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Abstract

The homotopy analysis method is applied to study the boundary layer flow over a flat plate which has a constant veloc-
ity opposite in direction to that of the uniform mainstream. The dual solutions in series expressions are obtained with the
proposed technique, which agree well with numerical results. Note that, by introducing a new auxiliary function b(z), the
bifurcation of the solutions is obtained. This indicates that the homtopy analysis method is a open system, in the frame-
work of this technique, we have great freedom to choose the auxiliary parameters or functions. As a result, complicated
nonlinear problems may be resolved in a simple way. The present work shows that the homotopy analysis method is an
effective tool for solving nonlinear problems with multiple solutions.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the boundary layer flows over a upstream moving flat plate, governed by
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subject to the boundary conditions
u ¼ �U w; v ¼ 0 at y ¼ 0; ð3Þ
u ¼ U1 as y !1; ð4Þ
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where x and y are two spatial independent variables along and perpendicular to the plate, u and v denote the
velocity components in the x- and y-directions, m the kinematic viscosity coefficient of the fluid, Uw the speed of
the moving plate, U1 the fluid velocity of the mainstream far away from the plate, respectively. Note that
Uw > 0 when the plate surface moves in the direction opposite to the mainstream.

Let w denote the stream function. Following Blasius [1], one uses the following similarity transformations:
f ðgÞ ¼ wðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxU1
p ; g ¼ y

ffiffiffiffiffiffiffiffi
U1
2mx

r
: ð5Þ
Then, Eq. (2) becomes
f 000ðgÞ þ f ðgÞf 00ðgÞ ¼ 0; ð6Þ

subject to the boundary conditions
f ð0Þ ¼ 0; f 0ð0Þ ¼ �a; f 0ð1Þ ¼ 1; ð7Þ

where a = Uw/U1 is the ratio of the speed of the plate surface to the velocity of the free stream.

The original differential equation arises from a classical similarity transformation of the boundary-layer
equations (see [2]). Weyl [3] established the existence and uniqueness of the solution of Eq. (6) for the
case a = 0. In the case of 0 < a 6 0.354, Merkin [4] reported the dual solutions by using both the pertur-
bation techniques and the numerical method, and discussed the stability of those solutions. Riley and
Weidman [5] made analysis and presented the numerical solutions when a < 0.3541. Hussaini et al. [6]
proved that a solution exists only if the parameter a does not exceed a certain critical value and gave
numerical evidences that the solution is non-unique. It is known that the problem of flat plate can be
expressed in alternative analytical forms by employing various transformations of both dependent and
independent variables. Crocco [7,8] developed such a transformation that the sheer stress is taken as a
primary dependent variable while the velocity component u, paralleled to the plate, is taken as an inde-
pendent variable to replace y. Callegari and Friedman [9], Callegari and Nachman [10] found that it is
expedient to work with the Crocco variable formulation, i.e. using the shear stress g(u) = f00(g) as the
dependent variable and tangential velocity u = f 0(g) as the independent variable. In this way, Eqs. (6)
and (7) become
gðuÞg00ðuÞ þ u ¼ 0; �a < u < 1; ð8Þ
g0ð�aÞ ¼ 0; gð1Þ ¼ 0: ð9Þ
We use the transformations g*(z) = g(u) and z = u + a to map the interval �a < u < 1 into 0 < z < 1 + a.
Dropping star for convenience, Eq. (8) becomes
gðzÞg00ðzÞ þ z� a ¼ 0; 0 < z < 1þ a; ð10Þ
subject to the boundary conditions
g0ð0Þ ¼ 0; gð1þ aÞ ¼ 0: ð11Þ
2. Homotopy analysis solution

Many nonlinear problems have multiple solutions. It is not easy to find out all multiple solutions of a non-
linear problem even by means of numerical techniques, say nothing of analytic methods. Recently, a kind of
new analytic technique, namely the homotopy analysis method [11], is developed for strongly nonlinear prob-
lems. Different from perturbation techniques [12], the homotopy analysis method does not depend upon any
small or large parameters and thus is valid for most of nonlinear problems in science and engineering. Besides,
it logically contains other non-perturbation techniques such as Lyapunov’s small parameter method [13], the
d-expansion method [14], and Adomian’s decomposition method [15]. The homotopy analysis method has
been successfully applied to many nonlinear problems [16–25]. In this paper, we apply the homotopy analysis
method to obtain the series expressions of the dual solutions of Eqs. (10) and (11).
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Using the transformation
gðzÞ ¼ dsðzÞ þ bðzÞ; ð12Þ

