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Abstract

Unsteady non-linear problems are usually solved based on the time marching scheme together with iterative methods. In this paper, we
employed an example to illustrate a new direct boundary element technique, which can provide accurate solutions of unsteady non-linear
problems without the need for iterations. The principle and validity of the technique is demonstrated by considering an unsteady non-linear
hyperbolic heat transfer problem, together with a fully implicit difference scheme in the time domain. It illustrates that the proposed non-
iterative boundary element approach is numerically rather efficient for unsteady non-linear problems. Thus, it provides an alternative to
traditional iterative methods for unsteady non-linear problems. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many physical problems in nature are governed by
unsteady non-linear differential equations. In most numer-
ical analyses, these equations are solved based on a time
marching technique. The principle of this technique is to use
the solution at the present time step as a starting point to get
the solution at the next time step. In theory, the procedure
can be repeated over any desired period of time. In practice,
however, its success very much depends on the ratio of the
step used in the time marching to the size of the cell used to
discretise the space domain. In particular, when the so-
called explicit scheme is used, which usually gives a linear
equation at each time step, the numerical result may become
inherently unstable. Even when it is stable, an extremely
small time step may be needed, which usually means prohi-
bitive computational requirements. Thus, in many cases the
unsteady non-linear differential equations are solved by the
fully implicit scheme that gives a non-linear equation at
each time step. The most commonly used method to solve
a non-linear equation is based on iteration, and iterative
methods have been quite successful in many applications.
However, its drawback is that it does not always converge,
and even when it does converge, the rate of convergence is
extremely slow in some cases.

In the present work, we will solve the unsteady non-linear
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differential equation using a direct boundary element
approach based on homotopy analysis method [5,6]. The
method has been used in some problems, which are
governed by the steady non-linear differential equations
[3,4]. Here, we further consider an unsteady non-linear
heat transfer problem governed by the hyperbolic heat
conduction equations [1,7,8]. We will show that this non-
iterative boundary element approach is especially efficient
and accurate for unsteady non-linear problems so that it can
become an alternative to traditional iterative methods.

2. Governing equation and solution procedure

To show how the scheme described in the introduction
works, we consider here an unsteady non-linear hyperbolic
heat transfer problem governed by

100" 146
plewe + -y = V[k(0)V ], (2.1)
where 0 is temperature, ¢ denotes time, v is thermal diffu-
sivity and c is thermal propagation speed. All these para-
meters have been non-dimensionalised in a conventional
manner [1,7]. Eq. (2.1) can model the propagation of ther-
mal waves, which have initially a sharp front and with a
damping effect. Details can be found in the works of
Baumeister et al. [1], Bialecki et al. [2] and Tzou [8]. For
the simplicity, we consider here the unsteady heat transfer
process in a two-dimensional unit square with ¢ = v=1
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and k(6) = 1 + a6. Eq. (2.1) becomes
90> 96

— 2 —
Fra + m =1+ ab)V 0+a(0§+6}2,), r=(x,y) € (2
(2.2)

with boundary conditions
or,ty=1, rely, 2.3)
a0(r, t

"D _o, rer, 2.4)

on
and initial conditions
0r,00=0, re (2.5)
J
WP o, ren, (2.6)
ot =0

where I} is the half centre part of the left side of the unit
square, I, denotes the other sides with heat insulation, n is
the outward unit normal vector to the boundary, and (2 =
(0, 1) X (0, 1) is the spatial domain.

The above problem will be solved by the time marching
method with a constant time step At. Let 0" (r) = 6(r, nAr)
denote the temperature at the nth time step. From Egs. (2.5)
and (2.6), we have the results at the first two time steps,
namely

1, el
wn=¢m:{ e 27

0, otherwise.

For the purpose of numerical stability, we discretise Eq.
(2.2) in the time domain in terms of a fully implicit form
with the backward finite-difference method for both the
first-order and second-order time derivatives. This gives

ny\2 ny?2
(1+a0")V29"+a|:(80 ) +<80 ) ]
0x dy
—(y+ )0+ (y+2H0 Y0 =0,  (28)

with boundary condition

0" =1, rel, 2.9)
00 _o rer, (2.10)
Jn

where y = 1/Ar and 6" '(r), " *(r) are known tempera-
ture distributions at the (n — 1)th and (n — 2)th time steps,
respectively. These equations present a non-linear bound-
ary-value problem at each time step, which is usually solved
using iterative methods.

