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a b s t r a c t

The nonlinear interaction between the unidirectional bichromatic wave-train and expo-
nentially sheared current inwater of an infinite depth is investigated. Themodel is based on
the vorticity transport equation and the exact free surface conditions, without any assump-
tions for the existence of small physical parameters. Earlier works of the wave–current in-
teraction were mainly restricted to either current acted on the monochromatic wave or
irregular waves limited to irrotational current. Different from these previous works, no
constraint is made in our model for amplitudes of the primary wave, and the current owns
an exponential type profile along the vertical line. To ensure that the effect of vorticity on
the phase velocity is consistent with earlier derivation, the case of a small amplitude wave
traveling on the exponentially sheared current is examined firstly. Then the effect of non-
linearity on the phase velocity of primary waves in a bichromatic wave-train is considered.
Accurate high-order approximations of the phase velocity are obtained under considera-
tion of both the nonlinear wave self–self and mutual interactions. Finally, the combined
effect of vorticity and nonlinearity on the phase velocity is investigated through the case
of a bichromatic wave-train propagating on an exponentially sheared current. It is found
that the characteristic current slope determines the effect of vorticity on the phase veloc-
ity caused by nonlinear wave self–self and mutual interactions, and the surface current
strength may amplify/reduce this effect.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Searching solutions for the wave–current interaction has arisen interests of a lot of researchers. Early works weremainly
focused on uniform current and constant vorticity for linear waves [1–3] and nonlinear waves [4,5].
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For linear waves riding on an arbitrary weak current, the first attempt for the current decaying exponentially with depth
is considered by Abdullah [6]. Based on the work of [7], the dispersion relation for the depth-dependent current is examined
by Skop [8,9], then later Kirby and Chen [10] extended it to the second order. The prediction of wavelength and particle
velocities is considered by Thomas [11] after compared the linear theory with a parallel experiment.

For nonlinear regular waves co-existing with an arbitrary current, there are generally two methods. One is to approxi-
mate the current profile by a number of straight line elements [12,13], while the other is to convert the original domain to
a rectangular one through Dubreil–Jacotin transformation [14–17]. Besides, Swan and James [18] presented a second-order
perturbation analysis for small amplitude waves. And through experimental results, Thomas [15] demonstrated the impor-
tance of the global vorticity distribution in thewave–current interaction and Swan et al. [19] confirmed that the near-surface
vorticity leads to an important modification of the dispersion equation. For more details about the early works, please refer
to the monographs [20–23].

Compared with the huge literature concerning monochromatic waves, the investigation of the current acted on ir-
regular waves is considerably less developed, owing to its complexity. Experiments were performed by, e.g. Simons and
MacIver [24], who measured the mean, wave-induced and turbulent velocities, instantaneous bed shear stresses, wave-
lengths and wave heights for regular, bichromatic and random waves propagating with and against a turbulent current, as
well as by Umeyama [25], whose experimental data suggested that the wave direction is an important factor to change the
vertical profile of the mean velocity based on the logarithmic law. In theory, Chen et al. [26] developed the Boussinesq-type
equations explicitly incorporating the depth-uniform current on near-resonant triad interactions of waves in shallow wa-
ter, while Madsen and Fuhrman [27,28] incorporate the effect of an ambient current with the option of specifying zero net
volume flux on their third-order perturbation solutions for multi-directional irregular water waves in finite depth based
on the potential function. A novel numerical method has been developed by Nwogu [29] to investigate the modulational
instability of deep-water waves riding on both depth-uniform and exponentially sheared current.

The phase velocity is a topic that received the greatest attention in the literature in the field of wave–current interac-
tions. Following the pioneering work of Longuet-Higgins and Phillips [30] considering the change in phase velocity due to
themutual interaction between different primarywaves, Hogan et al. [31] extended their solution to cover gravity–capillary
waves in deep water, Zhang and Chen [32] extended the interactions to three collinear deep-water wave components,
Tanaka et al. [33] extended it to the interaction among component waves in a continuous energy spectrum, and Madsen
and Fuhrman [27,28] provided a new third-order finite-depth formulation for the mutual interaction. However, all of the
published formulas are the third-order approximations,which are suitable only for the small-amplitudewave interaction. As
the amplitudes of primarywaves increase, high-order approximations are required. Besides, the influence of vorticity on the
mutual interaction between different primary waves has been nearly ignored since [30]. When vorticity appears in the am-
bient current, how the phase velocity of each primary wave is modified by the presence of the other is still an open problem.

In this article, a nonlinear model of the unidirectional bichromatic wave-train riding on the current with variable distri-
bution of vorticity is considered. Different from approaches mentioned above, no constraint is made for the primary wave
amplitudes, and following Abdullah [6], a current that decays exponentially with depth is studied. A high-order approxi-
mation of the phase velocity concerning both nonlinear wave self–self and mutual interactions is derived, which provides
accurate solutions for finite-amplitudewave interactions. In addition, the effect of vorticity from the ambient current on the
phase velocity caused by the nonlinear wave mutual interaction is investigated in detail.

The present paper is organized as follows. Section 2 illustrates the mathematical model, which is an extension of [10] for
finite-amplitude waves. In Section 3, a brief description of the analytic procedure based on the homotopy analysis method
(hereinafter, HAM) [34,35] is described. The phase velocity of linear waves propagating on current and nonlinear wave
interactions with/without current are considered in Section 4. Finally, the concluding remarks are given in Section 5, with
some deductions provided in the Appendix.

2. Mathematical model

Choose Cartesian coordinates (x, y) as the x-axis being the direction of wave propagation and y measured vertically up-
wards, with the origin located on the mean water level as shown in Fig. 1. The current is assumed uniform in the horizontal
but owns a vertically exponential distribution of velocity. The free-surface elevation is denoted by ζ (x, t). The fluid is as-
sumed to be inviscid and incompressible, so that we can introduce the stream function ψ(x, y, t) defined by ψy(x, y, t) =

u(x, y, t), ψx(x, y, t) = −v(x, y, t). The problem is governed by the vorticity transport equation

ψxxt + ψyyt + ψy(ψxxx + ψxyy)− ψx(ψxxy + ψyyy) = 0. (1)

In the infinite water depth, we have the bed condition

ψx → 0, as y → −∞. (2)

On the free surface ζ (x, t), we have the kinematic and dynamic free-surface conditions

ζxψy + ψx + ζt = 0, on y = ζ (x, t), (3)

P(x, y, t)− P0 = 0, on y = ζ (x, t), (4)

where P(x, y, t) denotes the pressure of the field and P0 is the constant atmospheric pressure.
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Fig. 1. Definition sketch.

For irregular waves or even the simplest bichromatic wave-train, no steady solution exists in any coordinates due to the
complex behavior of the wave interaction: the free surface is no longer a streamline so that the Dubreil–Jacotin transfor-
mation applied by [14–17] is not valid any more. Furthermore, the exponentially sheared current imposes a vorticity over
the whole fluid field. The subsequent wave motion thereby inherits a rotational motion, so that the traditional Bernoulli’s
equation based on the velocity potential is therefore inadequate [6].

In order to constitute a closure model for the stream function and the elevation, we make use of the chain rule of differ-
entiation [36]:

Pyζt + Pt = 0, (5)

Pyζx + Px = 0. (6)

Such a way of recasting the dynamic free-surface boundary condition is proposed by McDonald and Witting [36] and has
recently been extended by Nwogu [29]. Substituting the pressure gradients from the Euler equations

∂2ψ

∂y∂t
+
∂ψ

∂y
∂2ψ

∂x∂y
−
∂ψ

∂x
∂2ψ

∂y2
= −

1
ρ

∂P
∂x
, (7)

−
∂2ψ

∂x∂t
−
∂ψ

∂y
∂2ψ

∂x2
+
∂ψ

∂x
∂2ψ

∂x∂y
+ g = −

1
ρ

∂P
∂y
, (8)

into (6), we obtain the xmomentum equation in terms of the tangential fluid acceleration at the free-surface ζ (x, t):

∂2ψ

∂y∂t
+
∂ψ

∂y
∂2ψ

∂x∂y
−
∂ψ

∂x
∂2ψ

∂y2
−


∂2ψ

∂x∂t
+
∂ψ

∂y
∂2ψ

∂x2
−
∂ψ

∂x
∂2ψ

∂x∂y
− g


∂ζ

∂x
= 0. (9)

The nonlinear partial differential equation (1), subject to the bed condition (2) and two nonlinear free-surface conditions (3)
and (9), constitute a closure model for the stream function and the elevation. This model can be simplified into the model
studied by Kirby and Chen [10] for the linear wave and is valid for multiple waves with finite amplitudes, thus is more
general.

