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ABSTRACT.  A generalized Taylor series of a complex function was derived and 
some related theorems about its convergence region were given.  The generalized 
Taylor theorem can be applied to greatly enlarge convergence regions of 
approximation series given by other traditional techniques.  The rigorous proof of 
the generalized Taylor theorem also provides us with a rational base of the 
validity of a new kind of powerful analytic technique for nonlinear problems, 
namely the homotopy analysis method. 
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1.  Introduction 
 
In 17th century Isaac Newton [1] gave such a binomial expression for fractional and 
negative exponents , i.e.  ( )1+ t α
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whose convergence radius is one.  Furthermore, the classical Taylor series  (see [2]) 
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of a complex function  at f z( ) z z= 0  is valid mostly in a restricted convergence region  
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Liao and his co-authors developed a new kind of analytic technique for nonlinear 
differential equations, namely, the homotopy analysis method [3-14].  Different from 
perturbation techniques [15], the validity of the homotopy analysis method does not 
depend upon whether a nonlinear problem contains small/large parameters or not.  
Besides, unlike all other perturbation techniques and non-perturbative methods such as 
artificial small parameter method [16], δ - expansion method [17], Adomian 
decomposition method [18-21] and so on, the homotopy analysis method provides us 
with a convenient way to control the convergence of approximation series and adjust 
convergence regions when necessary (see [10-14]).  The homotopy analysis method has 
been successfully applied to solve many kinds of nonlinear problems in applied 
mathematics and mechanics.  Unfortunately, it is well known that hundreds of examples 
would not be better than a rigorous logical proof.  In the frame of the homotopy analysis 
method Liao [5] obtained the so-called generalized Taylor series and illustrated that it 
can be applied to greatly enlarge convergence regions of approximation series given by 
perturbation techniques [6].  In this paper, without applying the homotopy analysis 
method, we rigorously derive the so-called generalized Taylor series and logically prove 
some related theorems about convergence regions.  This, in the same time, can provide us 
with a solid rational base of the validity of the homotopy analysis method, although 
indirectly.   
 
2. The generalized Taylor theorem 
 
THEOREM 1.  Let h  be a complex number.  If a complex function  is analytic at 

, the so-called generalized Taylor series  
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and ξ k k I( ∈ )  are  singularities of . f z( )
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be complex numbers and f ( )τ  a complex function.  We have τ = z0  when p = 0  and 
τ = z  when p = 1 , respectively.  Writing G p f( ) ( )= τ , we have G  and 

, respectively.  If 
f z( )0( )0 =

G( )1 f ( )= z
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for n .  So, the mth-order Maclaurin expansion of ≥ 2 G p f( ) ( )= τ  about p  is 
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for 1 .  The convergence radius of the Maclaurin series of G p≤ ≤n m f( ) ( )= τ , i.e.  
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This completes the proof.     
 
THEOREM 2.  Let ρ k > 0 , γ k , 0 1≤ <β  and α π π∈ −[ , ]  be real numbers and 
ξ ρ γk kz i= +0 exp( k ) (k ∈ )I  denote all singularities of a complex function .  The 
general Taylor series (3) converges to  in the region 
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holds.  Write z z i= +0 ρ θexp( ) , where ρ ≥ 0 and θ π π∈ −[ , ] .  Owing to (4), the general 
Taylor series (3) converges to f z  when ( )
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COROLLARY 1.  If a complex function  has only one singularity f z( )
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COROLLARY 2.  If all singularities of a complex function  are on the left side of the 
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THEOREM 3.  Let t ,h  and  α  be real numbers. Then, the general Newtonian binomial 
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3. Conclusion 
 

We rigorously derived the so-called generalized Taylor series (3) and logically 
proved some related theorems about convergence regions.  These theorems indicate that, 
by multiplying each term of a series by the so-called approaching function )(, hnmφ  
defined by (5) and selecting a proper value of the auxiliary parameter h , one can greatly 
enlarge its convergence region.  Due to the fact that the so-called generalized Taylor 
series (3) was first obtained by Liao [5] in the frame of the homotopy analysis method, 
the proof of the generalized Taylor theorem also provides us with a solid rational base of 
the validity of the homotopy analysis method, although indirectly.    
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