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Currently, the fifteen new periodic orbits of Newtonian #weody problem with equal mass were found $yvakov and Dmi-
traSinovic [Phys Rev Lett, 2013, 110: 114301] using thadggnt descent method with double precision. In this pahese
reported orbits are checked stringently by means of a felimbmerical approach (namely the “Clean Numerical Sinhoréf

CNS), which is based on the arbitrary-order Taylor seriethoteand data in arbitrary-digit precision with a procedoifrgolution

verification. It is found that seven among these fifteen srpieatly depart from the periodic ones within a long enongérval of
time, and are thus most possibly unstable at least. It isesigd to carefully check whether or not these seven unsbabiis are
the so-called “computational periodicity” mentioned byr&nz in 2006. This work also illustrates the validity andagneotential
of the CNS for chaotic dynamic systems.
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1 Introduction Note that nearly all of these reported periodic orbits are
planar. CurrentlySuvakov and DmitraSinovi¢ [13] found

It is a common knowledge that orbits of the famous three-by means of the gradient descent method (in normal preci-
body problem [1] are not integrable generally. Although sion) that there exist four classes of planar periodic srbit
chaotic orbits of three-body problems are common, howeverof Newtonian three body with equal mass, with the above
three families of periodic orbits were found: three families belonging to one class. Besides, they regort
1. the Lagrange-Euler family, dating back to the analytical three new classes of planar periodic orbits and gave a few ini

solutions in the 18th century (one recent orbit was given bytial conditions for each class with the 5-digit precisiont A
Moore [2]); first, they found around 50 fierent regions containing can-

didates for periodic orbits, at return proximity of £0n the
phase space, while evaluating this section of the initial co
ditions space. Then, they further refined these initial con-
ditions to the level of return proximity of less then£y
means of the gradient descent method. For the details of
their 15 planar “periodic” orbits, please refer to the galle
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2. the Broucke-Hadjidemetriou-Hénon family, dating back
to the mid-1970s [3-8];

3. the Figure-8 family, discovered in 1993 by Moore [2]
and extended to the rotating cases [9-12].
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traSinovit [13] expected their solutions “to be eitheatde  sion (800-digits), Liao [17] gained a reliable chaotic $imn
or marginally unstable, as otherwise they probably would no of Lorenz equation in a long interval [0, 1000] of time, whose

have been found” by their numerical method. reliability was confirmed currently by Kehlet and Logg [24]
Let the vectorr;(t) denote the orbit of three body with using a 200th-order finite element method with the high float-
equal mass, where denotes the time and = 1,2,3, re- ing point precision (400 digits). In addition, Liao [18] em-

spectively. If the orbit is periodic with the peridd it holds  ployed the CNS to accurately and reliably simulate the prop-
ri(t) = ri(t+ nT) for arbitrary timet > 0 and arbitrary integer agation of physical uncertainty of initial positions (cads
n > 1. If, given a tiny disturbance (for exampletat 0), the by the so-called wave-particle duality of de Broglie, even
three-bodies greatly depart their periodic orbits aftera p at the infinitesimal dimensionless level£8) of the chaotic
longed time, then the corresponding orbits are unstable. Hamiltonian Hénon-Heiles system for motions of stars in a
Suvakov and Dmitraginovi¢ [13] used the gradient descenplane about the galactic center. Recently, using 1200 CPUs
method to search for the initial conditions of the periodic o  Of the National Supercomputer TH-A1 and the modified par-
bits of three-body of equal mass in the accuracy of1CQur- allel integral algorithm based on the CNS with the 3500th-
rently, they obtained the more accurate initial conditions order TSM and the 4180-digit multiple-precision data, Liao
the 15-digit precision. However, it is well-known that debi ~ and Wang [25], for the first time, obtained a mathematically
of three-body problem are often chaotic, i.e., very sersiti reliable simulation of chaotic solution of Lorenz equation
to initial conditions [14—16]. As reported by Lorenz [14], a rather long interval [0, 10000]. Such kind of reliable, €on
many traditional numerical methods in single or double pre-vergent chaotic solution of Lorenz equation has never been
cision often lead to the so-called “computational peritigic ~ reported. All of these indicate that the CNS can indeed pro-
(CP) of chaotic dynamic systems: when the exact solution isvide us a safe way to gain mathematically reliable simutegtio
chaotic, computed solutions are, however, periodic within 0f chaotic dynamic systems in a finite but adequately long in-
range of time step. Thus, it is very important to gain reli- terval.
able orbits of the three-body problem. Note tBat/akov and Currently, Liao [19] successfully applied the CNS to accu-
Dmitrasinovi¢ [13] employed a traditional numerical inedl rately investigate the influence of the micro-level phykice
only in the double precision. Thus, it is necessary to checkcertainty of initial position of three-body problem withea
their reported periodic orbits very carefully using a mage r mass on its chaotic trajectories, and found that the micro-
liable approach. level physical uncertainty might transfer into macroscopi
To gain mathematically reliable numerical simulations of randomness. This further validates the utility of the CNE fo