3. Solution procedure

For simplicity, we consider the steady-state situation of the problem, i.e. the amplitudes of all wave components are
constants. In other words, the spectrum of wave energy is independent of the time t . Besides, without loss of generality, let
us consider the interaction of two finite-amplitude unidirectional progressive periodic waves.

3.1. Solution expression of the stream function without current

For unidirectional bichromatic waves, it is convenient to introduce the transformation

ξ1 = k1x − k1c1t, ξ2 = k2 x − k2 c2 t, (10)

where k1, k2 denote wave numbers, and c1, c2 are the phase speeds of two primary wave components, respectively. Here c1
and c2 are unknown, which will be determined later.
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As all the amplitudes of wave components are assumed to be constant, the wave elevation ζ (ξ1, ξ2) can be expressed by

ζ (ξ1, ξ2) =

+∞
i=0

+∞
j=−∞

Cζi,j cos(iξ1 + jξ2), (11)

where Cζi,j is a constant to be determined. For the fluid field without current, no vorticity exists so that

Ω = −ψxx − ψyy = k21
∂2ψ

∂ξ1
2 + 2k1k2

∂2ψ

∂ξ1∂ξ2
+ k22

∂2ψ

∂ξ2
2 +

∂2ψ

∂y2
≡ 0. (12)

Eq. (12) has the general solution
A cos(mξ1 + nξ2) exp [|mk1 + nk2|y] , (13)

where A is a constant andm, n are integers. Thus the irrotational stream function ψ(ξ1, ξ2, y) can be expressed by

ψ(ξ1, ξ2, y) =

+∞
i=0

+∞
j=−∞

Cψi,j cos(iξ1 + jξ2) exp[|ik1 + jk2|y], (14)

where Cψi,j is a constant to be determined.

3.2. Solution expression of the stream function with current

When current with vorticity is added into the fluid field, the expression of surface elevation is the same as the case
without current, only with a different value of Cζi,j in (11). While the expression of surface elevation is very clear from the
physical view-point, the expression of the stream function ψ is not so straightforward.

To derive the expression for stream function ψ(ξ1, ξ2, y), we firstly rewrite the governing equation (1) in the new
coordinates (ξ1, ξ2, y)

k31c1
∂3ψ

∂ξ 31
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
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= Lg [ψ(ξ1, ξ2, y), c1, c2] + Mg [ψ(ξ1, ξ2, y), c1, c2] = 0. (15)
The boundary conditions (3) and (9) on the free surface y = ζ (ξ1, ξ2) then become
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∂ξ1
+ k2c2

∂ζ

∂ξ2
−
∂ψ

∂y


k1
∂ζ

∂ξ1
+ k2

∂ζ

∂ξ2


− k1

∂ψ

∂ξ1
− k2

∂ψ

∂ξ2
= Nb,1[ζ (ξ1, ξ2), ψ(ξ1, ξ2, y), c1, c2]

= Lb,1[ζ (ξ1, ξ2), ψ(ξ1, ξ2, y), c1, c2] + Mb,1[ζ (ξ1, ξ2), ψ(ξ1, ξ2, y), c1, c2] = 0, (16)
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
+ g

 
k1
∂ζ
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
= Nb,2[ζ (ξ1, ξ2), ψ(ξ1, ξ2, y), c1, c2]

= Lb,2[ζ (ξ1, ξ2), ψ(ξ1, ξ2, y), c1, c2] + Mb,2[ζ (ξ1, ξ2), ψ(ξ1, ξ2, y), c1, c2] = 0, (17)
and the bed condition (2) reads

∂ψ

∂ξ1
→ 0 and

∂ψ

∂ξ2
→ 0, as y → −∞, (18)

where Ng , Nb,1 and Nb,2 are the nonlinear operators, Lg , Lb,1 and Lb,2 (Mg , Mb,1 and Mb,2) denote the linear (remaining
nonlinear) parts of the full operator, respectively.
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It is known through the work of Ekman [37] that the surface oceanic current follows, approximately, a spiral law [6].
Following Abdullah [6] that focused on the magnitude of the current speed distribution, we consider the exponentially
sheared current

U(y) = U0 exp[y/d], −∞ < y ≤ ζ (ξ1, ξ2), (19)

where U0 is the surface velocity of the current and d is the characteristic current depth. Here the ambient current is defined
up to the instantaneous free-surface elevation [29]. As a first step, no feedback has been considered to the exponential
current field, though the current profile could change as noticed by Swan et al. [19] and Nwogu [29].

Physically speaking, as the unidirectional irregular wave is periodic along the x direction and both the irregular waves
and current decay exponentially along the y direction, it is reasonable to predict that the combined wave–current field still
owns the periodicity in the x axis and decays exponentially in the y axis. Besides, the exponentially sheared current imposes
a vorticity distribution, the subsequent wave motion thereby inherits a rotational motion [6].

Mathematically, to seek the detailed solution expression of ψ(ξ1, ξ2, y), we substitute linear expression1

ψ(ξ1, ξ2, y) ∼ cos(iξ1 + jξ2) exp[|ik1 + jk2|y] + exp[y/d], (20)

into the vorticity transport equation (15). From the first nonlinear term of (15), we find

∂ψ

∂y
∂3ψ

∂ξ 31
∼ (cos(iξ1 + jξ2) exp[|ik1 + jk2|y] + exp[y/d]) sin(i′ξ1 + j′ξ2) exp[|i′k1 + j′k2|y]

∼ (sin((i + i′)ξ1 + (j + j′)ξ2)− sin((i − i′)ξ1 + (j − j′)ξ2)) exp[(|ik1 + jk2|

+ |i′k1 + j′k2|)y] + sin(i′ξ1 + j′ξ2) exp[(|i′k1 + j′k2| + 1/d)y]. (21)

Different form the irrotational expression (14), the vorticity of the above two terms is not equal to zero, which means that
they belong to the rotational components. The appearance of these two terms demonstrates the influence of the exponential
distribution of vorticity on the irrotational waves. Based on (20) and (21), we express ψ(ξ1, ξ2, y) in the general form:

ψ(ξ1, ξ2, y) = U0 d exp(y/d)+

+∞
i=0

+∞
j=−∞

+∞
r=0

+∞
s=−∞

+∞
l=0

Cψi,j,r,s,l cos(iξ1 + jξ2) exp[(|rk1 + sk2| + l/d)y], (22)

where Cψi,j,r,s,l is a constant. For given Cψ1,0,1,0,0, C
ψ

0,1,0,1,0, C
ψ

0,0,0,0,1, all other constants Cζi,j in (11) and Cψi,j,r,s,l in (22) will be
determined by solving Eqs. (15)–(18). Note that (22) contains (14) as a special case and automatically satisfies the bed
condition (18).Mathematically, the nonlinear PDEs (15)–(18) are rather difficult to solve, since the unknown stream function
ψ is governed by the complicated nonlinear PDE (15), subject to two complicated nonlinear boundary conditions (16) and
(17) on the unknown free-surface ζ , and in addition the two unknown phase speeds c1 and c2 need to determined. Details
of the deformation equations together with the solution procedure in the frame of HAM are shown in the Appendix.

3.3. Result verification

Set

Cψ1,0,1,0,0 = H1


g/k31, Cψ0,1,0,1,0 = H2


g/k32,

where H1 and H2 denote the dimensionless stream function amplitude of each primary wave, respectively. For a single
traveling wave, the values of dimensionless stream function amplitude H and the traditional dimensionless amplitude ak
are shown in Table 1. It can be found from Table 1 that H < ak all the time and the value of ak − H is much smaller as
compared to the individual value of H and ak, especially for H < 0.20.