where d = g(0) = f00(0) is an unknown constant and b(z) is a function to be determined later, satisfying
bð0Þ ¼ 0; b0ð0Þ ¼ 0; bð1þ aÞ ¼ 0; ð13Þ

we have
½dsðzÞ þ bðzÞ�½ds00ðzÞ þ b00ðzÞ� þ z� a ¼ 0; ð14Þ

subject to boundary conditions
sð0Þ ¼ 1; s0ð0Þ ¼ 0; sð1þ aÞ ¼ 0: ð15Þ
2.1. Zeroth-order deformation equation

Obviously, s(z) can be expressed by a set of base functions
fzmjm P 0g ð16Þ
in the following form:
sðzÞ ¼
Xþ1
m¼0

Amzm; ð17Þ
where Am is a coefficient to be determined later. Thus, all approximations of s(z) should be expressed in the
above form. This is the so-called Rule of Solution Expression of s(z).

There are a lot of functions b(z) satisfying the boundary conditions (13). Under the Rule of Solution Expres-

sion denoted by (17) and from (13), we simply choose
bðzÞ ¼ �z2ðz� 1� aÞ: ð18Þ

Similarly, under the Rule of Solution Expression denoted by (17) and using the boundary condition (15), it is
straightforward to choose
s0ðzÞ ¼ 1� z2

ð1þ aÞ2
þ � z3

ð1þ aÞ3
� z2

ð1þ aÞ2

" #
ð19Þ
as the initial approximation of s(z), where � is a parameter to be determined later. Besides, under the Rule of
Solution Expression denoted by (17) and from the governing equation (14), we choose
L/ ¼ o
2/

oz2
ð20Þ
as our auxiliary linear operator, which has the following property:
L½C1 þ C2z� ¼ 0; ð21Þ

where C1 and C2 are integral constants. Let q 2 [0, 1] denote an embedding parameter. Based on Eq. (14), we
define a nonlinear operator
N½/ðz; qÞ;KðqÞ� ¼ ½KðqÞ/ðz; qÞ þ bðzÞ� KðqÞ o
2/ðz; qÞ

oz2
þ b00ðzÞ

� �
þ z� a; ð22Þ
where /(z; q) is a kind of mapping of s(z), and K(q) is a kind of mapping of d, respectively, which are defined
below.

Let �h denote a non-zero auxiliary parameter. We construct the zeroth-order deformation equation
ð1� qÞL½/ðz; qÞ � s0ðzÞ� ¼ q�hN½/ðz; qÞ;KðqÞ�; ð23Þ

subject to boundary conditions
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/ð0; qÞ ¼ 1;
o/ðz; qÞ

oz

����
z¼0

¼ 0; /ð1þ a; qÞ ¼ 0; ð24Þ
where q 2 [0, 1] is an embedding parameter. When q = 0 and q = 1, the above zeroth-order deformation equa-
tions (23) and (24) have the solutions
/ðz; 0Þ ¼ s0ðzÞ; Kð0Þ ¼ d0 ð25Þ

and
/ðz; 1Þ ¼ sðzÞ; Kð1Þ ¼ d; ð26Þ

respectively, where d0 is an initial approximation of d to be determined later. Thus, as the embedding param-
eter q increases from 0 to 1, the mapping /(z, q) varies (or deform) from the initial guess s0(z) to the solution
s(z) of the original equations (14) and (15), so does K(q) from the initial guess d0 to the exact value of d.

Expanding /(z; q) and K(q) in Taylor’s series with respect to the embedding parameter q, we have
/ðz; qÞ ¼ /ðz; 0Þ þ
Xþ1
m¼1

smðzÞqm; ð27Þ

KðqÞ ¼ Kð0Þ þ
Xþ1
m¼1

dmqm; ð28Þ
where
smðzÞ ¼
1

m!

o
m/ðz; qÞ
oqm

����
q¼0

; dm ¼
1

m!

o
mKðqÞ
oqm

����
q¼0

; ð29Þ
respectively. Obviously, it is important to ensure that the above series are convergent at q = 1. Fortunately,
there exists an auxiliary parameter �h in the zeroth-order deformation equations (23) and (24). If the auxiliary
parameters �h is properly chosen so that the series (27) and (28) are convergent at q = 1, we have from (25) and
(26) that
sðzÞ ¼ s0ðzÞ þ
Xþ1
m¼1

smðzÞ ð30Þ
and
d ¼ d0 þ
Xþ1
m¼1

dm; ð31Þ
respectively. The unknown sm(z) and dm will be determined in the way described below.

