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Currently, the fifteen new periodic orbits of Newtonian three-body problem with equal mass were found byŠuvakov and Dmi-
trašinović [Phys Rev Lett, 2013, 110: 114301] using the gradient descent method with double precision. In this paper,these
reported orbits are checked stringently by means of a reliable numerical approach (namely the “Clean Numerical Simulation”,
CNS), which is based on the arbitrary-order Taylor series method and data in arbitrary-digit precision with a procedureof solution
verification. It is found that seven among these fifteen orbits greatly depart from the periodic ones within a long enough interval of
time, and are thus most possibly unstable at least. It is suggested to carefully check whether or not these seven unstableorbits are
the so-called “computational periodicity” mentioned by Lorenz in 2006. This work also illustrates the validity and great potential
of the CNS for chaotic dynamic systems.
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1 Introduction

It is a common knowledge that orbits of the famous three-
body problem [1] are not integrable generally. Although
chaotic orbits of three-body problems are common, however,
three families of periodic orbits were found:

1. the Lagrange-Euler family, dating back to the analytical
solutions in the 18th century (one recent orbit was given by
Moore [2]);

2. the Broucke-Hadjidemetriou-Hénon family, dating back
to the mid-1970s [3–8];

3. the Figure-8 family, discovered in 1993 by Moore [2]
and extended to the rotating cases [9–12].
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Note that nearly all of these reported periodic orbits are
planar. Currently,Šuvakov and Dmitrašinović [13] found
by means of the gradient descent method (in normal preci-
sion) that there exist four classes of planar periodic orbits
of Newtonian three body with equal mass, with the above
three families belonging to one class. Besides, they reported
three new classes of planar periodic orbits and gave a few ini-
tial conditions for each class with the 5-digit precision. At
first, they found around 50 different regions containing can-
didates for periodic orbits, at return proximity of 10−1 in the
phase space, while evaluating this section of the initial con-
ditions space. Then, they further refined these initial con-
ditions to the level of return proximity of less then 10−6 by
means of the gradient descent method. For the details of
their 15 planar “periodic” orbits, please refer to the gallery
(http://suki.ipb.ac.rs/3body/). Especially,Šuvakov and Dmi-
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trašinović [13] expected their solutions “to be either stable
or marginally unstable, as otherwise they probably would not
have been found” by their numerical method.

Let the vectorri(t) denote the orbit of three body with
equal mass, wheret denotes the time andi = 1, 2, 3, re-
spectively. If the orbit is periodic with the periodT, it holds
ri(t) = ri(t + nT) for arbitrary timet > 0 and arbitrary integer
n > 1. If, given a tiny disturbance (for example att = 0), the
three-bodies greatly depart their periodic orbits after a pro-
longed time, then the corresponding orbits are unstable.

Šuvakov and Dmitrašinović [13] used the gradient descent
method to search for the initial conditions of the periodic or-
bits of three-body of equal mass in the accuracy of 10−6. Cur-
rently, they obtained the more accurate initial conditionsin
the 15-digit precision. However, it is well-known that orbits
of three-body problem are often chaotic, i.e., very sensitive
to initial conditions [14–16]. As reported by Lorenz [14],
many traditional numerical methods in single or double pre-
cision often lead to the so-called “computational periodicity”
(CP) of chaotic dynamic systems: when the exact solution is
chaotic, computed solutions are, however, periodic withina
range of time step. Thus, it is very important to gain reli-
able orbits of the three-body problem. Note thatŠuvakov and
Dmitrašinović [13] employed a traditional numerical method
only in the double precision. Thus, it is necessary to check
their reported periodic orbits very carefully using a more re-
liable approach.