According to the dependence of the phase velocity on the primary wave amplitude, we divide cj, the phase velocity2 of
the jth (j = 1, 2) primary wave, into three parts

c1 = cL1(ε, δ)+ cS1(ε, δ,H1)+ c I1(ε, δ, κ,H1,H2), (23)

c2 = cL2(ε, δ, κ)+ cS2(ε, δ, κ,H2)+ c I2(ε, δ, κ,H1,H2), (24)

where ε = U0/
√
g/k1 is the dimensionless velocity of the current on the surface, δ = 1/(k1d) the dimensionless charac-

teristic current slope, and κ = k2/k1 the ratio of primary wave numbers, respectively. The first and second terms cLj and cSj
denote the linear and self–self interaction parts of the jth primary wave, respectively, as observed in the solution for a single
Stokes wave traveling on exponentially sheared current. The third term c Ij is related to the mutual interactions between
different primary waves on exponentially sheared current.

1 Here the trivial coefficients have been ignored.
2 Here, cj is divided by


g/kj to gain a dimensionless form.
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Table 1
The value of H and ak for the case of the single traveling wave.

H 0.05000 0.10000 0.15000 0.20000 0.25000 0.30000
ak 0.05002 0.10002 0.15047 0.20491 0.26108 0.32424

Fig. 2. (Color online) log10 ε
g
m , log10 εb,1m and log10 εb,2m versus the convergence-control parameter C0 with H1 = H2 = 0.1, ε = 0.05, δ = 4 and κ = 2π/3.

Solid line: 2nd-order approximation; Dashed line: 3rd-order approximation; Dash–dot line: 4th-order approximation; Dash–dot–dot line: 5th-order ap-
proximation.

HAM contains the so-called convergence-control parameter C0 which provides us a convenient way to control and
guarantee the convergence of approximation series [38,39]. This is a remarkable advantage of the HAM. For more examples,
please refer to Liao’s two books [34,35].

To determine the optimal value of C0, we define the average residual squares of the vorticity transform equation (15) εgm
and the two free surface boundary conditions (16)–(17) εb,1m and εb,2m :

εgm =
π2

100

10
m=0

10
n=0

 ζm( π10m,
π
10 n)

−∞


m−1
i=0

∆
g
i

 π
10

m,
π

10
n, y

2

dy (25)

εb,1m =
π2

100

10
m=0

10
n=0


m−1
i=0

∆
b,1
i

 π
10

m,
π

10
n
2

, (26)

εb,2m =
π2

100

10
m=0

10
n=0


m−1
i=0

∆
b,2
i

 π
10

m,
π

10
n
2

, (27)

where∆g
i ,∆

b,1
i and∆b,2

i are the ith-order derivatives of Nb, Nb,1 and Nb,2 with respect to q that defined by (B.4), (B.27) and
(B.28), respectively.

In the case of H1 = H2 = 0.1, ε = 0.05, δ = 4 and κ = 2π/3,3 the average residual squares at different orders of ap-
proximation are shown in Fig. 2. Fig. 2 shows the convergence domain is [−1.5, 0), that means wewould obtain convergent
high-order series solutions for any value of C0 that satisfy −1.5 ≤ C0 < 0. Strictly speaking, the optimal convergence-
parameter should be obtained as the order tends to infinity. Fortunately, this is unnecessary: it is not our purpose to find out
the exact value of the optimal convergence-control parameter, since an approximate value of it is good enough and can give
fast enough convergence! Note for the residual of governing equation (15) εgm, the optimal convergence-parameter changes
a little at different orders of approximations. Here C0 = −0.8 is considered and the residuals εgm, εb,1m and εb,2m decrease
quickly as the order of approximation m increases, as shown in Fig. 3. So in our model, the convergence-control parameter
indeed provides us a convenient way to guarantee the convergence of series solutions. To increase the convergent rate of
the series solution, the Homotopy–Pade approximation is applied and the corresponding [m,m] approximation of c1 and
c2 is shown in Table 2. Table 2 shows that as the approximation order n increases, the values of [m,m] Homotopy–Pade
approximation of c1 and c2 gradually tend to constants. Hereinafter all the following calculations stop until the results of
Homotopy–Pade approximation agree to five significant figures.

In summary, in the frame of the HAM, the original complicated nonlinear partial differential equations are transferred
into an infinite number of linear sub-problems, which are efficiently solved by means of the computer algebra system

3 Here κ = 2π/3 is applied to avoid the influence of the resonant interaction: small divisors arise in (C.12) and (C.13) and this value is applied in the
rest part of this paper, without loss of generality.
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Fig. 3. log10 ε
g
m , log10 εb,1m and log10 εb,2m versus the approximation order m with H1 = H2 = 0.1, ε = 0.05, δ = 4, κ = 2π/3 and C0 = −0.8. Solid line:

log10 ε
g
m; Dashed line: log10 εb,1m ; Dash–dot line: log10 εb,2m .

Table 2
[m,m]Homotopy–Pade approximation of c1 and c2 withH1 =

H2 = 0.1, ε = 0.05, δ = 4 and κ = 2π/3.

m c1 c2

1 1.02524 1.05651
2 1.02509 1.06007
3 1.02529 1.06123
4 1.02557 1.05910
5 1.02558 1.05918
6 1.02558 1.05918
7 1.02558 1.05918

such as Mathematica. Especially, the convergence of series solutions is guaranteed by means of the so-called convergence-
control parameter. In this way, we can gain the series approximations of the unidirectional bichromatic wave-train riding
on exponentially sheared current.

4. Result analysis

First of all, we consider the phase velocity of the linear wave propagating over the exponentially sheared current. The
changes of the phase velocity due to the surface velocity and the characteristic depth of the current is compared with pre-
vious work. As the amplitude of each primary wave increases, the nonlinear effect of the wave interaction needs to be
considered. So, a high-order approximation of the phase velocity concerning both the self–self and mutual interactions of
primary waves is established. Finally, we illustrate how the vorticity influences the phase velocity caused by the nonlinear
wave mutual interaction in exponentially sheared current fields.

4.1. Linear wave propagating on exponentially sheared current

Linear wave is initially considered here to validate the solution procedure and to also serve as a benchmark for finite-
amplitude waves. For the linear wave propagating over the weak current, the dispersion relation in water of infinite depth

c = 1 +
2ε

2 + δ
(28)

is first derived by Stewart and Joy [7] and the extension to the second order

c = 1 +
2ε

2 + δ
+

ε2

2(1 + δ)
−

2ε2

(2 + δ)2
(29)

is given by Kirby and Chen [10]. It is shown by Skop [8] that the first-order approximation (28) provides generally good
estimates of the wave parameters, while Kirby and Chen [10] remarked that there is a general overall deviation between the
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Fig. 4. (Color online) Phase velocity c versus current strength ε when H = 0.001. Open points correspond to (28) and filled points correspond to (29).
Curve labels are values of δ.

dispersion curves for the first (28) and second (29) approximations, which reflecting the reduced accuracy of the first-order
approximation (28).

Fig. 4 shows phase velocity c versus surface velocity ε = U0/
√
g/k with a range of characteristic slope δ = 1/(kd)

for amplitude H = 0.001. For currents with weak vorticity (εδ < 1), there is close agreement among the first-order (28),
second-order (29) perturbation approximations and the high-order (C.16) HAM approximations. This consistency verifies
the validity of our analytic approach based on the HAM. For the current with stronger vorticity (εδ > 1), there is a deviation
of c between the first-order (28) and second-order (29) approximations, especially for the strong opposing current. And it is
a surprise to find that the high-orderHAMapproximations (C.16) agreewellwith the first-order perturbation approximation
(28) over thewhole region of ε, mainly because the corresponding nonlinearity isweak. The deviationwith the second-order
approximations [10] for the current with strong vorticity needs further investigation, especially by experiments.

As δ increases, the phase speed decreases for following currents ε > 0 but increases for opposing currents ε < 0, as
shown in Fig. 4. So, for linear waves, the characteristic slope δ always act to reduce the change of phase velocity caused by
surface current strength ε. In other words, the mean flow vorticity εδ tends to reduce the effect of the surface current veloc-
ity ε on the linear phase velocity. This result is consistentwith Swan and James [18]who concluded that for theweak current
case the vorticity distribution acts to reduce the effective Doppler shift.

