.

The basic ideas of the homotopy analysis method are very simple. For example, let us consider
the nonlinear equation (3). Selecting a proper, familiar auxiliary linear operator L, whose fixed
point is zero, say Lð0Þ ¼ 0, we construct a homotopy Uð~r; p; �hÞ: X� ½0; 1� � R0 ! R, which
satisfies
ð1� pÞfL½Uð~r; p; �hÞ� �L½u0ð~rÞ�g ¼ p�hfA½uð~r; p; �hÞ� � f g; ð6Þ

where R0 ¼ ð�1; 0Þ

S
ð0;1Þ, u0ð~rÞ is an initial approximation, Uð~r; p; �hÞ is a function of the

variables~r 2 X, p 2 ½0; 1� and �h 6¼ 0. Obviously, from Eq. (6), the following two expressions:
Uð~r; 0; �hÞ ¼ u0ð~rÞ; ð7Þ

Uð~r; 1; �hÞ ¼ uð~rÞ; ð8Þ

hold, where uð~rÞ is the solution of Eq. (3). Therefore, Uð~r; p; �hÞ varies continuously from u0ð~rÞ to
uð~rÞ as the the parameter p increases from 0 to 1. It is more precise to say, u0ð~rÞ and uð~rÞ are
homotopic. In topology, this kind of continuous variation is called deformation. So, we call Eq.
(6) the zeroth-order deformation equation.

Assume that the continuous deformation Uð~r; p; �hÞ is smooth enough about p so that
U ½m�ð~r; p; �hÞ ¼ omUð~r; p; �hÞ
opm

; m ¼ 1; 2; 3; . . . ; ð9Þ
called mth-order deformation derivatives, exist. Then according to the theory of Taylor’s series,
we have from (7) and (8) that
Uð~r; p; �hÞ ¼ u0 þ
X1
m¼1

U ½m�ð~r; 0; �hÞ pm

m!

� �
¼ u0 þ

X1
m¼1

umpm; ð10Þ
where U ½m�ð~r; 0; �hÞ denotes the mth-order deformation derivatives U ½m�ð~r; p; �hÞ at p ¼ 0, and
um ¼
U ½m�ð~r; 0; �hÞ

m!
; ð11Þ
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If �h is so properly selected that the convergence radius of the series (10) is not less than 1, we have
by (8) that
u ¼ u0 þ
X1
m¼1

um: ð12Þ
The equation of um can be obtained in the following way. Differentiating Eq. (6) m times with
respect to p, and then setting p ¼ 0 and finally dividing each side by m!, we get
L½um � vmum�1� ¼ �hRm; mP 1; ð13Þ

where
Rm ¼
1

ðm� 1Þ!
dm�1

dpm�1
Auð~r; p; �hÞ
h�

� f
i�				

p¼0
; ð14Þ
under the definition
vk ¼
0; k6 1;
1; k > 1:

�
ð15Þ
The linear equation (13) can be solved either analytically (by means of symbolic software such as
Mathematica, Maple, MathLab and so on) or numerically (by means of FDM, FEM, BEM and
so on). For details, please refer to Liao [42,48].
3. General boundary element method

For simplicity, we write
L�um ¼ �hRm; ð16Þ

where
�um ¼ um � vmum�1: ð17Þ

Note that the right-hand term of (16) is a known function, i.e., (16) is a linear equation. So it

can be easily solved by boundary element method as it can be written in the form
cð~rÞ�umð~rÞ ¼
Z

C
½�umBðxÞ � xBð�umÞ�dCþ

Z
X
�hRmxdX; ð18Þ
where cð~rÞ is the geometric factor which depends on the location of the position vector~r, x is the
fundamental solution of the operator L, B is its boundary operator, C denotes the boundary of
the domain X.

The convergence radius q of the series (12) depends on the auxiliary linear operator L, initial
approximation u0 and the value of �h. If they are properly selected, the approximation at con-
siderable high-order may be accurate enough and no iterations are necessary. Otherwise, we can
use the Nth-order approximation
u � u0 þ
XN
m¼1

um ð19Þ
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as the new initial solution so that we obtain the high-order iterative formulation
Fig. 1
uiþ1  ui0 þ
XN
m¼1

uim; ð20Þ
The homotopy analysis method provides us with great freedom and flexibility. First, we have
great freedom to choose the auxiliary linear operator L, no matter whether the original nonlinear
equation (3) contains any linear terms or not. Obviously, we can choose such an auxiliary linear
operator L that its fundamental solution exists and is known and that the linear sub-problems
governed by (13) can be solved by the traditional BEM for inhomogeneous linear equations. In
this way, one can apply the BEM to nonlinear problems that even do not contain any linear terms
at all, as verified by Liao [32–34]. Therefore, the general BEM overcomes the 3rd limitation of the
foregoing traditional nonlinear BEM schemes.