To gain mathematically reliable numerical simulations of
orbits of Newtonian three body problem, we use here the so-
called “Clean Numerical Simulation” (CNS) [17–19], which
is based on the arbitrary-order Taylor series method (TSM)
and the arbitrary precision library of C with a procedure of
solution verification. The TSM [20–22] can trace back to
Newton, Euler, Liouville and Cauchy. It has an advantage
that its formula at arbitrary order can be easily expressed in
the same form. So, from viewpoint of numerical simulations,
it is rather easy to use the TSM at very high order so as to
deduce the truncation error to a required level. Besides, the
round-off error can be reduced to arbitrary level by means
of the multiple precision (MP) library [23]. LetM denote
the order of TSM andNs the number of significant digits of
multiple-precision data, respectively. Unlike other numeri-
cal approaches, the CNS enforces thatNs increases together
with M, such asNs = 2M as illustrated by Liao [17] who
gained, for the first time, a reliable chaotic solution in a long
interval [0, 1000] of Lorenz equation by means ofM = 400
andNs = 800. More importantly, unlike other methods, the
CNS has a procedure of solution verification: the reliability
of one CNS simulation in a given finite but long enough in-
terval must be guaranteed by means of other better CNS sim-
ulations using largerM and/or smaller time step∆t. In this
way, the numerical noises can be decreased to such a small
level that both truncation and round-off errors are negligible
in a given finite but sufficiently long interval. For example,
using the 400th-order TSM and the high floating point preci-

sion (800-digits), Liao [17] gained a reliable chaotic solution
of Lorenz equation in a long interval [0, 1000] of time, whose
reliability was confirmed currently by Kehlet and Logg [24]
using a 200th-order finite element method with the high float-
ing point precision (400 digits). In addition, Liao [18] em-
ployed the CNS to accurately and reliably simulate the prop-
agation of physical uncertainty of initial positions (caused
by the so-called wave-particle duality of de Broglie, even
at the infinitesimal dimensionless level 10−60) of the chaotic
Hamiltonian Hénon-Heiles system for motions of stars in a
plane about the galactic center. Recently, using 1200 CPUs
of the National Supercomputer TH-A1 and the modified par-
allel integral algorithm based on the CNS with the 3500th-
order TSM and the 4180-digit multiple-precision data, Liao
and Wang [25], for the first time, obtained a mathematically
reliable simulation of chaotic solution of Lorenz equationin
a rather long interval [0, 10000]. Such kind of reliable, con-
vergent chaotic solution of Lorenz equation has never been
reported. All of these indicate that the CNS can indeed pro-
vide us a safe way to gain mathematically reliable simulations
of chaotic dynamic systems in a finite but adequately long in-
terval.

Currently, Liao [19] successfully applied the CNS to accu-
rately investigate the influence of the micro-level physical un-
certainty of initial position of three-body problem with equal
mass on its chaotic trajectories, and found that the micro-
level physical uncertainty might transfer into macroscopic
randomness. This further validates the utility of the CNS for
three-body problem. So, in this paper, we use the same CNS
approach to check and verify the periodic orbits reported by
Šuvakov and Dmitrašinović [13]. All numerical simulations
reported below are obtained by the CNS with high enough
order of TSM and accurate enough multiple-precision data
with a procedure of solution verification, say, whose validity
in a given long enough interval is further confirmed by better
CNS simulations using higher-order TSM, and/or more accu-
rate MP data, and/or smaller time step∆t. For the detailed
numerical algorithm, please refer to Liao [19].

2 Stability of the newly found periodic orbits

Šuvakov and Dmitrašinović [13] reported the initial condi-
tions of the newly found periodic orbits in the 5-digit preci-
sion. Currently, they obtained the more accurate initial condi-
tions in the 15-digit precision for their periodic orbits. Using
these initial conditions, we simulate the orbits by means of
the CNS. According to our highly accurate numerical results
in a long enough interval, at least seven orbits among them
(listed in Table 1) are most possibly unstable.