4.2. Interaction of two finite-amplitude waves without current

When the amplitudes of each primary wave increase, the nonlinear interaction affects the phase velocity, greatly. For
finite-amplitude waves without currents, the dispersion relation of jth primary waves reduces to

cj = 1 + cSj (Hj)+ c Ij (κ,H1,H2), j = 1, 2. (30)

For two primary waves traveling in the same direction, we consider H1 = H2 = H for simplicity so that cS1 = cS2 , but
c I1 ≠ c I2 since κ ≠ 1. It is found that, when H ≤ 0.1, the values of c Ij agree well with that in the third-order perturbation
theory of Longuet-Higgins and Phillips [30],4 as shown in Fig. 5. In fact, the coefficients of the leading terms in c Ij given by
the HAM is the same as those in [30]: this explains the well agreement for small-amplitude waves. This consistency verifies
the validity of our analytic approach based on the HAM for finite-amplitude waves without current.

As the amplitude H increases, the mutual nonlinear interaction between each primary component becomes stronger,
which means the increase of c Ij for primary waves traveling along each other. Fig. 5 shows the value of c Ij do increase as H
increases, and those values are always bigger than that given by the third-order perturbation theory [30], especially for c I2
(the phase-velocity of the shorter wave caused by the longer ones). For a bigger value of H , the deviation becomes more
remarkable, which indicates clearly the important role of the high-order approximations for finite-amplitude wave inter-
actions. The [m, n] Homotopy–Pade approximation of c Ij at H = 0.14 is shown in Table 3, which illustrates the convergence
of the high-order approximations together with the difference between low-order and high-order approximations in HAM.

4 A misprint in equation (2.8) was noted later, see Hogan et al. [31].
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Fig. 5. (Color online) Phase velocity caused by self–self interaction cS and mutual interactions c I1 and c I2 as a function of equivalent increasing stream
function amplitude H1 = H2 = H when κ = 2π/3 and the two primary waves moving in the same direction. (i) cS ; (ii) c I1; (iii) c

I
2 . Points correspond to

third-order theory [30]: •, c I1; �, c I2 .

Table 3
[m,m] Homotopy–Pade approximation of
c I1 and c I2 with H = 0.14 and κ = 2π/3.

m c I1 c I2
1 0.0081 0.0307
5 0.0089 0.0392
9 0.0094 0.0420

13 0.0094 0.0407
15 0.0094 0.0407

Table 4
[15, 15] Homotopy–Pade approximation of coeffi-
cients for H1 = H2 = 0.14, κ = 2π/3.

Surface elevation Stream function

Cζ1,0 0.14079 Cψ1,0 0.43849
Cζ0,1 0.06735 Cψ0,1 0.14467
Cζ2,0 0.01124 Cψ2,0 0.00278
Cζ1,1 0.01665 Cψ1,1 0.00313
Cζ1,−1 −0.00714 Cψ1,−1 −0.05331
Cζ0,2 0.01021 Cψ0,2 0.00186

On thewhole range of 0 ≤ H ≤ 0.14, c I2 is larger than cS that is larger than c I1. Apparently, the longerwaves have a greater
influence on the shorter waves then vice versa. When H = 0.14, the ratio c I2 over cS reaches 4.04, while c I1/c

S
≈ 0.93. It

suggests that, as the amplitudes of primary waves increase, the phase velocity of the shorter wave caused by the longer
one deserves more attention than other components of the phase velocity. So, as a representative of the phase velocity
caused by the nonlinear wave interaction only c I2 (the phase velocity related to the mutual interaction of the shorter wave)
is considered in the rest part of this paper. ForH1 = H2 = 0.14, the [10, 10] and [15, 15]Homotopy–Pade approximations of
the surface elevations are shown in Fig. 6. The overlap of surface elevation between different orders shows the convergence
of the solution. And the relevant coefficients Cζi,j and Cφi,j related to Fig. 6 are given in Table 4 for |i| + |j| <= 2 for further
comparison with experimental or numerical results.

In many practical wave fields, the primary waves may travel against each other. Table 5 shows the values of c I2 for a
shorter wave that traveling both along and against the longer ones. When the amplitude is small (H = 0.02), themagnitude
of c I2 is the same in two cases. The conclusion of [30] that the phase velocities are increased/decreased by the same amount
as the propagation directions are the same/opposed stands at this case. For H ≥ 0.04, the magnitude of c I2 is always bigger
when the two primary waves move in the same direction than that in the opposed direction. As the amplitude increases,
the difference becomes more remarkable. So, for the interaction of finite-amplitude waves, high-order approximation is
necessary so as to get more accurate predictions.
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Fig. 6. (Color online) Surface elevation: [10, 10]Homotopy–Pade approximation (dot); [15, 15]Homotopy–Pade approximation (full line). Specifications:
H1 = H2 = 0.14, κ = 2π/3.

(a) Under critical slope δc . (b) Above critical slope δc .

Fig. 7. The effect of surface current strength ε on the phase velocity of the shorter wave caused by the longer one c I2 . (i) δ = 0; (ii) δ = 0.375; (iii) δ = 0.75;
(iv) δ = 1.5; (v) δ = 3; (vi) δ = 4; (vii) δ = 5. Specifications: H1 = 0.14, H2 = 0.02, κ = 2π/3.

Table 5
Comparison of c I2 between the shorter wave traveling along and against the longer wave. Specifications: H1 = H2 = H , κ = 2π/3.

H 0.02 0.04 0.06 0.08 0.10 0.12 0.13 0.14

Traveling along 0.0006 0.0024 0.0054 0.0099 0.0163 0.0253 0.0316 0.0407
Traveling against 0.0006 0.0023 0.0052 0.0093 0.0146 0.0210 0.0247 0.0287

4.3. Interaction of two finite-amplitude waves on exponentially sheared current

For finite-amplitude waves propagating on the exponentially sheared current, the nonlinear wave interactions are in-
fluenced by the current. As found in Section 4.2, the phase velocity of the shorter wave caused by the longer one acts as
the leading role among the phase velocity caused by nonlinear wave interactions, so only the influence of vorticity on the
phase velocity of the shorterwave caused by longer one c I2 is considered. For simplicity, the amplitudes of the primarywaves
H1 = 0.14 and H2 = 0.02 are applied and both the primary waves and the exponentially sheared current are moving in the
same direction. Both the effects of surface current velocity ε and characteristic slope δ on c I2 are to be investigated.

The values of c I2 for seven groups of characteristic slope δ = 0, 0.375, 0.75, 1.5, 3, 4, 5 when the surface current velocity
ε increases are shown in Fig. 7. Note that when δ = 0 (corresponds to uniform current), c I2 ≡ 0.0296 means only the
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Fig. 8. The effect of the current characteristic slope δ on the phase velocity of the shorter wave caused by the longer one c I2 . (i) ε = 0.01; (ii) ε = 0.03;
(iii) ε = 0.05; (iv) ε = 0.07; (v) ε = 0.09. Specifications: H1 = 0.14, H2 = 0.02, κ = 2π/3.

non-uniform current affects c I2 (nonlinear wave interactions). For any given surface current velocity 0 ≤ ε ≤ 0.1, the
increase of δ from 0 to 1.5 leads to an increase of c I2, as shown in Fig. 7(a), while the continued increase of δ from 1.5 to 5
leads to a decrease of c I2, as shown in Fig. 7(b), respectively. Thus, there exists a critical characteristic slope (near δc = 1.5),
under/above which the mean flow vorticity εδ leads to the increase/decrease of c I2. Note that this tendency is more striking
for larger values of ε (stronger currents).

The property of this critical characteristic slope δc can also be shown in Fig. 8 for five groups of ε. As the mean flow
vorticity ε δ increases, the value of c I2 increases in the range 0 ≤ δ ≤ δc , with δc = 1.73 determined from the case ε = 0.09.
After it reaches the maximum value at the critical characteristic slope, it decreases with continuous increase of δ. Again this
phenomenon is more remarkable for a bigger value of surface current velocity ε. Only when δ < 4 the increase of εwill lead
c I2 to increase as compared to the pure bichromatic wave-train case, otherwise c I2 decreases as ε increases.

More results show this critical characteristic slope δc appears in all components of the phase velocity caused by wave
self–self and mutual wave interactions, each with a different critical value. If the bichromatic wave-train and the current
are propagating opposed to each other, the critical characteristic slope δc still exists, under/above which the mean flow vor-
ticity εδ leads to the decrease/increase of the corresponding part of the phase velocity. Recalling the phase velocity of the
small-amplitude wave shown in Fig. 4, we find that the phase velocity caused by nonlinear wave self–self and mutual inter-
actions has a deeper reliance on the characteristic slope than the phase velocity of the linear wave. It is the current profile
slope that determines the effect of vorticity on the nonlinear wave interaction, meanwhile the surface current strength may
amplify/reduce this effect.