Second, we have freedom to choose the initial guess u0, and the high-order iterative formulation
can be applied to all numerical techniques. It is easy to prove that many well-known iterative
schemes are only special cases of (19) when N ¼ 1. It is found [36] that, at each iteration and for a
given initial guess, the higher the order N of iteration formula, the better the approximate result.
Thus, the higher-order iterative formula (with larger N ) has better property of convergence.

Besides, there exists an auxiliary parameter �h in each linear sub-problem governed by (13),
which provides us with a simply way to adjust and control the convergence region and rate of the
series (12), as verified by Liao and his co-authors [42–48]. Thus, by means of choosing a proper
value of the auxiliary parameter �h and high enough order iterative formula (19), one can obtain
convergent results of nonlinear problems with very strong nonlinearity.

Recently, Zhao and Liao [40] applied the general BEM to obtain convergent results of viscous
flow in a driven square cavity at Reynolds number up to 7500, which agree well with FDM results
given by Ghia et al [29]. It should be emphasized that it is the first time that such convergent
. Profiles of velocity u at x ¼ 1=2 for Re ¼ 10; 000. Solid line: current result; circle: results given by Ghia et al. [29].



Fig. 2. Profiles of velocity v at y ¼ 1=2 for Re ¼ 10; 000. Solid line: current result; circle: results given by Ghia et al. [29].

Fig. 3. Contour of the stream-function w when Re ¼ 10; 000.
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results at Reynolds number up to 7500 are given by the boundary element method. As the con-
tinuation of this work, we ran the code and obtained the results at Re ¼ 10; 000. The velocity
profiles of u at x ¼ 1=2 and v at y ¼ 1=2, compared with the results given by Ghia et al. [29], are
shown in Figs. 1 and 2, respectively. The contours of the stream-function are shown in Fig. 3. All
of our numerical results agree well with the solutions provided by Ghia et al.[29] by mean of the
finite difference method.

Furthermore, the general BEM has been successfully applied to both of hyperbolic and par-
abolic unsteady nonlinear heat transfer problems, as verifies by Liao [56] and Liao and Chwang
[38], respectively. These are good examples to illustrate the validity and great potential of the
general BEM for strongly nonlinear problems. All of these indicate that the general boundary
element method can overcome the 2nd limitation of the traditional nonlinear BEM schemes
mentioned above.

In summary the general BEM can overcome the last two limitations of the traditional nonlinear
BEM schemes listed in the first section.
4. Opportunity and challenge of BEM

Overcoming the last two limitations of the foregoing traditional nonlinear BEM schemes, the
general BEM can be applied to much more of nonlinear problems in science and engineering. This
certainly enhances the ability of the boundary element method in the competition with other
numerical techniques such as FDM, FEM and so on, which require discretization of full domain.

However, domain integral is still a large obstacle for the BEM to solve nonlinear problems.
Especially, it is unknown if current techniques for domain integrals are efficient enough for
three-dimensional nonlinear problems. Thus, it is necessary to develop some new, more efficient
techniques for domain integrals, while further improving dual reciprocity method, domain
decomposition method and so on. Note that an integral over a domain can be evaluated inde-
pendently over many sub-domains, thus it is quite easy and efficient to employ parallel compu-
tation to integrals. So, it is much easier to employ parallel computation to the BEM scheme than
other domain numerical techniques such as FDM, FEM and so on. This is an advantage of the
BEM, which might become an important factor in the competition between the BEM and other
numerical methods. The parallel computation technique can greatly enhance the efficiency of the
BEM, even if cell integration is employed to calculate the domain integrals, as verified by Zhao
and Liao [40]. So, the combination of the general BEM with the parallel computation techniques,
dual reciprocity method and domain decomposition method might, we hope, provide us with an
efficient, widely applied BEM approach for strongly nonlinear problems. Besides, more attentions
should be given to complicated, practical three-dimensional nonlinear problems in engineering.
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