Without loss of generality, let us consider the case of
BUTTERFLY-I, i.e., the Class I.A.1, defined by̌Suvakov
and Dmitrašinović [13]. Using the 20th to 50th order TSM
and the 300-digit multiple precision data with the time-step
∆t = 10−5, we obtain the convergent trajectories of the three
bodies in the interval [0, 200]: all of these trajectories agree
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Figure 1 Orbits of Body-1 in case of BUTTERFLY-I in the interval [0,

200] gained by means of the CNS using 40th-order TSM and 300-digit mul-

tiple precision with time step∆t = 10−5. The initial condition in 15-digit

precision in Table 1 is used. Green line: periodic orbit reported in ref. [13].

Table 1 The initial conditions of the 7 periodic orbits in 15-digit precision,
given byŠuvakov in a private email communication

Class, number, name ˙x1(0) ẏ1(0)

I.A.1 BUTTERFLY I 0.306892758965492 0.125506782829762

I.B.4 MOTH III 0.383443534851074 0.377363693237305

I.B.5 GOGGLES 0.0833000564575194 0.127889282226563

I.B.7 DRAGONFLY 0.080584285736084 0.588836087036132

II.B.1 YARN 0.559064247131347 0.349191558837891

II.C.2a YIN-YANG I 0.513938054919243 0.304736003875733

II.C.2b YIN-YANG I 0.282698682308198 0.327208786129952

Table 2 The position (x1, y1) of Body-1 att = 200 in case of BUTTERFLY-

I given by the different orders of TSM and 300-digit multiple-precision data

with the different time steps. The initial condition is listed in Table 1

Order ∆t x1(200) y1(200)

20 10−5 –33.498137 –12.017376

25 10−5 –33.498137957 –12.017376712

30 10−5 –33.49813795772 –12.01737671265

40 10−5 –33.49813795771996 –12.01737671265596

45 10−5 –33.49813795771996 –12.01737671265596

50 10−5 –33.49813795771996 –12.01737671265596

12 10−6 –33.49813795771996 –12.01737671265596

15 10−6 –33.49813795771996 –12.01737671265596

20 10−6 –33.49813795771996 –12.01737671265596

12 10−7 –33.49813795771996 –12.01737671265596

well in the whole interval [0, 200] at least in 7 digits, for
example as shown in Table 2 for the position of Body-1 at
t = 200. Note that, at the arbitrary orderM > 40, the CNS
results given by theMth-order TSM with∆t = 10−5 have at
least the 14 significant digits in the whole interval [0, 200],
whose reliability is further confirmed by using theM′th-order
(M′ > 12) TSM with a smaller time step∆t = 10−6. There-

Figure 2 Orbits of Body-2 in case of BUTTERFLY-I in the interval [0,

200] gained by means of the CNS using 40th-order TSM condition in 15-

digit precision in Table 1 is used. Green line: periodic orbit reported in ref.

[13].

Figure 3 Orbits of Body-3 in case of BUTTERFLY-I in the interval [0,

200] gained by means of the CNS using 40th-order TSM and 300-digit mul-

tiple precision with time step∆t = 10−5. The initial condition in 15-digit

precision in Table 1 is used. Green line: periodic orbit reported in ref. [13].

fore, all of these CNS numerical simulations are convergent
to the same result in the interval [0, 200] and thus are reli-
able mathematically. However, the corresponding orbits of
the three bodies are approximately periodic only up to about
t = 130, but thereafter depart from the periodic ones far and
far away, as shown in Figures 1–3. According to our reli-
able numerical simulations in the interval [0, 200], we are
quite sure that the orbits are completely non-periodic after
t > 130, as shown in Figure 4: Body-1 and Body-3 escape
together to become a binary-body system, while Body-2 es-
capes in the opposite direction. This counter-example clearly
indicates that the initial condition in the 15-digit precision of
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Figure 4 Orbits of three bodies in case of BUTTERFLY-I in the interval