5. Conclusion

In this paper, the interaction between the unidirectional bichromatic wave-train and exponentially sheared current on
infinite depth is investigated. Different from previous results, we do not make any assumptions on the wave amplitude.
Besides, a current profile of the exponential type vertically is applied. So, both the effects of nonlinearity and vorticity are
revealed for the interaction of the irregular wave and the current in this model.

This nonlinear partial differential equation is solved analytically by means of the HAM. Unlike perturbation methods
which are based on small physical parameters, the HAM is independent of any small physical parameters at all. So, it
enables us to obtain high-order approximations for finite-amplitude bichromatic waves. The convergence of solutions
provided byHAM is guaranteed by the so-called convergence-control parameter. So theoretically speaking, these high-order
approximations are effective and theHAM is valid for highly nonlinear problems, as illustrated bymany examplesmentioned
by Liao [34,35]. Meanwhile, we acknowledge the accuracy of high-order approximations provided by HAM needs further
comparison with experimental data.

Based on the convergent series solution gained by the HAM, some interesting conclusions are gained. First, the phase ve-
locity of a small-amplitudewave traveled on exponentially sheared current is investigatedwithout restriction on the surface
velocity or the characteristic slope of the current. For current with weak vorticity, our series solutions are consistent with
both the first-order [8] and second-order [10] dispersion relations provided by the perturbation method. For the current
with stronger vorticity, there is a deviation between the first-order and second-order perturbation approximations, espe-
cially for the strong opposing current, but our high-order HAM approximations agree well with the first-order perturbation
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approximations. Further investigation is needed to explain this discrepancy, especially by an experimental way. Besides,
for small-amplitude waves it is found that the mean flow vorticity always acts to reduce the effect of the surface current
velocity on the phase velocity.

Secondly, the phase velocity of the finite-amplitude unidirectional bichromatic wave-train without current is inves-
tigated. A high-order approximation of the phase velocity concerning both the self–self and mutual interactions of pri-
mary waves is established. It is found that, when the amplitudes of primary waves are small, the third-order perturbation
theory [30] gives reliable prediction of the phase velocity caused by the mutual interaction. For the interaction of finite-
amplitude waves, high-order approximations of the phase velocity is obtained for the first time. It is found that, as the
amplitudes of the primary waves increase, the magnitude of the phase velocity of the shorter wave caused by the longer
one is much bigger than other components of the phase velocity. In addition, the magnitude of the phase velocity caused by
the mutual interaction owns a bigger value for primary waves moving in the same direction than those in opposed ones.

Thirdly, we investigated the effect of vorticity on the phase velocity caused by the nonlinear wave interaction in expo-
nentially sheared current. The effect of vorticity on the phase velocity caused by the nonlinear wave interaction is different
from that by linear ones. For each part of the phase velocity caused by wave self–self or mutual interactions, a critical char-
acteristic current slope is found, under/above which the mean flow vorticity increases/reduces the corresponding part of
the phase velocity. This tendency becomes more striking for big values of the current surface velocity. Thus, qualitatively
speaking, the effect of vorticity on the phase velocity caused by nonlinear wave interactions is determined by the current
profile slope, and this effect is amplified/reduced by the surface current strength.

We acknowledge that due to the constant exponential type current profile, no feedback from the current to the wave
fields has been considered. This limitation restricts our calculations to the relativeweak interaction betweenwaves and cur-
rents. Note that the model considered in this work is rather general and investigating the feedback from the current to the
wave fields in thismodel is one of our futureworks. Besides, triad resonant interactionsmay exist for irregular waves travel-
ing on currents, which deserve our attention too. Certainly, it is an interesting and challenging work to study wave–current
interactions when the primary waves propagate in arbitrary directions and ride on an ambient rotational current.
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Appendix A. General form of deformation equations

Letψ0(ξ1, ξ2, y), ζ0(ξ1, ξ2), c1,0, c2,0 denote the initial guesses ofψ, ζ , c1, c2, respectively. According to the solution ex-
pressions (11) and (22), we choose

ζ0(ξ1, ξ2) = 0, (A.1)

ψ0(ξ1, ξ2, y) = Cψ1,0,1,0,0 cos(ξ1) exp(k1y)+ Cψ0,1,0,1,0 cos(ξ2) exp(k2y)+ U0d exp(y/d) (A.2)

as the initial guess of ζ (ξ1, ξ2) and ψ(ξ1, ξ2, y), respectively. Here Cψ1,0,1,0,0 and Cψ0,1,0,1,0 are the coefficients of the terms
cos(ξ1) exp(k1y), cos(ξ2) exp(k2y) in ψ(ξ1, ξ2, y) so that these two terms do not appear in ψm(ξ1, ξ2, y), m ≥ 1, any more.
The reason for this choice of Cψ1,0,1,0,0 and Cψ0,1,0,1,0 will be further explained in Appendix C.

Define a family of functionsΨ (ξ1, ξ2, y; q), η(ξ1, ξ2; q), λ1(q), λ2(q), where q ∈ [0, 1] is called the embeddingparameter.
In HAM, these functions are governed by the so-called zeroth-order deformation equation

(1 − q)Lg [Ψ (ξ1, ξ2, y; q)− ψ0(ξ1, ξ2, y), λ1(q), λ2(q)] = q C0 Ng [Ψ (ξ1, ξ2, y; q), λ1(q), λ2(q)], (A.3)

subject to the two boundary conditions

(1 − q)Lb,1[η(ξ1, ξ2; q)− ζ0(ξ1, ξ2),Ψ (ξ1, ξ2, y; q)− ψ0(ξ1, ξ2, y), λ1(q), λ2(q)]

= qC0Nb,1[η(ξ1, ξ2; q),Ψ (ξ1, ξ2, y; q), λ1(q), λ2(q)], on y = η(ξ1, ξ2; q), (A.4)
(1 − q)Lb,2[η(ξ1, ξ2; q)− ζ0(ξ1, ξ2),Ψ (ξ1, ξ2, y; q)− ψ0(ξ1, ξ2, y), λ1(q), λ2(q)]

= qC0Nb,2[η(ξ1, ξ2; q),Ψ (ξ1, ξ2, y; q), λ1(q), λ2(q)] on y = η(ξ1, ξ2; q), (A.5)

and the bed condition

k1
∂Ψ (ξ1, ξ2, y; q)

∂ξ1
+ k2

∂Ψ (ξ1, ξ2, y; q)
∂ξ2

→ 0, y → −∞, (A.6)

where q ∈ [0, 1] denotes the embedding parameter, C0 is the convergence-control parameter, and the auxiliary linear op-
erators Lg , Lb,1 and Lb,2 are defined from (15) to (17).
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Assuming that the convergence-control parameter C0 is properly chosen so that the Taylor series expansions

η(ξ1, ξ2; q) =

+∞
m=0

ζm(ξ1, ξ2) qm, (A.7)

Ψ (ξ1, ξ2, y; q) =

+∞
m=0

ψm(ξ1, ξ2, y) qm, (A.8)

λ1(q) =

+∞
m=0

c1,m qm, (A.9)

λ2(q) =

+∞
m=0

c2,m qm, (A.10)

exist and converge at q = 1, we have the so-called homotopy-series solution

ζ (ξ1, ξ2) =

+∞
m=1

ζm(ξ1, ξ2), (A.11)

ψ(ξ1, ξ2, y) = ψ0(ξ1, ξ2, y)+

+∞
m=1

ψm(ξ1, ξ2, y), (A.12)

c1 = c1,0 +

+∞
m=1

c1,m, (A.13)

c2 = c2,0 +

+∞
m=1

c2,m, (A.14)

respectively.
The so-called mth-order deformation equations (m ≥ 1) about ζm(ξ1, ξ2), ψm(ξ1, ξ2, y), c1,m and c2,m in (A.11)–(A.14)

can be derived directly from the zeroth-order deformation equations (A.3)–(A.6). For simplicity, we define the vectors
ζn = {ζ0, ζ1, ζ2, . . . , ζn}, ψn = {ψ0, ψ1, ψ2, . . . , ψn},

c1,n = {c1,0, c1,1, c1,2, . . . , c1,n}, c2,n = {c2,0, c2,1, c2,2, . . . , c2,n}.
Substituting the Taylor series (A.7)–(A.10) into the zeroth-order deformation equations (A.3)–(A.6) with y = η(ξ1, ξ2; q) for
the two free-surface conditions, then equating the like-power of q, we have the mth-order deformation equations