Here, we shall use a different method. Let us define a non-
linear differential operator

2 2
AO=(1+a@)V?0+ a[(%) +(%) ]

—(y+ YO+ (y+2yH0" 1 = 202, (2.11)

where n = 2. We then construct the so-called zeroth-order
deformation equation

(1 = p)Z[6(r,h,p) — 0y(r)] = hp./[O(r, ], p)],

(2.12)
pEI[0,1], r€ N, £ #0,
with boundary conditions
O hp)=1, reTy, pE[0,1], h # 0, (2.13)
a0(r, 1
$zo, rer,, pE0,1], h#0, (2.14)

where 6y(r) is an initial approximation which satisfies the
boundary conditions Egs. (2.9) and (2.10), O(r, #, p) is the
homotopy of 6"(r) and the auxiliary linear operator & is a
second-order differential operator to be specified later.
When p = 0, we have from Egs. (2.12)—(2.14) that

O(r,1,0) = 0,(r). (2.15)

When p = 1, Egs. (2.12)—(2.14) are the same as Eqs. (2.8)—
(2.10), and therefore we have

O(r, 1, 1) = 6"(r). (2.16)

Thus, as p increases from 0 to 1, O(r, #i, p) varies from the
initial approximation 6,(r) to 6"(r), the temperature at the
nth time step, and Eq. (2.12) constructs a kind of continuous
mapping. Due to continuous mapping theory, the variation
(or the so called deformation) O(r,#,p) is commonly
continuous.

Assume that 6,(r), # and the auxiliary linear operator ¥
are properly selected so that the deformation O(r,#,p) is
smooth enough and there exists

L " O(r, h, p)

m

o) = )
! -

m=1), 2.17)
the so called mth-order deformation derivatives. Then,
together with Eq. (2.15), the Maclaurin series of the defor-

mation O(r,%,p) is given as

+ o0
0o(r) + Z 0([)m](r, mp", re Q. (2.18)
m=1
When p = 1, the above series becomes
+ oo
Oo(r) + > 05" ), rE Q. (2.19)

m=1

When this Maclaurin series is convergent, due to condi-
tion (2.16), we get the Mth-order approximation of 6"(r),
namely

M
()= > 05.h). ren,
m=0
where 0([)01(;’, h) = 6y(r). It should be noted that whether the
series (2.19) converges or not depends upon both . and #,
and it is a crucial part of the scheme to properly select both
of them.

(2.20)
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Eq. (2.20) gives a relationship between the initially
guessed 6y(r) and the solution required at the nth time
step, 6"(r), through the deformation derivatives Gg)m'(r)
(m = 1). These derivatives can be obtained from the follow-
ing procedure. Differentiating Egs. (2.12)—(2.14) m times
with respect to p, dividing both sides of the result by m! and
then setting p = 0, we obtain the so-called mth-order defor-
mation equation

2o = f,(r,h), r € Qh #0, (2.21)
with boundary conditions

0" (r,h) =0, r €T, (2.22)
989 (1) 5";]:’ M _o rer,. (2.23)
where

fi(r, ) = ficl 6y, (2.24)

oo 0" O p,h)]

fulr ) = 26" +

(m—1)! opm! p:O’
m=2, (2.25)
and
1 "0, p, 1)
(m—1)! ap™1 =0
_ VZO([)m—l] —(y+ yz)egm—l]
m—1 [m—1—i] [i]
g ; 00 00
+ 0[m 1 l]VZo[l] + 0 0
« i:ZO ( 0 0 0x ox
[m—1-1i] [i]
n Loa ‘9;’0 ) (2.26)
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The solution procedure at each time step starts from
choosing 6. If 6, is not accurate, then .27 6, will give a
significant error. This error will be corrected first through
using Eqs. (2.21)—(2.24). If the correction is not sufficient,
further higher-order approximations governed by Eqs.
(2.21) —(2.23), (2.25) and (2.26) will be given, and this
can be repeated until the desired accuracy has been
achieved. Thus, to get an approximation at mth-order, one
has to use all of the approximations at lower orders. This is
somewhat similar to some analytic techniques but essen-
tially different from traditional iterative methods, which
need only one initial guess.

It has been found that in some cases, the error in 6, can be
overcorrected through Egs. (2.21)—(2.26), which may lead
to a divergent Maclaurin series. For this reason,
—1 = A < 0 has been introduced in the scheme to make
each correction milder so that the series converges. More
details on the role of A can be found in the work of Liao [5].

In addition, we emphasise here that the mth-order (m = 1)
deformation Eqgs. (2.21)—(2.23) are linear. Thus, due to the
expression (2.20), we can obtain the Mth-order approxima-
tion of the temperature 6"(r) by solving M linear PDEs
successively, even though the temperature 6"(r) itself is
governed by a non-linear PDE.