orbits of Newtonian three body problem, we use here the sothree-body problem. So, in this paper, we use the same CNS
called “Clean Numerical Simulation” (CNS) [17—19], which approach to check and verify the periodic orbits reported by
is based on the arbitrary-order Taylor series method (TSM)Suvakov and DmitraSinovic [13]. All numerical simulati®
and the arbitrary precision library of C with a procedure of reported below are obtained by the CNS with high enough
solution verification. The TSM [20—22] can trace back to order of TSM and accurate enough multiple-precision data
Newton, Euler, Liouville and Cauchy. It has an advantageWith a procedure of solution verification, say, whose vaidi
that its formula at arbitrary order can be easily expressed i in & given long enough interval is further confirmed by better
the same form. So, from viewpoint of numerical simulations, CNS simulations using higher-order TSM, amdmore accu-

it is rather easy to use the TSM at very high order so as tdate MP data, andr smaller time stept. For the detailed
deduce the truncation error to a required level. Besides, thnhumerical algorithm, please refer to Liao [19].

round-df error can be reduced to arbitrary level by means

of the multiple precision (MP) library [23]. Lem denote 2 Stability of the newly found periodic orbits

the order of TSM andNs the number of significant digits of

multiple-precision data, respectively. Unlike other nuime Suvakov and Dmitrasinovi¢ [13] reported the initial cond
cal approaches, the CNS enforces tNaincreases together tions of the newly found periodic orbits in the 5-digit preci
with M, such asNs = 2M as illustrated by Liao [17] who sion. Currently, they obtained the more accurate initialdio
gained, for the first time, a reliable chaotic solution inagdo tions in the 15-digit precision for their periodic orbitssidg
interval [0, 1000] of Lorenz equation by meansMf= 400  these initial conditions, we simulate the orbits by means of
andNs = 800. More importantly, unlike other methods, the the CNS. According to our highly accurate numerical results
CNS has a procedure of solution verification: the reliapilit in a long enough interval, at least seven orbits among them
of one CNS simulation in a given finite but long enough in- (listed in Table 1) are most possibly unstable.

terval must be guaranteed by means of other better CNS sim- Without loss of generality, let us consider the case of
ulations using largeM andor smaller time stept. In this BUTTERFLY-l, i.e., the Class 1.A.1, defined b$uvakov
way, the numerical noises can be decreased to such a smahd DmitraSinovic [13]. Using the 20th to 50th order TSM
level that both truncation and roundf@rrors are negligible and the 300-digit multiple precision data with the timepste
in a given finite but sfiiciently long interval. For example, At = 10°°, we obtain the convergent trajectories of the three
using the 400th-order TSM and the high floating point preci-bodies in the interval [0, 200]: all of these trajectoriegesg
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Figure 1 Orbits of Body-1 in case of BUTTERFLY-I in the interval [0,
200] gained by means of the CNS using 40th-order TSM and 8§i0rdul-
tiple precision with time stept = 107°. The initial condition in 15-digit
precision in Table 1 is used. Green line: periodic orbit regin ref. [13].

Tablel The initial conditions of the 7 periodic orbits in 15-digitgeision,
given bySuvakov in a private email communication

Class, number, name

x1(0)

¥1(0)

I.LA.1 BUTTERFLY |
1.B.4 MOTH IlI
1.B.5 GOGGLES

1.B.7 DRAGONFLY

I1.B.1 YARN

I1.C.2a YIN-YANG |

I1.C.2b YIN-YANG |

0.306892758965492
0.383443534851074
0.0833000564575194
0.080584285736084
0.559064247131347
0.513938054919243
0.282698682308198

0.125506782829762
0.377363693237305
0.127889282226563
0.588836087036132
0.349191558837891
0.304736003875733
0.327208786129952

Table2 The position 1, y;) of Body-1 att = 200 in case of BUTTERFLY-

| given by the dfferent orders of TSM and 300-digit multiple-precision data

with the diferent time steps. The initial condition is listed in Table 1

Order At x1(200) y1(200)
20 10° —33.498137 -12.017376
25 10° —33.498137957 -12.017376712
30 10° —33.49813795772 —12.01737671265
40 10° —33.49813795771996 —12.01737671265596
45 10° —33.49813795771996 —12.01737671265596
50 10° —33.49813795771996 —12.01737671265596
12 106 —33.49813795771996 —12.01737671265596
15 106 —33.49813795771996 —12.01737671265596
20 106 —33.49813795771996 —12.01737671265596
12 107 —33.49813795771996 —12.01737671265596

well in the whole interval [0, 200] at least in 7 digits, for
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Figure 2 Orbits of Body-2 in case of BUTTERFLY-I in the interval [O,

200] gained by means of the CNS using 40th-order TSM conditiol5-

digit precision in Table 1 is used. Green line: periodic breported in ref.