L̄g [ψm] = Rg
m(ψm−1, c1,m−1, c2,m−1), (A.15)

subject to the two free-surface boundary conditions on y = 0:

k1c1,0
∂ζm

∂ξ1
+ k2c2,0

∂ζm

∂ξ2
− k1

∂ψm

∂ξ1
− k2

∂ψm

∂ξ2
= Rb,1

m (ζm−1,ψm−1, c1,m−1, c2,m−1), (A.16)

k1c1,0
∂2ψm

∂ξ1∂y
+ k2c2,0

∂2ψm

∂ξ2∂y
− gk1

∂ζm

∂ξ1
− gk2

∂ζm

∂ξ2
= Rb,2

m (ζm−1,ψm−1, c1,m−1, c2,m−1), (A.17)

and the bed condition at infinity

k1
∂ψm

∂ξ1
+ k2

∂ψm

∂ξ2
→ 0, y → −∞. (A.18)

The detailed deductions of the above higher-order deformation equations and the definitions of L̄g , R
g
m, Rb,1

m and Rb,2
m are

given in Appendix B. The solution procedure of ζm(ξ1, ξ2), ψm(ξ1, ξ2, y), c1,m and c2,m are shown in Appendix C.

Appendix B. Detailed formulas in deformation equations

According to (A.8), we have

k21
∂2Ψ

∂ξ 21
+ 2k1k2

∂2Ψ

∂ξ1∂ξ2
+ k22

∂2Ψ

∂ξ 22
+
∂2Ψ

∂y2
=

+∞
m=0

Πm(ξ1, ξ2, y)qm, (B.1)

where

Πm(ξ1, ξ2, y) = k21
m

n=0

∂ψn

∂ξ1

∂ψm−n

∂ξ1
+ 2k1k2

m
n=0

∂ψn

∂ξ1

∂ψm−n

∂ξ2
+ k22

m
n=0

∂ψn

∂ξ2

∂ψm−n

∂ξ2
+

m
n=0

∂ψn

∂y
∂ψm−n

∂y
, (B.2)
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and similarly

Ng [Ψ (ξ1, ξ2, y; q), λ1(q), λ2(q)] =

+∞
m=0

∆g
mq

m, (B.3)

where

∆g
m =

m
n=0


k1
∂Πn

∂ξ1
c1,m−n + k2

∂Πn

∂ξ2
c2,m−n


−

m
n=0

∂ψn

∂y


k1
∂Πm−n

∂ξ1
+ k2

∂Πm−n

∂ξ2



+

m
n=0


k1
∂ψn

∂ξ1
+ k2

∂ψn

∂ξ2


∂Πm−n

∂y
, (B.4)

respectively. Write

∂ i+jΨ

∂ξ i1∂ξ
j
2

=

+∞
n=0

ψ̄ i,j
n (ξ1, ξ2)q

n, (B.5)

∂ i+j

∂ξ i1∂ξ
j
2

∂Ψ

∂y
=

+∞
n=0

ψ̄ i,j
y,n(ξ1, ξ2)q

n, (B.6)

∂ i+j

∂ξ i1∂ξ
j
2

∂2Ψ

∂y2
=

+∞
n=0

ψ̄ i,j
yy,n(ξ1, ξ2)q

n, (B.7)

where

ψ̄ i,j
n (ξ1, ξ2) =

n
m=0

β
n−m,m
i,j , (B.8)

ψ̄ i,j
y,n(ξ1, ξ2) =

n
m=0

γ
n−m,m
i,j , (B.9)

ψ̄ i,j
yy,n(ξ1, ξ2) =

n
m=0

δ
n−m,m
i,j , (B.10)

and the definitions of βn−m,m
i,j , γ n−m,m

i,j and δn−m,m
i,j are given by [40].

Then, on y = η(ξ1, ξ2; q), it holds using (A.7), (A.9), (A.10), (B.5), (B.6) and (B.7) that

∂Ψ

∂y


k1
∂η

∂ξ1
+ k2

∂η

∂ξ2


=

+∞
m=0

ψ̄0,0
y,mq

m
+∞
n=0


k1

dζn
dξ1

+ k2
dζn
dξ2


qn =

+∞
m=0

Γm,0qm, (B.11)

∂Ψ

∂y


k1
∂2Ψ

∂ξ1∂y
+ k2

∂2Ψ

∂ξ2∂y


=

+∞
m=0

ψ̄0,0
y,mq

m
+∞
n=0


k1ψ̄1,0

y,n + k2ψ̄0,1
y,n


qn =

+∞
m=0

Γm,1qm, (B.12)


k1
∂Ψ

∂ξ1
+ k2

∂Ψ

∂ξ2


∂2Ψ

∂y2
=

+∞
m=0


k1ψ̄1,0

m + k2ψ̄0,1
m


qm

+∞
n=0

ψ̄0,0
yy,nq

n
=

+∞
m=0

Γm,2qm, (B.13)

∂Ψ

∂y


k21
∂2Ψ

∂ξ1
2 + 2k1k2

∂2Ψ

∂ξ1∂ξ2
+ k22

∂2Ψ

∂ξ2
2



=

+∞
m=0

ψ̄0,0
y,mq

m
+∞
n=0


k21ψ̄

2,0
n + 2k1k2ψ̄1,1

n + k22ψ̄
0,2
n


qn =

+∞
m=0

Γm,3qm, (B.14)


k1
∂Ψ

∂ξ1
+ k2

∂Ψ

∂ξ2

 
k1
∂2Ψ

∂ξ1∂y
+ k2

∂2Ψ

∂ξ2∂y



=

+∞
m=0


k1ψ̄1,0

m + k2ψ̄0,1
m


qm

+∞
n=0


k1ψ̄1,0

y,n + k2ψ̄0,1
y,n


qn =

+∞
m=0

Γm,4qm, (B.15)
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k21λ1
∂2Ψ

∂ξ1
2 + (λ1 + λ2)k1k2

∂2Ψ

∂ξ1∂ξ2
+ k22λ2

∂2Ψ

∂ξ2
2

= k21
+∞
m=0

c1,mqm
+∞
n=0

ψ̄2,0
n qn + k1k2

+∞
m=0


c1,m + c2,m


qm

+∞
n=0

ψ̄1,1
n qn

+ k22
+∞
m=0

c2,mqm
+∞
n=0

ψ̄0,2
n qn =

+∞
m=0

Γm,5qm, (B.16)

where

Γm,0 =

m
n=0


k1

dζn
dξ1

+ k2
dζn
dξ2


ψ̄

0,0
y,m−n, (B.17)

Γm,1 =

m
n=0


k1ψ̄1,0

y,n + k2ψ̄0,1
y,n


ψ̄

0,0
y,m−n, (B.18)

Γm,2 =

m
n=0

ψ̄0,0
yy,n


k1ψ̄

1,0
m−n + k2ψ̄

0,1
m−n


, (B.19)

Γm,3 =

m
n=0


k21ψ̄

2,0
n + 2k1k2ψ̄1,1

n + k22ψ̄
0,2
n


ψ̄

0,0
y,m−n, (B.20)

Γm,4 =

m
n=0


k1ψ̄1,0

y,n + k2ψ̄0,1
y,n

 
k1ψ̄

1,0
m−n + k2ψ̄

0,1
m−n


, (B.21)

Γm,5 = k21
m

n=0

ψ̄2,0
n c1,m−n + k1k2

m
n=0

ψ̄1,1
n


c1,m−n + c2,m−n


+ k22

m
n=0

ψ̄0,2
n c2,m−n. (B.22)