In the original non-linear Eq. (2.8) there exists a linear
component

V20" — (y+ v)0". (2.27)
Thus, we select an auxiliary linear operator . such that
Le=V'h—(v+ ). (2.28)

which is a 2D modified Helmholtz operator. It is related to
the fundamental solution

1

/—_
wlr,r) ==

KO(A\/(x SR O yR) @)
where A = \/y + 72, ' = (x',y") is the source point, and K,
is the modified Bessel function of the second kind of order
zero. The Green’s identity then gives

. L0y dwr, )
egl(r)zﬂw(r,r) 0 = SR far

r
- JL} o(r, rf,,(r', 1)d0. (2.30)

Substituting Eqgs. (2.22) and (2.23) into Eq. (2.30), we
obtain the integral equation

[m], ./
oL (r) = Hw(r, 200 ) ]dF

on
I,

do(r, r’ ml, 1
_§|: w(a};lr)e([)](r)]dr

I

- J JQ o(r, rf,,(r', 1)d0. (2.31)

Substituting the above expression into the boundary
conditions (2.22) and (2.23), we obtain equations for the
unknown 806’”](r)/8n on the boundary I'; and Og”](r) on
the boundary I,. Discretising these equations, using the
traditional BEM, we get a set of linear algebraic equations.
It should be noted that the coefficient matrices of the set of
algebraic equations are the same for all m = 1 at every time
step. Thus, we need to calculate the matrix and its inverse
only once, and this makes the proposed approach quite
efficient.

3. Numerical results

In the numerical computation, we divide each boundary
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Fig. 1. Comparison of the 3rd-order approximation (at y = 0.5) with iterative results in the case of @« = 1, Ar = 0.01 and A = —1.

side into N equal boundary elements. At each corner of the
domain, two points, which are located on the different sides
but very close to the corner, are used to deal with the discon-
tinuity. Within each element, a linear variation for the
unknown is assumed and the Gauss-integral is used to
numerically calculate the domain integral in Eq. (2.31). In
most cases, four-point formula is sufficient, but when At is
small, more points are needed because of the sharp variation
of the fundamental solution w defined by Eq. (2.29). To get
the unknown 0"(r) at t = nAt, we use the solution at the
previous step 0" '(r) = 8(nAr — Ar) as the initial guess
0y(r).

We consider two cases here, namely @ = 1 and « = 10,
and in both cases we set N = 40. However, we chose differ-
ent time steps, i.e. At = 0.01 when @ = 1 and Az = 0.0025
when a = 10, respectively. This is mainly because in the
case of @ = 10 the thermal wave propagates faster so that
smaller Az should be used. All these parameters can give
converged results, as shown in Figs. 1 and 2. Once these
parameters have been chosen, the convergence rate of the
series in Eq. (2.19) solely depends on the value of %. Our
experience, through numerous calculations, indicates that
when —1 = A < 0 the series is always convergent at all
time steps for both &« = 1 and « = 10. In the calculation,
M is chosen in such a way that it can guarantee sufficiently
accurate results throughout the time steps. In the case of a =
1 and # = —1, it is found that even the 3rd-order approx-
imation, i.e. M = 3 in eq. (2.20), gives sufficiently accurate
results, compared with those obtained from an iterative

boundary element approach [3,4], as shown in Fig. 1. In
the case of @ = 10 and A = —1, the Sth-order approxima-
tion (M = 5) gives sufficiently accurate results, as shown in
Fig. 2. In the case of # = —3/4, the 5th-order approxima-
tions give the same results for both o = 1 and o = 10 as
those in the case of # = —1. Figs. 1 and 2 show a very good
agreement between the results given by the present direct
method and those given by the iterative method. This clearly
illustrates that the present non-iterative boundary element
method can accurately solve the unsteady non-linear
problem.

Since all the PDEs Eqgs. (2.21)—(2.23) are governed by the
same auxiliary linear operator, the proposed approach is
numerically efficient. For example, in the case of a =1,
At =0.01, A= —3/4 and M =5, the calculations takes
only about 49 s on a PC (PII 400) to give a detailed descrip-
tion of the thermal propagation over the period 0 < 7 =< 6.
In the case of a« = 10, Ar = 0.0025, 4 = —3/4 and M = 5,
the calculation takes about 108 s.

4. Conclusions

A direct (non-iterative) boundary element method for
solving unsteady non-linear problems is presented. To
describe its basic ideas and illustrate its validity, a non-
linear hyperbolic heat transfer problem is employed.
Comparisons of our numerical results with those given
by traditional iterative methods indicate that the proposed
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Fig. 2. Comparison of the fifth order approximations (at y = 0.5) with iterative results in the case & = 10, Az = 0.0025 and 7 = —1.

non-iterative boundary element method can provide rather
accurate solutions. It should be noted that the approxima-
tions, even at third or fifth order, are accurate for the
non-linear heat transfer problem under consideration. This
illustrates that the direct boundary element approach is
especially suitable and numerically efficient for unsteady
non-linear problems. Therefore, our approach provides an
alternative to traditional iterative methods, which are
commonly used for unsteady non-linear problems.
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