[13].
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Figure 3 Orbits of Body-3 in case of BUTTERFLY-I in the interval [O,
200] gained by means of the CNS using 40th-order TSM and &§i0rdul-
tiple precision with time step\t = 107°. The initial condition in 15-digit
precision in Table 1 is used. Green line: periodic orbit regmbin ref. [13].

fore, all of these CNS numerical simulations are convergent
to the same result in the interval [0, 200] and thus are reli-
able mathematically. However, the corresponding orbits of
the three bodies are approximately periodic only up to about
t = 130, but thereafter depart from the periodic ones far and
far away, as shown in Figures 1-3. According to our reli-

example as shown in Table 2 for the position of Body-1 atable numerical simulations in the interval [0, 200], we are
t = 200. Note that, at the arbitrary ordet > 40, the CNS
results given by théVith-order TSM withAt = 10°° have at
least the 14 significant digits in the whole interval [0, 200] together to become a binary-body system, while Body-2 es-
whose reliability is further confirmed by using tMéth-order
(M’ > 12) TSMwith a smaller time stepit = 1076, There-

quite sure that the orbits are completely non-periodicrafte
t > 130, as shown in Figure 4: Body-1 and Body-3 escape

capes in the opposite direction. This counter-examplelglea
indicates that the initial condition in the 15-digit preois of
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1.5 In the case of GOGGLES, the orbits in the interval [0, 90]
given by the CNS with the 30th-order TSM and the time
stepAt = 10°° agree well in the 8 significant digits with
those given by the 15th-order TSM and the smaller time step
At = 1078, Itis found that the orbits are almost periodic only
up tot = 55 (i.e., a little more than 5 periods of GOGGLES
reported bySuvakov and Dmitrainovi¢ [13]), but thereafter
depart from the periodic ones far and far away.

In the case of DRAGONFLY, the orbits in the interval [0,
950] given by the CNS with the 25th-order TSM and the time
stepAt = 10°° agree well in the 4 significant digits with those
given by the 30th-order TSM and the same time step. The or-

1.0

0.5

y(t)
o

-1.0 bits are approximately periodic only upte: 720, but there-
after drift far apart the periodic ones.
sl vy In the case of YARN, the orbits in the interval [0, 560]
-1.5 -0 -05 Xg) 05 1.0 1.5 given by the CNS with the 25th-order TSM and the time step

At = 107° agree well in the 7 significant digits with those
given by the 30th-order TSM and the same time step. The
orbits are approximately periodic only up to= 440, but
e _ _ . _ _ thereafter depart far apart from the periodic ones.

precision in Ta?le lis 'used. Blue line: orbit of Body-1; Rewl orbit of In the case of YIN-YANG I (II.C.2a), the orbits in the in-
Body-2; Black line: orbit of Body-3. terval [0, 320] given by the CNS with the 25th-order TSM
the periodic orbit BUTTERFLY-I given by ref. [13] is not and the time stept = 10~ agree well in the 16 significant
accurate enough to guarantee periodic orbits. Note that, fodigits with those given by the 30th-order TSM and the same
chaotic dynamic systems, exact initial conditions of peri-time step. The orbits are approximately periodic only up to
odic orbits should be irrational numbers, as illustrated byt = 250, however thereafter depart from the periodic ones far
Viswanath [26] who reported the initial conditions of peri- and far away.

odic solutions of Lorenz equation in accuracy of 500 signifi-  In the case of YIN-YANG I (1I.C.2b), the orbits in the in-
cant digits. So, the initial condition in the 15-digit prsicin  terval [0, 190] given by the CNS with the 25th-order TSM
given by Suvakov and Dmitrasinovi¢ [13] can be regarded and the time stept = 10°° agree well in the 6 significant
as the exact initial condition plus a small disturbance at th digits with those given by the 30th-order TSM and the same
level of 1015, Our accurate simulations given by the CNS time step. The orbits are approximately periodic only up to
indicate that the orbit related to BUTTERFLY-I departs from t = 135, but thereafter depart from the periodic ones further
its periodic ones due to this very small disturbance, and thu apart, as shown in Figure 5.

is unstable. Besides, it is found that these orbits are sensitive to e in

The reliable numerical simulations of orbits by means oftial conditions: adding a small disturbance at the levett10
the seven initial conditions are listed in Table 1. The t@éa  to the initial conditions in Table 1, we gain a non-periodic
simulations by means of the CNS with the 300-digit multi- orbit that departs considerably from the original non-peic
ple precision data (we will not repeat this point thereafter ones after a prolonged time. This confirms that the orbits
high enough orders of TSM and small enough time step areiven by the seven initial conditions in Table 1 are most pos-
obtained similarly. Every numerical simulation given bgth sibly unstable.