2.2. High-order deformation equation

For the sake of simplicity, define
~smðzÞ ¼ fs0ðzÞ; s1ðzÞ; s2ðzÞ; . . . ; smðzÞg ð32Þ

and
~dm ¼ fd0; d1; d2; . . . ; dmg: ð33Þ

Differentiating the zeroth-order deformation equations (23) m times with respect to q, then setting q = 0, and
finally dividing it by m!, we obtain the mth-order deformation equation
L½smðzÞ � vmsm�1ðzÞ� ¼ �hRmðz;~sm�1;~dm�1Þ; ð34Þ

subject to the boundary conditions
smð0Þ ¼ 0; smð1þ aÞ ¼ 0; s0mð0Þ ¼ 0; ð35Þ
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where
Rmðz;~sm�1;~dm�1Þ ¼
1

ðm� 1Þ!
om�1N½/ðz; qÞ;KðqÞ�

oqm�1

����
q¼0

¼
Xm�1

n¼0

CnXm�1�n þ b00ðzÞCm�1 þ bðzÞXm�1 þ ð1� vmÞ½bðzÞb00ðzÞ þ z� a� ð36Þ
under the definitions
Cn ¼
Xn

i¼0

dn�isiðzÞ; Xn ¼
Xn

i¼0

dn�is00i ðzÞ ð37Þ
and
vm ¼
0; m ¼ 1;

1; m > 1:

�
ð38Þ
Note that we have now a unknown function sm(z) and a unknown parameter dm�1 for m = 1, 2, 3, . . . Let
s�mðzÞ denote a particular solution of Eq. (34). From (21), the corresponding general solution reads
smðzÞ ¼ s�mðzÞ þ C1 þ C2z; ð39Þ
where the integral constants C1 and C2 are determined by the first two conditions of (35). Note that, the above
expression of sm(z) contains the unknown parameter dm�1, which is then determined by the third condition of
(35), i.e.
s0mð0Þ ¼ 0: ð40Þ
In this way, one can obtain all sm and dm�1 one after the other in the order m = 1, 2, 3, . . . At the Mth-order
of approximation, we have
sðzÞ � s0ðzÞ þ
XM

n¼1

snðzÞ; ð41Þ

d � d0 þ
XM�1

n¼1

dn: ð42Þ
From (12), the Mth-order approximation of g(z) reads
gðzÞ ¼
XM�1

n¼0

dn

 ! XM

n¼0

snðzÞ
" #

þ bðzÞ: ð43Þ
As M!1, we have the series solutions of Eqs. (10) and (11).

3. Analysis of results

3.1. The dual solutions

When m = 1, we have a nonlinear algebraic equation about d0 as
� 25

3
þ 2�

3
� �

2

3

� �
d2

0 þ
2

3
þ 2aþ 2a2 þ 2

3
a3

� �
ð1� �Þd0 þ

4

3
� 2a� 10a2 � 10a3 � 5a4 � 2a5 � a6

3
¼ 0;

ð44Þ

which has two different solutions
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d0 ¼ �
ð�1þ �Þð1þ 3aþ 3a2 þ a3Þ

25� 2�þ �2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞ2½101� 490a� 96a3 � 24a4 þ ð1� 2aÞð5�2 � 10�Þ�

q
25� 2�þ �2

: ð45Þ
When m P 2, Eq. (40) becomes a linear algebraic equation of dm�1, and thus can be easily solved. Using the
above two different expressions of d0, the dual solutions of the considered problem can be determined.

3.2. The choice of �

The parameter � is used to optimize the initial approximation of s(z). From (45), we know that � becomes a
complex number when
� <
�5þ 10a� 2

ffiffiffiffiffi
30
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4þ 22a� 22a2 � 8a3 � a4 � 2a5
p

5ð�1þ 2aÞ

�����
�����: ð46Þ
In order to determine the suitable �, we define the error function Eð�Þ as
Eð�Þ ¼
Z 1

0

f½ds0ðzÞ þ bðzÞ�½ds000ðzÞ þ b00ðzÞ� þ z� ag2 dz: ð47Þ
When Eð�Þ has the smallest value, we obtain the best value of �, i.e. � = �6 for 0 < a < 0.3541, corresponding
to the best initial approximation s0(z) of s(z).