Furthermore, using (A.7) and (B.14)–(B.16), we have
k21λ1

∂2Ψ

∂ξ1
2 + (λ1 + λ2)k1k2

∂2Ψ

∂ξ1∂ξ2
+ k22λ2

∂2Ψ

∂ξ2
2 −

∂Ψ

∂y


k21
∂2Ψ

∂ξ1
2 + 2k1k2

∂2Ψ

∂ξ1∂ξ2

+ k22
∂2Ψ

∂ξ2
2


+


k1
∂Ψ

∂ξ1
+ k2

∂Ψ

∂ξ2

 
k1
∂2Ψ

∂ξ1∂y
+ k2

∂2Ψ

∂ξ2∂y


+ g

 
k1
∂η

∂ξ1
+ k2

∂η

∂ξ2


=

+∞
m=0


Γm,5 − Γm,3 + Γm,4 + g(1 − χm+1)


qm

+∞
n=0


k1

dζn
dξ1

+ k2
dζn
dξ2


qn

=

+∞
m=0

Λm,1qm, (B.23)

where

Λm,1 =

m
n=0


k1

dζn
dξ1

+ k2
dζn
dξ2

 
Γm−n,5 − Γm−n,3 + Γm−n,4 + g(1 − χm−n+1)


. (B.24)

Then, using (A.7), (B.5), (B.6), (B.11)–(B.13), and (B.24), we have on y = η(ξ1, ξ2; q) that

Nb,1[η(ξ1, ξ2; q),Ψ (ξ1, ξ2, y; q), λ1(q), λ2(q)] =

+∞
m=0

∆b,1
m qm, (B.25)

Nb,2[η(ξ1, ξ2; q),Ψ (ξ1, ξ2, y; q), λ1(q), λ2(q)] =

+∞
m=0

∆b,2
m qm, (B.26)

where

∆b,1
m = k1

m
n=0

∂ζn

∂ξ1
c1,m−n + k2

m
n=0

∂ζn

∂ξ2
c2,m−n − Γm,0 − k1ψ̄1,0

m − k2ψ̄0,1
m , (B.27)

∆b,2
m = k1

m
n=0

ψ1,0
y,n c1,m−n + k2

m
n=0

ψ0,1
y,n c2,m−n − Γm,1 + Γm,2 −Λm,1. (B.28)
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Using (A.8) and (A.9), we have

c1
∂3(Ψ − ψ0)

∂ξ 31
=

+∞
m=0

c1,mqm
+∞
n=1

∂3ψn

∂ξ 31
qn =

+∞
m=1

m−1
n=0

c1,n
∂3ψm−n

∂ξ 31
qm. (B.29)

Then, it holds due to the linear property of the operator (15) that

Lg(Ψ − ψ0, λ1, λ2) =

+∞
m=1

Gmqm, (B.30)

where

Gm = k31
m−1
n=0

c1,n
∂3ψm−n

∂ξ 31
+ k21k2

m−1
n=0

(2c1,n + c2,n)
∂3ψm−n

∂ξ 21 ∂ξ2
+ k1k22

m−1
n=0

(2c2,n + c1,n)
∂3ψm−n

∂ξ1∂ξ
2
2

+ k32
m−1
n=0

c2,n
∂3ψm−n

∂ξ 32

+ k1
m−1
n=0

c1,n
∂3ψm−n

∂ξ1∂y2
+ k2

m−1
n=0

c2,n
∂3ψm−n

∂ξ2∂y2
. (B.31)

Thus, the left-hand side of (A.3) can be reduced to

(1 − q)Lg(Ψ − ψ0, λ1, λ2) = (1 − q)
+∞
m=1

Gmqm =

+∞
m=1

(Gm − χmGm−1)qm. (B.32)

Substituting (B.32), (B.3) into (A.3) and equating the like-power of q, we have the mth-order deformation equation of the
vorticity transport equation:

Gm − χmGm−1 = C0∆
g
m−1, m ≥ 1 (B.33)

where

χm =


0, m ≤ 1,
1, m > 1. (B.34)

Define

Ḡm = k31
m−1
n=1

c1,n
∂3ψm−n

∂ξ 31
+ k21k2

m−1
n=1

(2c1,n + c2,n)
∂3ψm−n

∂ξ 21 ∂ξ2
+ k1k22

m−1
n=1

(2c2,n + c1,n)
∂3ψm−n

∂ξ1∂ξ
2
2

+ k32
m−1
n=1

c2,n
∂3ψm−n

∂ξ 32

+ k1
m−1
n=1

c1,n
∂3ψm−n

∂ξ1∂y2
+ k2

m−1
n=1

c2,n
∂3ψm−n

∂ξ2∂y2
, (B.35)

L̄g [ψm] = k31c1,0
∂3ψm

∂ξ 31
+ k21k2(2c1,0 + c2,0)

∂3ψm

∂ξ 21 ∂ξ2
+ k1k22(2c2,0 + c1,0)

∂3ψm

∂ξ1∂ξ
2
2

+ k32c2,0
∂3ψm

∂ξ 32
+ k1c1,0

∂3ψm

∂ξ1∂y2
+ k2c2,0

∂3ψm

∂ξ2∂y2
. (B.36)

Then, (B.33) can be reduced to

L̄g [ψm] = C0 ∆
g
m−1 + χmGm−1 − Ḡm = Rg

m(ψn−1, c1,n−1, c2,n−1), m ≥ 1. (B.37)
Using (A.8) and (B.5), we have on y = η(ξ1, ξ2; q) that

∂(Ψ − ψ0)

∂ξ1
=

+∞
m=1

∂ψm(ξ1, ξ2, η)

∂ξ1
qm =

+∞
m=1

qm
+∞
n=0

β
m,n
1,0 qn =

+∞
m=1

m−1
n=0

β
m−n,n
1,0 qm. (B.38)

Similarly, on y = η(ξ1, ξ2; q), it holds due to the linear property of the operator (16) that

(1 − q)Lb,1(Ψ − ψ0, η − ζ0) =

+∞
m=1

(Sm − χmSm−1)qm, (B.39)

where

Sm(ξ1, ξ2) =

m
n=1


k1
∂ζn

∂ξ1
c1,m−n + k2

∂ζn

∂ξ2
c2,m−n


−

m−1
n=0


k1β

m−n,n
1,0 + k2β

m−n,n
0,1


. (B.40)

Substituting (B.39), (B.25) into (A.4) and equating the like-power of q, we have themth-order deformation equation for the
kinematic free surface boundary condition:

Sm(ξ1, ξ2)− χmSm−1(ξ1, ξ2) = C0 ∆
b,1
m−1(ξ1, ξ2), m ≥ 1. (B.41)
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Introducing

S̄m(ξ1, ξ2) =

m−1
n=1


k1
∂ζn

∂ξ1
c1,m−n + k2

∂ζn

∂ξ2
c2,m−n


−

m−1
n=1


k1β

m−n,n
1,0 + k2β

m−n,n
0,1


, (B.42)

we have

Sm = k1c1,0
∂ζm

∂ξ1
+ k2c2,0

∂ζm

∂ξ2
− k1β

m,0
1,0 − k2β

m,0
0,1 + S̄m

= k1c1,0
∂ζm

∂ξ1
+ k2c2,0

∂ζm

∂ξ2
−


k1
∂ψm

∂ξ1
+ k2

∂ψm

∂ξ2


y=0

+ S̄m, (B.43)

and the followingmth-order deformation equation on y = 0:

k1c1,0
∂ζm

∂ξ1
+ k2c2,0

∂ζm

∂ξ2
− k1

∂ψm

∂ξ1
− k2

∂ψm

∂ξ2

= C0 ∆
b,1
m−1 + χmSm−1 − S̄m = Rb,1

m (ζn−1,ψn−1, c1,n−1, c2,n−1), m ≥ 1. (B.44)

Similarly, themth-order deformation equation for the dynamic surface boundary condition (on y = 0) can be written as:

k1c1,0
∂2ψm

∂ξ1∂y
+ k2c2,0

∂2ψm

∂ξ2∂y
− gk1

∂ζm

∂ξ1
− gk2

∂ζm

∂ξ2

= C0 ∆
b,2
m−1 + χmTm−1 − T̄m = Rb,2

m (ζn−1,ψn−1, c1,n−1, c2,n−1), m ≥ 1, (B.45)

where

Tm = k1c1,0γ
m,0
1,0 + k2c2,0γ

m,0
0,1 − gk1

∂ζm

∂ξ1
− gk2

∂ζm

∂ξ2
+ T̄m

= k1c1,0
∂2ψm

∂ξ1∂y
+ k2c2,0

∂2ψm

∂ξ2∂y
− gk1

∂ζm

∂ξ1
− gk2

∂ζm

∂ξ2
+ T̄m, (B.46)