CNS is guaranteed to be convergentand reliable in a finite but Using the original initial conditions (in 5-digit precisip

long enough interval. However, it is found that all of these of the considered seven orbits reportecSvakov and Dmi-
seven initial conditions can not guarantee periodic orfaills  traSinovic [13], we gain qualitatively the same conobusi

of them depart from periodic orbits after a long enough timethe seven corresponding orbits become non-periodic after a
and thus are most possibly unstable, as mentioned below. long enough time and thus are most possibly unstable.

In case of the MOTH-III, the orbits in the interval [0, 590] In summary, using the CNS with the initial conditions of
gained by means of the initial condition listed in Table 1 the seven orbits reported IBuvakov and Dmitrasinovic [13]
and CNS (with the 20th-order TSM, the 300-digit multiple (see Table 1), we can gain convergent and reliable numerical
precision and the time stet = 107°) agree well in the  results of the orbits, which however become non-periodic af
13 significant digits with those obtained by the CNS with ter a long enough interval of time. This suggests that at leas
25th-order TSM and the same time step. The orbits are apthe seven (listed in Table 1) of the periodic orbits repoligd
proximately periodic up td = 560, i.e., about 22 periods Suvakov and Dmitrasinovi¢ [13] are most possibly unstabl
(T = 25.8406180475758) of MOTH-III, but thereafter depart It is found that the other 8 periodic orbits (see Table 3)
from the periodic ones far and far away. reported bySuvakov and Dmitrasinovic [13] do not greatly

Figure 4 Orbits of three bodies in case of BUTTERFLY-I in the interval
[0, 200] gained by means of the CNS using 40th-order TSM arddigit
multiple precision with time stept = 107°. The initial condition in 15-digit
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Figure 5 Orbits of three bodies in case of I11.C.2b (YIN-YANG 1) in the

interval [0, 190] gained by means of the CNS using 25th-ofid&M and

300-digit multiple precision with time stept = 10°°. The initial condition

in 15-digit precision in Table 1 is used. Blue line: orbit obd/-1; red line:

orbit of Body-2; black line: orbit of Body-3.
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Table 3 The initial conditions (in 15-digit precision) of the 8 statperi-
odic orbits given b)éuvakov and DmitraSinovi¢ [13] in a private communi-
cation via email

Class, number, name
I.LA.2 BUTTERFLY Il
I.A.3 BUMBLEBEE

x1(0)
0.392955223941802
0.184278506469727

¥1(0)
0.0975792352080344
0.587188195800781

I.B.1 MOTH | 0.464445237398184  0.396059973403921
[.B.2 MOTH II 0.439165939331987  0.452967645644678
I.B.3BUTTERFLY Il 0.405915588857606  0.230163127422333
I.B.6 BUTTERFLY IV  0.350112121391296 0.0793394773483276

I1.C.3a YIN-YANG Il
I1.C.3b YIN-YANG II

0.416822143554688
0.417342877101898

0.330333312988282
0.313100116109848

depart from periodic orbits even thoughtat 10000 (after
hundreds of periods).

3 Concluding remarks and discussions

The fifteen periodic orbits of the Newtonian three-body prob

lem currently reported byuvakov and Dmitraginovi¢ [13]
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It is well-known that dynamic systems related to three-
body problem are often chaotic, i.e. very sensitive to ahiti
condition. As pointed out by Lorenz [14], many traditional
numerical approaches might lead to the so-called “computa-
tional periodicity”, say, when the exact solution is chapti
computed solutions seem, however, to be periodic within a
range of time. Itis an open question whether the seven unsta-
ble periodic orbits listed in Table 1 are “computationaliper
odicity” or not. Itis suggested to use periodic base funio
to search for periodic solutions of complicated nonlinear d
namic systems like three-body problems, since such kind of
solutions are periodic even for arbitrarily large time. iBles,
stability analysis is very important, since an unstableagit
system can not exist in nature.

This work also illustrates the validity and great potential
of the CNS (Clean Numerical Simulation) for complicated
nonlinear dynamic systems.
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