[0, 200] gained by means of the CNS using 40th-order TSM and 300-digit

multiple precision with time step∆t = 10−5. The initial condition in 15-digit

precision in Table 1 is used. Blue line: orbit of Body-1; Red line: orbit of

Body-2; Black line: orbit of Body-3.

the periodic orbit BUTTERFLY-I given by ref. [13] is not
accurate enough to guarantee periodic orbits. Note that, for
chaotic dynamic systems, exact initial conditions of peri-
odic orbits should be irrational numbers, as illustrated by
Viswanath [26] who reported the initial conditions of peri-
odic solutions of Lorenz equation in accuracy of 500 signifi-
cant digits. So, the initial condition in the 15-digit precision
given by Šuvakov and Dmitrašinović [13] can be regarded
as the exact initial condition plus a small disturbance at the
level of 10−15. Our accurate simulations given by the CNS
indicate that the orbit related to BUTTERFLY-I departs from
its periodic ones due to this very small disturbance, and thus
is unstable.

The reliable numerical simulations of orbits by means of
the seven initial conditions are listed in Table 1. The reliable
simulations by means of the CNS with the 300-digit multi-
ple precision data (we will not repeat this point thereafter),
high enough orders of TSM and small enough time step are
obtained similarly. Every numerical simulation given by the
CNS is guaranteed to be convergent and reliable in a finite but
long enough interval. However, it is found that all of these
seven initial conditions can not guarantee periodic orbits: all
of them depart from periodic orbits after a long enough time
and thus are most possibly unstable, as mentioned below.

In case of the MOTH-III, the orbits in the interval [0, 590]
gained by means of the initial condition listed in Table 1
and CNS (with the 20th-order TSM, the 300-digit multiple
precision and the time step∆t = 10−5) agree well in the
13 significant digits with those obtained by the CNS with
25th-order TSM and the same time step. The orbits are ap-
proximately periodic up tot = 560, i.e., about 22 periods
(T = 25.8406180475758) of MOTH-III, but thereafter depart
from the periodic ones far and far away.

In the case of GOGGLES, the orbits in the interval [0, 90]
given by the CNS with the 30th-order TSM and the time
step∆t = 10−5 agree well in the 8 significant digits with
those given by the 15th-order TSM and the smaller time step
∆t = 10−6. It is found that the orbits are almost periodic only
up to t = 55 (i.e., a little more than 5 periods of GOGGLES
reported byŠuvakov and Dmitrašinović [13]), but thereafter
depart from the periodic ones far and far away.

In the case of DRAGONFLY, the orbits in the interval [0,
950] given by the CNS with the 25th-order TSM and the time
step∆t = 10−5 agree well in the 4 significant digits with those
given by the 30th-order TSM and the same time step. The or-
bits are approximately periodic only up tot = 720, but there-
after drift far apart the periodic ones.

In the case of YARN, the orbits in the interval [0, 560]
given by the CNS with the 25th-order TSM and the time step
∆t = 10−5 agree well in the 7 significant digits with those
given by the 30th-order TSM and the same time step. The
orbits are approximately periodic only up tot = 440, but
thereafter depart far apart from the periodic ones.

In the case of YIN-YANG I (II.C.2a), the orbits in the in-
terval [0, 320] given by the CNS with the 25th-order TSM
and the time step∆t = 10−5 agree well in the 16 significant
digits with those given by the 30th-order TSM and the same
time step. The orbits are approximately periodic only up to
t = 250, however thereafter depart from the periodic ones far
and far away.

In the case of YIN-YANG I (II.C.2b), the orbits in the in-
terval [0, 190] given by the CNS with the 25th-order TSM
and the time step∆t = 10−5 agree well in the 6 significant
digits with those given by the 30th-order TSM and the same
time step. The orbits are approximately periodic only up to
t = 135, but thereafter depart from the periodic ones further
apart, as shown in Figure 5.