T̄m = k1
m−1
l=1

c1,l
m−l−1
n=0

γ
m−l−n,n
1,0 + k1c1,0

m−1
n=1

γ
m−n,n
1,0 + k2

m−1
l=1

c2,l
m−l−1
n=0

γ
m−l−n,n
0,1 + k2c2,0

m−1
n=1

γ
m−n,n
0,1 . (B.47)

Appendix C. High-order solution procedure

According to the definition (B.36) of the auxiliary linear operators L̄g , it holds for any positive integersM and N that

L̄g


M
i=0

M
j=−M

Cψ,mi,j cos(iξ1 + jξ2) exp(|ik1 + jk2|y)


= 0, (C.1)

whereCψ,mi,j are constants. Thus, the general solution of the high-order deformation equation (A.15) reads

ψm(ξ1, ξ2, y) = ψ∗

m(ξ1, ξ2, y)+

M
i=0

M
j=−M

Cψ,mi,j cos(iξ1 + jξ2) exp(|ik1 + jk2|y), (C.2)

where

ψ∗

m(ξ1, ξ2, y) = L̄−1
g


Rg
m(ψm−1, c1,m−1, c2,m−1)


(C.3)

is the special solution, and the inverse operator L̄−1
g is defined by

L̄−1
g [sin(iξ1 + jξ2) exp(ny)] =

cos(iξ1 + jξ2) exp(ny)
(ik1c1,0 + jk2c2,0)((ik1 + jk2)2 − n2)

. (C.4)

To determine the unknown integration coefficientsCψ,mi,j , we substitute (C.2) into (A.16) and (A.17) and get the following
equations on y = 0:

k1c1,0
∂ζm

∂ξ1
+ k2c2,0

∂ζm

∂ξ2
+

M
i=0

M
j=−M

(ik1 + jk2)Cψ,mi,j sin(iξ1 + jξ2)

=


k1
∂ψ∗

m

∂ξ1
+ k2

∂ψ∗
m

∂ξ2


y=0

+ Rb,1
m (ζm−1,ψm−1, c1,m−1, c2,m−1), (C.5)
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−|ik1 + jk2|
M
i=0

M
j=−M

(ik1c1,0 + jk2c2,0)Cψ,mi,j sin(iξ1 + jξ2)− gk1
∂ζm

∂ξ1
− gk2

∂ζm

∂ξ2

=


−k1c1,0

∂2ψ∗
m

∂ξ1∂y
− k2c2,0

∂2ψ∗
m

∂ξ2∂y


y=0

+ Rb,2
m (ζm−1,ψm−1, c1,m−1, c2,m−1). (C.6)

It is found that the right-hand side of the above two equations can be expressed by
k1
∂ψ∗

m

∂ξ1
+ k2

∂ψ∗
m

∂ξ2


y=0

+ Rb,1
m (ζm−1,ψm−1, c1,m−1, c2,m−1) =

m
i=0

m
j=−m

R1,m
i,j (c1,m−1, c2,m−1) sin(iξ1 + jξ2), (C.7)


−k1c1,0

∂2ψ∗
m

∂ξ1∂y
− k2c2,0

∂2ψ∗
m

∂ξ2∂y


y=0

+ Rb,2
m (ζm−1,ψm−1, c1,m−1, c2,m−1)

=

m
i=0

m
j=−m

R2,m
i,j (c1,m−1, c2,m−1) sin(iξ1 + jξ2), (C.8)

where R1,m
i,j and R2,m

i,j are known coefficients. Balancing both sides of (C.5) and (C.6), we haveM = m,

ζm =

m
i=0

m
j=−m

Cζ ,mi,j cos(iξ1 + jξ2), (C.9)

and the set of algebraic equations for the unknownCζ ,mi,j andCψ,mi,j :

−(ik1c1,0 + jk2c2,0)Cζ ,mi,j + (ik1 + jk2)Cψ,mi,j = R1,m
i,j (c1,m−1, c2,m−1), (C.10)

−|ik1 + jk2|(ik1c1,0 + jk2c2,0)Cψ,mi,j + g(ik1 + jk2)Cζ ,mi,j = R2,m
i,j (c1,m−1, c2,m−1), (C.11)

which has the solution

Cζ ,mi,j =


ik1c1,0 + jk2c2,0


R1,m
i,j + sgn(ik1 + jk2)R

2,m
i,j

g|ik1 + jk2| −

ik1c1,0 + jk2c2,0

2 , (C.12)

Cψ,mi,j =
(ik1 + jk2) gR

1,m
i,j +


ik1c1,0 + jk2c2,0


R2,m
i,j

g|ik1 + jk2| −

ik1c1,0 + jk2c2,0

2
|ik1 + jk2|

, (C.13)

if

g|ik1 + jk2| −


ik1c1,0 + jk2c2,0

2
|ik1+jk2| ≠ 0. For ij ≠ 0, the singularity caused by g|ik1+jk2|−


ik1c1,0 + jk2c2,0

2
=

0 is related to the resonant interaction and is considered beyond the scope of this paper. And the singularity caused by the
appearance of |ik1 + jk2| = 0 in the dominator ofCψ,mi,j for the pure wave case may be removed since R2,m

i,j (c1,m−1, c2,m−1)
intrinsically contains the term |ik1 + jk2|. The last kind of singularity caused by i = 1, j = 0 and i = 0, j = 1 provides us
equations to determine not onlyCζ ,m1,0 ,

Cψ,m1,0 ,
Cζ ,m0,1 ,

Cψ,m0,1 but also c1,m−1 and c2,m−1, as shown below in detail.
When i = 1, j = 0, Eqs. (C.10) and (C.11) reduce to

−k1c1,0Cζ ,m1,0 + k1Cψ,m1,0 = R1,m
1,0 (c1,m−1, c2,m−1), (C.14)

−k21c1,0Cψ,m1,0 + gk1Cζ ,m1,0 = R2,m
1,0 (c1,m−1, c2,m−1). (C.15)

Remembering the special choice of the initial guess solution (A.2), we declare that there should be no cos(ξ1) exp(k1y),
cos(ξ2) exp(k2y) terms in (C.2), which meansCψ,m1,0 = 0 in (C.14) and (C.15). So the remaining terms read

− k1c1,0Cζ ,m1,0 = R1,m
1,0 (c1,m−1, c2,m−1), gk1Cζ ,m1,0 = R2,m

1,0 (c1,m−1, c2,m−1). (C.16)

ApparentlyCζ ,m1,0 = R2,m
1,0 /(gk1) and R2,m

1,0 = −g/c1,0R
1,m
1,0 should be hold. It is from the last equation that we can get the value

for c1,m−1. For example, whenm = 1 the equation R2,m
1,0 = −g/c1,0R

1,m
1,0 gives

(2dk21 + k1)c31,0 − 2dk21U0c21,0 − (2dgk1 + g)c1,0 + gU0 = 0. (C.17)
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The solution of interest to this cubic equation is:

c1,0 =



B1 +
21/3B3

3(2dk21 + k1)


−B2 +


B2
2 − 4B3

3

1/3 +

2−1/3


−B2 +


B2
2 − 4B3

3

1/3

3(2dk21 + k1)

B1 −
21/3(1 +

√
3i)B3

6(2dk21 + k1)


−B2 +


B2
2 − 4B3

3

1/3 −

2−1/3(1 −
√
3i)


−B2 +


B2
2 − 4B3

3

1/3

6(2dk21 + k1)

(C.18)

where

B1 =
2dk1U0

3 + 6dk1
, (C.19)

B2 = 9g(2dk1 − 3)(1 + 2dk1)2k21U0 − 16d3k61U
3
0 , (C.20)

B3 = 3g(1 + 2dk1)2k1 + 4d2k41U
2
0 . (C.21)

The first solution in (C.18) denotes the phase velocity of a travelingwave propagating on following currents, which demands
that the discriminant ∆ = B2

2 − 4B3
3 < 0. While the second one, related to waves traveling on opposing currents, is a real

number all the time. In the case of no currents, the solution for c1,0 coincideswith the traditional linear phase speed±
√
g/k1.

In a similar way,Cζ ,m0,1 and c2,m−1 can be derived in the case of i = 0, j = 1. Thus, we gain the two unknown functionsψm, ζm
and the two unknown constants c1,m−1, c2,m−1.
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