3.3. The choice of �h

Note that our series solutions contain the auxiliary parameter �h, which provides us with a simple way to
control and adjust the convergence of the series (30) and (31), as pointed by Liao [11]. Following Liao [11],
we can choose an appropriate value of �h by means of taking �h as a variable and plotting the so-called �h-curve
of f00(0) � �h. It is found that the solution series converge when �4 6 �h < 0 for the upper branch of solutions
and �30 6 �h < �5 for the lower ones. In this way, for a given a, we can always find a proper value of �h to
ensure that the solution series converge.
1
rison of numerical results with analytical approximations of the upper branch of f00(0) and the corresponding results given by the

homotopy-Páde technique

50 order 60 order 70 order [40,40] approximations [50,50] approximations Numerical results

0.35520 0.35632 0.35660 0.35609 0.35662 0.35664
0.34302 0.34415 0.34428 0.34317 0.34428 0.34426
0.32877 0.32881 0.32885 0.32817 0.32885 0.32885
0.31163 0.31183 0.31184 0.31175 0.31184 0.31184
0.28980 0.28985 0.28985 0.28983 0.28985 0.28985
0.25779 0.25729 0.25758 0.25755 0.25758 0.25759

2
rison of numerical results with analytical approximations of the lower branch of f00(0) and the corresponding results given by the

homotopy-Páde technique

50 order 60 order 70 order [40,40] approximations [50,50] approximations Numerical results

0.08418 0.08541 0.08489 0.08382 0.08486 0.08487
0.09675 0.09612 0.09617 0.09619 0.09615 0.09617
0.10894 0.10956 0.10941 0.10925 0.10941 0.10941
0.12590 0.12593 0.12544 0.12532 0.12544 0.12543
0.14645 0.14628 0.14628 0.14623 0.14628 0.14628
0.17890 0.17899 0.17899 0.17885 0.17899 0.17899
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3.4. Validity of the series solutions

As � = �6, Eq. (45) gives a real number of d0 when a 6 0.381501. However, it is found that no solution
exists when a > 0.3541. Our analytic approximations of f00(0) agree well with numerical ones, as shown in
Tables 1 and 2, and also in Fig. 1. It is found that higher-order approximations are necessary for the lower
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Fig. 1. Comparison of numerical solutions with analytic approximations of f00(0): (circle) 70th-order homotopy analysis results; (solid line)
numerical results.
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Fig. 2. Comparison of numerical results with analytic approximations of f 0(g) when a = 0.3: (circle) 70th-order homotopy analysis results;
(solid line) upper branch numerical solutions; (dashed line) lower branch numerical solutions.
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Fig. 3. Comparison of numerical results with analytic approximations of f 0(g) when a = 0.32: (circle) 70th-order homotopy analysis
results; (solid line) upper branch numerical solutions; (dashed line) lower branch numerical solutions.
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branch of solutions than the upper ones. This agrees with Merkin’s conclusions [4]. Note that, homotopy-Páde
technique [11] is used to accelerate the convergence of the series solutions, when necessary.

According to the definitions of g(u) and u, it holds
gðuÞ ¼ du
dg
; ð48Þ
which gives
g ¼
Z u

�a

1

gðuÞ du: ð49Þ
From above expressions, it is easily to obtain the graph of f 0(g). All of our analytic approximations agree well
with numerical ones, as shown in Figs. 2 and 3.

4. Conclusions

In this paper, the dual series solutions of the boundary layer flow over an upstream moving flat plate are
obtained with the help of the homotopy analysis method. The validity of our solutions is verified by the
numerical results. It is worth mentioning that most our previous work was only considered the nonlinear prob-
lems with unique solution. while in this work, by introducing a new auxiliary function b(z), we successfully
obtain the dual solutions of the considered problem. Thus, it can be deemed as a kind of innovation of the
homotopy analysis method. This work indicates that the homotopy analysis method is still valid for nonlinear
problems with multiple solutions. The series solutions might find wide applications in engineering, such as the
migration of moisture through the air contained in fibrous insulations and grain storage installations, and dis-
persion of chemical contaminants through water-saturated soil. The analytic approach described in this paper
can be employed to other nonlinear problems with multiples solutions in the similar way.
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