Besides, it is found that these orbits are sensitive to the ini-
tial conditions: adding a small disturbance at the level 10−17

to the initial conditions in Table 1, we gain a non-periodic
orbit that departs considerably from the original non-periodic
ones after a prolonged time. This confirms that the orbits
given by the seven initial conditions in Table 1 are most pos-
sibly unstable.

Using the original initial conditions (in 5-digit precision)
of the considered seven orbits reported byŠuvakov and Dmi-
trašinović [13], we gain qualitatively the same conclusion:
the seven corresponding orbits become non-periodic after a
long enough time and thus are most possibly unstable.

In summary, using the CNS with the initial conditions of
the seven orbits reported byŠuvakov and Dmitrašinović [13]
(see Table 1), we can gain convergent and reliable numerical
results of the orbits, which however become non-periodic af-
ter a long enough interval of time. This suggests that at least
the seven (listed in Table 1) of the periodic orbits reportedby
Šuvakov and Dmitrašinović [13] are most possibly unstable.

It is found that the other 8 periodic orbits (see Table 3)
reported by̌Suvakov and Dmitrašinović [13] do not greatly
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Figure 5 Orbits of three bodies in case of II.C.2b (YIN-YANG I) in the

interval [0, 190] gained by means of the CNS using 25th-orderTSM and

300-digit multiple precision with time step∆t = 10−5. The initial condition

in 15-digit precision in Table 1 is used. Blue line: orbit of Body-1; red line:

orbit of Body-2; black line: orbit of Body-3.

Table 3 The initial conditions (in 15-digit precision) of the 8 stable peri-

odic orbits given by̌Suvakov and Dmitrašinović [13] in a private communi-

cation via email

Class, number, name ˙x1(0) ẏ1(0)

I.A.2 BUTTERFLY II 0.392955223941802 0.0975792352080344

I.A.3 BUMBLEBEE 0.184278506469727 0.587188195800781

I.B.1 MOTH I 0.464445237398184 0.396059973403921

I.B.2 MOTH II 0.439165939331987 0.452967645644678

I.B.3 BUTTERFLY III 0.405915588857606 0.230163127422333

I.B.6 BUTTERFLY IV 0.350112121391296 0.0793394773483276

II.C.3a YIN-YANG II 0.416822143554688 0.330333312988282

II.C.3b YIN-YANG II 0.417342877101898 0.313100116109848

depart from periodic orbits even though att = 10000 (after
hundreds of periods).

3 Concluding remarks and discussions

The fifteen periodic orbits of the Newtonian three-body prob-
lem currently reported by̌Suvakov and Dmitrašinović [13]
were checked very carefully by means of the CNS, a numer-
ical technique based on the arbitrary order of Taylor series
and the arbitrary precision of data with a procedure of solu-
tion verification. In all cases, convergent and reliable numer-
ical results are obtained in a long enough interval of time.
The convergent CNS results indicate that at least seven or-
bits (listed in Table 1) among them greatly depart from the
periodic ones after a long enough interval of time, and thus
are most possibly unstable. The other eight orbits (listed in
Table 3) do not greatly depart from the periodic ones even
in a rather long interval of time [0, 10000] after hundreds of
periods.

It is well-known that dynamic systems related to three-
body problem are often chaotic, i.e. very sensitive to initial
condition. As pointed out by Lorenz [14], many traditional
numerical approaches might lead to the so-called “computa-
tional periodicity”, say, when the exact solution is chaotic,
computed solutions seem, however, to be periodic within a
range of time. It is an open question whether the seven unsta-
ble periodic orbits listed in Table 1 are “computational peri-
odicity” or not. It is suggested to use periodic base functions
to search for periodic solutions of complicated nonlinear dy-
namic systems like three-body problems, since such kind of
solutions are periodic even for arbitrarily large time. Besides,
stability analysis is very important, since an unstable dynamic
system can not exist in nature.

This work also illustrates the validity and great potential
of the CNS (Clean Numerical Simulation) for complicated
nonlinear dynamic systems.
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